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Materials and methods

Triphenylamine, POCI;, tetrakis(triphenylphosphine)palladium, and all the boronic acids (thiophene-3-
boronic acid, benzeneboronic acid, 3-fluoroboronic acid, 4- methoxyphenylboronic acid, 3-
trifluoromethylboronic acid), pyrrole, p-formaldehyde,indium trichloride (InCls),2,3-dichloro-5,6-
dicyano-1,4-benzoquinone(DDQ),trifluoroacetic acid (TFA), were used as purchased from the
commercial sources. N, N-Dimethylformamide (DMF) and triethylamine used were anhydrous. All the
other solvents (AR grade) were used as received. *H NMR and 3C NMR were recorded in Bruker 400
MHz spectrometer in CDCls. Chemical shifts are reported against TMS. Absorption spectra of
compounds were recorded by JASCO UV-NIR spectrophotometer. Fluorescence measurements were
obtained from Perkin Elmer Spectrofluorimeter LS55. Thermal studies carried out in TA thermal
analyzer. Electrochemical studies were done with CH Instruments: Electrochemical workstation (CHI
6035D). High-resolution mass spectra were recorded in ThermoExactivePlus UHPLC-MS. Keithley
semiconductor parameter analyzer 4200 SCS was employed to determine the organic field-effect
transistor behavior (OFET) of the compounds.

Experimental procedure

4-(Bis(4-iodophenyl)amino)benzaldehyde (2):

‘. )
L

\ CHO )

Compound 1: DMF (2 ml, 25.9 mmol) was transferred into 100 ml RB and maintained at 0°C. To this
POCI; (1.9 ml, 20.4 mmol) was added dropwise for 20 min. Triphenylamine (TPA) (1 g, 4.0 mmol)
was added at room temperature, during which the solution color changed to pale yellow, and stirred
for 1 h. The reaction mixture was then heated to 45°C and stirred for an additional 2 h. The resultant
mixture was poured into an ice bath and neutralized with sodium bicarbonate. The solution was
extracted with dichloromethane and distilled water.® The pale yellow solid (1 g, 92 %) was purified
by column chromatography using silica gel (v/v hexane-ethyl acetate: 9/1).

Compound 2: Under rapid stirring, compound 1 (1 g, 3.6 mmol) was dissolved in glacial acetic acid
(20 ml). KI (1.2 g, 7.3 mmol) and KlO3 (2.3 g, 10.9 mmol) were added to the reaction mixture and
stirred for 6 h at 70°C. After cooling, the reaction was quenched with sodium thiosulphate solution.
Solid yellow powder formed was filtered and washed with water. The pure product (1.8 g, 98 %) was
purified by column chromatography using silica gel (v/v hexane-ethyl acetate = 9/1).
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General procedure for Suzuki coupling reaction (3):

¢ )
QLY
\_ CHO )

Compound 2 was dissolved in THF, to the solution 10 mol % of Pd(PPhs)s was added at room
temperature and stirred for 10 min under nitrogen atmosphere. Aqueous solution of Na,COs (2 M) was
added and stirred for 20 min at room temperature. The temperature was raised to 65°C followed by
addition of appropriate boronic acid and stirred for 8 h. The reaction mixture was extracted with ethyl
acetate and distilled water.?2 The pure yellow solid was purified by column chromatography using silica
gel (v/v hexane-ethyl acetate).

Di(1H-pyrrol-2-yl)methane (4):

~ -
\_NH HN

A mixture of paraformaldehyde and freshly distilled pyrrole (35 ml, 504.4 mmol) was taken into a 250 ml
RB and degassed with nitrogen for 10 min at RT. The temperature was raised to 55°C for 10 min under
nitrogen atmosphere and InCl; (0.1 g, 0.5 mmol) was added subsequently. The reaction mixture was
stirred for 2 h 30 min at the same temperature and then cooled to RT followed by the addition of
powdered NaOH (0.6 g, 15.2 mmol) to quench the reaction mixture and stirred for further 1 h.® The
mixture was filtered and the filtrate was concentrated in vacuum. Off white solid was purified by column
chromatography using silica gel (v/v hexane-DCM = 1/1).White solid. Yield: 56%. *H NMR (400 MHz,
CDCls): & (ppm) 7.797 (s, 2H), 6.635 (s, 2H), 6.145 (s, 2H), 6.032 (s, 2H), 3.956 (s, 2H). *C NMR
(CDCls, 100 MHz): 8 (ppm) 117.46, 108.31, 106.56, 26.35. HRMS (ESI) m/z calcd for CoH1oN, 146.084,
found 145.075.
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General procedure for porphyrin 5:

X X

QLT

N
e,
A mixture of compound 3 (1 g, 1.9 mmol) and 4 (0.6 g, 3.8 mmol) was dissolved in CH2Cl, (460 ml)
solvent, then degassed with nitrogen at RT.Trifluoroaceticacid (53 ul, 0.69 mmoles) dissolved in 50 ml
DCM was added dropwise and stirred for 7 hr. Further DDQ (0.783 g, 3.45 mmoles) was added and
stirred for additional 1hr. Finally the reaction mixture was basified with triethylamine (2 ml) and solvent

removed under vacuum.* Purple powder was purified by column chromatography (v/v hexane-DCM =
1/1).

4-(Bis(4-(thiophen-3-yl)phenyl)amino)benzaldehyde, 3a:

\_ ?o J

Yellow solid. Yield: 90%. 'H NMR (400 MHz, CDCls): § (ppm) 9.820 (s, 1H), 7.690 (d, J = 8.8 Hz, 2H),
7.560 (d, J = 8.4 Hz, 2H), 7.427-7.320 (m, 6H), 7.208-7.176 (m, 6H), 7.064 (d, J = 8.8 Hz, 2H). 3C NMR
(CDCls, 100 MHz): § (ppm) 190.48, 153.20, 146.06, 145.12, 141.12, 141.47, 132.60, 131.36, 129.81,
129.75, 129.29, 127.65, 126.44, 126.35, 126.34, 126.13, 125.23, 125.14, 120.14, 119.65, 119.36.HR-MS
(ESI) m/z calcd for Co7H1sNOS[M+H] 437.0908, found 437.0863.
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4-(Di([1,1'-biphenyl]-4-yl)amino)benzaldehyde, 3b:

7 N
OOOO

\ CHO /

Yellow solid. Yield: 82 %. 'H NMR (400 MHz, CDCls): 5 (ppm) 9.842 (s, 1H), 7.731 (d, J = 8.8 Hz, 2H),
7.590 (dd, 8H), 7.44 (t, 4H), 7.36 (t, 2H), 7.27 (d, J = 8.4 Hz, 4H), 7.148 (d, J = 8.8 Hz, 2H). 3C NMR
(CDCls, 100 MHz): & (ppm) 190.51, 153.12, 145.35, 140.23, 137.87, 131.39, 129.49, 128.88, 128.37,
127.35, 126.88, 126.35, 120.04.HRMS (ESI) m/z calcd for CaiH2sNO [M+H] 426.1858, found 426.1852.

4-(Bis(4'-fluoro-[1,1'-biphenyl]-4-yl)amino)benzaldehyde 3c:

(. )
N
\_ dho .

Yellow solid. Yield: 75%. 'H NMR (400 MHz, CDCls): & (ppm) 9.846 (s, 1H), 7.732 (d, J = 8.4 Hz, 2H),
7.567-7.519 (m, 8H), 7.267 (d, J = 1.6 Hz, 2H), 7.158-7.118 (m, 6H). *C NMR (CDCls, 100 MHz): &
(ppm) 190.48, 163.71, 161.26, 153.01, 145.34, 136.89, 136.37, 136.34, 128.24, 126.36, 120.12, 115.88,
115.66.HRMS (ESI) m/z calcd for CasHauNOFs [M+H] 462.166, found 462.164.

4-(Bis(4'-methoxy-[1,1'-biphenyl]-4-yl)amino)benzaldehyde 3d:

CHO

N\

Yellow solid. Yield: 85%. *H NMR (400 MHz, CDCls): § (ppm) 9.829 (s, 1H), 7.715 (d, J = 8.8 Hz, 2H),
7.534 (d, J = 7.2 Hz, 8H), 7.246 (d, J = 8.4 Hz, 4H), 7.120 (d, J = 8.8 Hz, 2H), 6.986 (d, J = 8.8 Hz, 4H),
3.861 (s, 6H). 13C NMR (CDCls, 100 MHz): & (ppm) 190.48, 159.19, 153.23, 144.73, 137.56, 132.78,
131.38, 129.22, 127.91, 127.87, 126.44, 119.63, 114.30. HRMS (ESI) m/z calcdfor CssHa7NOs [M+H]
486.2069, found 486.2072.
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4-(Bis(3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)amino)benzaldehyde 3e:

[ cr cF\

OOOO

k CHO j

Yellow solid. Yield: 90%. *H NMR (400 MHz, CDCls): 5 (ppm) 9.870 (s, 1H), 7.837 (s, 1H), 7.781-7.747
(m, 4H), 7.623-7.551 (m, 8H), 7.294 (d, J = 8.8 Hz, 4H), 7.173 (d, J = 8.4 Hz, 2H). *C NMR (CDCls, 100
MHz): § (ppm) 190.50, 152.77, 146.06, 142.02, 136.30, 135.23, 131.77, 131.45, 131.41, 131.13, 130.81,
130.25, 130.11, 130.05, 129.37, 128.52, 128.22, 127.72, 127.67, 127.61, 126.31, 125.51, 124.02, 123.98,
123.73, 123.69, 123.65, 123.61, 122.80, 120.69, 120.10.HRMS (ESI) m/z calcd for CasHzNOFs [M+H]
562.1606, found 562.157.

Compound 5a:

(& )
Yoo

(]
Cadha)

Purple powder. Yield: 22 %. *H NMR (400 MHz, CDCls): & (ppm) 10.321 (s, 2H), 9.428 (d, J = 4.4 Hz,
4H), 9.228 (d, J = 4.4 Hz, 4H), 8.157 (d, J = 8.4 Hz, 4H), 7.668 (d, J = 8.8 Hz, 4H), 7.549 (d, J = 8.4 Hz,
4H), 7.471-7.413 (m, 20H), 7.202-7.154 (m, 4H). 3C NMR (CDCls, 100 MHz): & (ppm) 147.69, 147.39,
146.89, 145.06, 141.94, 135.90, 131.59, 131.03, 130.85, 129.61, 129.55, 127.51, 126.24, 125.08, 124.97,
124.87, 123.55, 121.84, 119.52, 118.97, 105.26.HRMS (ESI) m/z calcd for CaHsF1oNs [M+H]*
1125.289, found 1125.287.
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Compound 5b:

)
%
D))

Purple powder. Yield: 30 %. *H NMR (400 MHz, CDCls): & (ppm) 10.326 (s, 2H), 9.435 (d, J = 3.6 Hz,
4H), 9.248 (d, J = 4 Hz, 4H), 8.191 (d, J = 7.6 Hz, 4H), 7.689 (d, J = 4 Hz, 16H), 7.619 (d, J = 7.6 Hz,
4H), 7.546 (d, J = 8 Hz, 8H), 7.492 (t, J = 7.2 Hz, 8H), 7.372 (t, J = 7.2 Hz, 4H), -3.003 (s, 2H). °C NMR
(CDCl3, 100 MHz): 6 (ppm) 147.39, 147.26, 147.00, 145.07, 140.65, 136.07, 135.96, 131.62, 131.03,
128.84, 128.18, 127.01, 126.81, 124.96, 122.16, 118.92, 105.29. (MALDI-TOF, m/z) calcd for CgoHssNs
[M+H]* 1101.463, found 1101.621.

g
e

Compound 5c:

ﬁ

%
Q
/

sigo

K
%
&

Purple powder. Yield: 22 %. 'H NMR (400 MHz, CDCls): & (ppm) 10.336 (s, 2H), 9.443 (d, J = 3.6 Hz,
4H), 9.244 (d, J = 3.6 Hz, 4H), 8.195 (d, J = 8 Hz, 4H), 7.636 (m, J = 8.4 Hz, 20H), 7.531 (d, J = 8 Hz,
8H), 7.180 (t, J = 8.8 Hz, 8H), -3.009 (s, 2H). 3C NMR (CDCls, 100 MHz): & (ppm) 162.45, 160.00,
146.31, 146.15, 145.87, 143.98, 135.72, 135.69, 134.93, 134.47, 134.06, 130.68, 130.01, 127.31, 127.23,
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127.01, 123.97, 121.11, 117.84, 114.75, 114.54, 104.30. (MALDI-TOF, m/z) calcd for CgoHs2F4Ns
[M+H]* 1173.426, found 1173.554.

Compound 5d:

Purple powder. Yield: 46 %. *H NMR (400 MHz, CDCls): & (ppm) 10.323 (s, 2H), 9.434 (d, J = 4 Hz,
4H), 9.249 (d, J = 4 Hz, 4H), 8.176 (d, J = 8 Hz, 4H), 7.652-7.605 (m, 20H), 7.518 (d, J = 8 Hz, 8H),
7.019 (d, J = 8.4 Hz, 8H), 3.878 (s, 12H), -3.000 (s, 2H). 3C NMR (CDCls, 100 MHz): § (ppm) 158.97,
147.45, 146.49, 145.07, 135.95, 135.79, 135.24, 133.28, 131.61, 131.06, 127.84, 127.73, 125.11, 121.84,
119.01, 114.29, 105.28, 55.39.MALDI-TOF, m/z calcd for CssHesNsOs [M+H]* 1221.506, found
1221.682.
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Compound 5e:

(2]
m
©

s)
9”
],

&

CF3

()
g
&

\O

Purple powder. Yield: 18 %. 'H NMR (400 MHz, CDCls): & (ppm) 10.351 (s, 2H), 9.457 (d, J = 4 Hz,
4H), 9.245 (d, J = 4 Hz, 4H), 8.226 (d, J = 8 Hz, 4H), 7.930 (s, 4H), 7.860 (d, J = 4.8 Hz, 4H), 7.708 (d, J
= 7.6 Hz, 8H), 7.643-7.561 (m, 20H), -3.004 (s, 2H). *C NMR (CDCls, 100 MHz): & (ppm) 147.59,
146.95, 131.72, 131.00, 130.02, 129.33, 128.35, 124.92, 123.62, 122.90, 118.75, 105.38. (MALDI-TOF,
m/z) calcd for CgsHsoF12Ng [M+H]* 1373.413, found 1373.606.
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Heat flow
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Figure S1. DSC Thermogram of compounds 5a-e.
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Table S1. Melting point and decomposition temperature for 10 % weight loss of compounds

CNo. T (C) T(0O)

5a 396 461
5b 363 504
5c 313 422
5d 461 479
5e 351 489
—ba
40 50
—5b
> %‘
x
(7))
c oA —5C
8 40 50
E \
| — be

10 20 30 40 50 60
20 Degree

Figure S3. GIXRD of compounds 5a-e

Computational studies:

DFT and TD-DFT calculations were carried out for compounds 5a-e to gain an insight into their
electronic structures. Porphyrin molecules with different TAA were explored theoretically to observe
their electronic and charge transport properties. DFT: B3LYP ab initio approach was employed to
elucidate the structural properties of all molecules. The optimization of all compounds were done starting
from MOPAC and ending with Gaussian at the DFT-B3LYP (6-31g*) level of theory for ground state
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(S0).From the TD-DFT calculations, the oscillator strength value (F) obtained demonstrated all the
compounds have So-S1,S3- T1 and Ss-T» transitions.The reorganization energies i.e., energy relaxation
during transport was obtained from the changes in bond length acquired from a few important centers.To
clarify the impact of substituent on the optical properties substituted porphyrins, the electronic transitions
at the optimized structures also have been calculated by time-dependent DFT (TD-DFT) calculations. The
maximum absorption wavelengths, oscillator strength (f) and corresponding transition assignment are
listed in Table S2. The geometrical parameters suggested that all compounds in which substituted TAA
groups were exhibited non-planar whereas porphyrin core moiety obtained as planar. From medeA data,
the carrier mobilities of all thecompounds revealedin the range of 106 m? VV-!s. The values are given in
the TableS2. Compound 5e achieved up to the value of 8.6046x10, the highest among the series. It
might be due to the presence of electron withdrawing group.

Table S2. Electronic absorption behavior of compounds 5a-e by TD-DFT.

C. No. Electronic Wavelength Energy Oscillator Type of  Hole
Transition nm eV strength (f)  transition Transport
(M?Vs)
300K
5a Ex3=290-295 604.16 2.052 0.000 Si3-To 2.8099x10°
(16550cm-?)
5b Ex3=286-290 623.5 1.988 0.000 Ss-Ty 6.7825x10°
(160343cm™)
5c Ex3=302-307 603.0 2.056 0.000 Ss-To 5.7527x10°
(16582cm™?)
5d Ex3=353-354 608.5 2.037 0.513 (52%) So-S1 8.6046x10°
(16429cm?)
5e Ex3=321-322 619.1 2.002 0.581 (67%) So-S1 3.2984x10°
(16147cm™)
Q v
g ,
,\-—~[ ? (:3
Y- -

Figure S4. Generalized representation of the molecule
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Table S3. Grain size of compounds 5a-e

C. No. Grain size(pum)
5a 1.83
5b 0.51
5¢c 5.13
5d 3.02
5e 8.10

Table S4. d-spacing of compounds 5a-e

C. No. d-spacing(nm)
5a 1.944
5b 4.041
5¢c 1.946
5d 2.178
5e 6.363

Device fabrication

—— SIO, Dielectric layer

» — > n++ Doped Si

Figure S7. Schematic representation of the OFET device

Field-effect mobility of porphyrins was measured by employing bottom gate top contact
architecture for device fabrication represented as in the Figure S6. The heavily doped n** Si
substrate treated as the gate electrode and thermally grown SiO2 (300 nm) acts as a gate
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dielectric. Active semiconducting material coated over SiO. by spin coating method using
chloroform and annealed at 100 °C for one hour to obtain uniform film and also to remove the
residual solvents. Silver electrodes were made over active layer as source and drain electrode
with a channel length of 150 pm and a width of 5 mm was used and again annealed as earlier.
The fabricated device showed p-type behavior for all the compounds.

Reliability factor and effective mobility calculation

The reliability factor was calculated for all the compounds which define the ratio of the
maximum channel conductivity experimentally achieved in a FET at the maximum gate voltage
to the maximum channel conductivity expected in a correctly functioning ideal FET.In the
saturation regime, the reliability factor is calculated using the equation 1.

2
Feat = Vlsp™3* - |/Isp|° we;, )
> [Vgs|™a* 2L 7St claimed

= (\/“SD'max_\/|ISD|O)2/(6\/|ISD|)2 o)
[Vgs|™a* Vsl claimed

whereas, psa is the calculated mobility, L, W and C; are the device parameters, and |lsp|™
denotes the experimental maximum source—drain current reached at the maximum gate voltage
IVes|™ and |Isp|® represents the source—drain current at Ves= 0.

By using the calculated reliability factor and claim mobility the effective mobility is measured
from equation 2.

Meff = I X Lclaimed (2)
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