Supporting Information

Amorphous Ni-Based Nanoparticles for Alkaline Oxygen Evolution

Kevin M. Cole^{a,*}, Sagar Prabhudev^b, Gianluigi A. Botton^b, Donald W. Kirk^c, Steven J. Thorpe^a

^a Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada

^b Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M4, Canada

^c Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada

Corresponding author: E-mail: kevin.cole@mail.utoronto.ca

Table S1: List of material	s used for synthesis and	as standards for analysis
----------------------------	--------------------------	---------------------------

Material	Source	Purity	Particle Size
Ni	Alfa Aesar	99.9 wt %	< 149 µm
Со	Alfa Aesar	99.8 wt %	< 149 µm
Nb	Alfa Aesar	99.99 wt %	< 44 µm
Y	Goodfellow	99.9 wt %	<500 µm*
NiO	Fisher Scientific	99.8 wt %	
β-Ni(OH) ₂	Sigma Aldrich		
β-NiOOH	This work**		
Co ₃ O ₄	Sigma Aldrich	99.5 wt %	< 50 nm
Co(OH) ₂	Sigma Aldrich	95 wt %	
Y ₂ O ₃	This work***		
Y(OH) ₃	Muse Chem	99.99 wt%	

*Milled at room temperature to reduce the particle size to < 149 μ m prior to alloying **Synthesized by adding a solution of 47.5 g KOH and 11 mL Br₂ in 500 mL of H₂O dropwise to 50 g of Ni(NO₃)₂·H₂O in 750 mL of H₂O at 100 °C. The sample was then rinsed with H₂O, centrifuged, filtered, and dried under vacuum for ca. 48 hours. The presence of β-NiOOH was verified using XRD.

***Produced by oxidizing Y powder and verified using XRD

Table S2: Nominal and measured (ICP-OES) compositions for as-produced n	nanoparticles

Material		Ni (at %)	Co (at %)	Nb (at %)	Y (at %)
Crystalline	Nominal	95	5		
Ni95C05	ICP-AES	95.2 ± 2.1	4.8 ± 0.3		
Amorphous	Nominal	79.2		12.5	8.3
Ni _{79.2} Nb _{12.5} Y _{8.3}	ICP-AES	82.0 ± 2.0		10.8 ± 2.6	7.3 ± 0.8
Amorphous	Nominal	74.2	5	12.5	8.3
Ni74.2C05Nb12.5Y8.3	ICP-AES	73.4 ± 2.1	4.9 ± 0.3	$12.1\ \pm 2.8$	9.6 ± 1.4

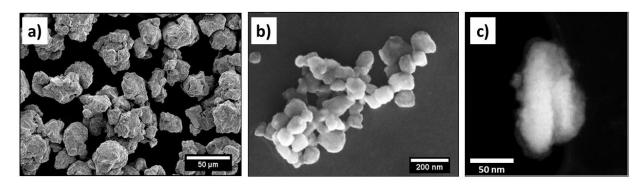


Figure S1: SEM images of amorphous $Ni_{74.2}Co_5Nb_{12.5}Y_{8.3}$ particles after (a) cryomilling and (b) SA-HEBM, along with (c) TEM image of a single particle.

Table S3: Tafel slope, current density at $\eta = 400 \text{ mV}$, and η at $j = 10 \ \mu\text{A cm}^{-2}_{\text{ECSA}}$ values for the OER of crystalline Ni, Ni₉₅Co₅ and amorphous Ni_{79.2-x}Co_xNb_{12.5}Y_{8.3} (x = 0 and 5 at %) after anodically cycling 50 and 10000 times with a scan rate of 50 mV s⁻¹ between 0.1 and 0.7 V_{Hg/Hg0}. Experiments were conducted in deaerated 1 M KOH at 30 °C. Values and error bars are based on a minimum of three tests.

Material	Cycles	Tafel Slope (mV)	jη = 400 mV (μΑ cm ⁻² εcsA)	η _{j = 10 μA cm⁻²_{ECSA} (mV)}
Crystalline	50	59 ± 8.2	252 ± 89.7	299 ± 1.80
Ni	10000	71 ± 0.2	169 ± 44.4	276 ± 13.4
Crystalline	50	49 ± 1.0	852 ± 180	235 ± 3.50
Ni95Co5	10000	81 ± 5.9	93.3 ± 43.6	297 ± 22.1
Amorphous	50	50 ± 3.8	299 ± 18.8	281 ± 17.0
$Ni_{79.2}Nb_{12.5}Y_{8.3}$	10000	73 ± 2.7	76.1 ± 18.1	288 ± 12.5
Amorphous	50	71 ± 3.1	287 ± 48.1	267 ± 17.0
$Ni_{74.2}Co_5Nb_{12.5}Y_{8.3}$	10000	58 ± 1.3	289 ± 73.3	265 ± 18.1

X-ray Photoelectron Spectroscopy (XPS) Analysis

Tables S4 (Ni 2p) and S5 (O 1 s) were used to aid with the identification of surface species produced on crystalline Ni₉₅Co₅, amorphous Ni_{79.2}Nb_{12.5}Y_{8.3}, and amorphous Ni_{74.2}Co₅Nb_{12.5}Y_{8.3} after anodic cycling 50 times. The standards produced and tested within this report were confirmed to be in good agreement with literature (NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000), doi:10.18434/T4T88K).

Material	Binding Energy (eV)	Peak Width FWHM (eV)	Δsplit (eV)	∆sat (eV)	Reference
Crystalline Ni95C05	852.1, 854.6, 855.1	1.57, 1.76, 2.83	18.4, 17.6, 17.8	6.10	This work
Amorphous Ni _{79.2} Nb _{12.5} Y _{8.3}	851.9, 855.0	1.24, 2.70	17.3, 17.5	5.88	This work
Amorphous Ni _{74.2} Co ₅ Nb _{12.5} Y _{8.3}	852.0, 854.9	1.13, 3.03	17.2, 17.5	5.95	This work
Ni	852.5	1.08	17.3	5.65	This work
NiO	854.1, 855.7	0.98, 3.30	17.3, 17.3	6.30, 7.10	This work
β-Ni(OH) ₂	855.4, 856.2	2.06, 3.13	17.4, 18.0	5.38, 6.10	This work
β-ΝίΟΟΗ	854.8, 856.0	1.33, 2.05	17.4	5.11	This work
γ-ΝίΟΟΗ	855.3	2.42	17.5, 18.3	5.80	1

Table S4: Ni 2p_{3/2} XPS fitting parameters for alloys after anodic cycling and relevant standards

 Δ split is the difference between Ni 2p_{3/2} and Ni 2p_{1/2} peaks

 Δsat is the difference between Ni $2p_{3/2}$ and Ni $2p_{3/2}$ satellite peak

Material	Binding Energy(eV)	Peak Width FWHM (eV)	Reference
Crystalline Ni95C05	528.9, 530.8, 533.1	1.37, 1.85, 1.98	This work
Amorphous Ni _{79.2} Nb _{12.5} Y _{8.3}	529.2, 530.6, 532.7	1.31, 1.68, 1.49	This work
Amorphous Ni _{74.2} Co ₅ Nb _{12.5} Y _{8.3}	529.3, 530.7, 531.4	1.25, 1.61, 2.30	This work
NiO	529.7, 531.2, 531.3	0.88, 3.19, 2.14	This work
β-Ni(OH) ₂	530.7, 530.9	1.39, 2.14	This work
β-ΝίΟΟΗ	529.3, 530.7, 532.1	0.87, 1.74, 2.68	This work
γ-ΝίΟΟΗ	528.9, 530.8, 532.6	1.27, 1.92, 2.18	1
C03O4	529.4, 529.8, 531.2, 532.5	1.49, 0.92, 1.86, 2.36	This work
Co(OH) ₂	531.2, 532.7	1.55, 1.85	This work
CoO ₂	528.7, 531.2, 533.0		2
Y ₂ O ₃	529.2, 531.5, 533.3	1.45, 2.01, 1.99	This work
Y(OH) ₃	531.4, 532.4, 533.2	1.72, 1.76, 2.28	3

Table S5: O 1 s XPS fitting parameters for alloys after anodic cycling and relevant standards

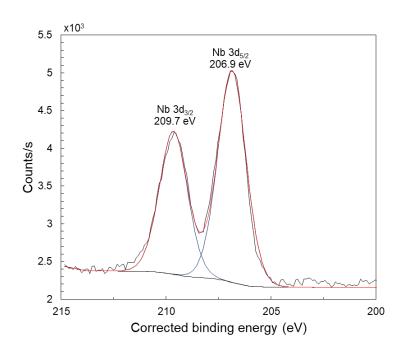


Figure S2: Nb 3d XPS spectra corresponding to the presence of Nb₂O₅ on the surface of amorphous Ni_{74.2}Co₅Nb_{12.5}Y_{8.3} prior to anodic cycling

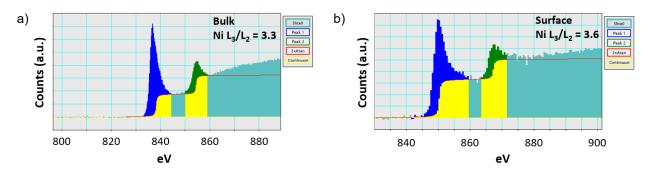


Figure S3: Ni L_3/L_2 white-line intensity ratios from electron energy-loss near-edge spectroscopy for pristine amorphous Ni_{74.2}Co₅Nb_{12.5}Y_{8.3} a) bulk and b) surface

Table S6: Comparison of L_3/L_2 white-line intensity ratios for pristine Ni_{74.2}Co₅Nb_{12.5}Y_{8.3} bulk and surface with Ni, NiO and Ni(OH)₂ references

Sample	Estimated L ₃ /L ₂ ratios	Reference
Ni _{74.2} Co ₅ Nb _{12.5} Y _{8.3} bulk	3.3	This work
Ni _{74.2} Co ₅ Nb _{12.5} Y _{8.3} surface	3.6	This work
Ni reference	3.3	4
NiO reference	3.8	5
NiO reference	4.0	6
Ni(OH) ₂ reference	3.6	5

Table S7: Quantification of Nb and Y elemental edges in EELS for surface and core regions in pristine, 1000 cycled, 5000 cycled, and submerged Ni_{74.2}Co₅Nb_{12.5}Y_{8.3} nanoparticles.

Area	Sample	Nb Concentration (at%)	Y Concentration (at%)
	Pristine	45	55
Core	Submerged	39	61
COLE	1000 Cycles	41	59
	5000 Cycles	48	52
	Pristine	69	31
Surface	Submerged	68	32
Surrace	1000 Cycles	25	75
	5000 Cycles	0	100

References

- 1. A. N. Mansour and C. A. Melendres, Surf. Sci. Spectra 3, 271 (1994).
- 2. L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage, C. Delmas, and D.
- Gonbeau, Chem. Mater. 20, 583 (2008).
- 3. K. M. Cole, D. W. Kirk, and S. J. Thorpe, Surf. Sci. Spectra 27, (2020).
- 4. P. A. Van Aken and B. Liebscher, Phys. Chem. Miner. 29, 188 (2002).
- 5. M. Hao, S. Garbarino, S. Prabhudev, T. Borsboom-Hanson, G. A. Botton, D. A. Harrington, and D. Guay, J. Phys. Chem. C **123**, 1082 (2019).
- 6. R. D. Leapman, L. A. Grunes, and P. L. Fejes, Phys. Rev. B 26, 614 (1982).