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1. Microscopic images of SA reacted with 1AA 

 

Figure S1. SEM images of (a, b) pristine SA, (c, d) 1AA_SA_RT, and (e, f) 1AA_SA_reflux. 
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2. Confirmation of deamination of 1AA from its reaction with SA 

 

Figure S2. Energetic profiles of emission process in anthracene derivatives. In (1), unsubstituted anthracene, emission and excitation spectra reflect the π 

orbital (HOMO) and π* orbital (LUMO), while in the case of (2), 1-anthrylamine, the occupied N σ orbital standing between the π and π* orbital 

predominates their excitation and emission spectra. In (3), 1-anthrylammonium, although the N σ orbital is vacant due to ionization, N σ orbital affects 

their emission spectra. Thus, the deamination of 1-anthrylammonium (or 1-anthrylamine) can be easily confirmed by emission-excitation spectroscopy.  

 

 

Figure S3. Excitation-emission spectra of 1AA_SA_Reflux. The emission spectrum was measured under λ = 350 nm excitation light, while the 

excitation spectrum was recorded under λ = 440 nm light emission. 

 

 

Figure S4. Excitation-emission spectra of anthracene dissolved in toluene (1 mM). The emission spectrum was measured under λ = 350 nm excitation 

light, while the excitation spectrum was recorded under λ = 440 nm light emission. 
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Figure S5. Excitation-emission spectra of 1-anthrylammonium dissolved in 1:1 vol% 1M HCl/EtOH (1 mM). The emission spectrum was measured 

under λ = 350 nm excitation light, while the excitation spectrum was recorded under λ = 440 nm light emission. 

 

 

Figure S6. FT-IR spectra of parent SA, 1AA_SA_Reflux, and 1AA_SA_RT.  

 

 

Figure S7. The enlarged FT-IR of the spectra shown in Figure S5. 
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3. Demonstration of CCD for anthracene radical cation formation within MMT 

 
Figure S8. Diffuse reflectance spectra of MMT reacted with 1AA. Reaction conditions: MMT (1 g), 1AA (0.2 mmol), EtOH (100 mL), and 1M HCl 

(100 mL) at RT or reflux (120 °C), 24 h. 

 

 

Figure S9. Diffuse reflectance spectra of MMT reacted with 2AA. Reaction conditions: MMT (1 g), 2AA (0.2 mmol), EtOH (100 mL), and 1M HCl 

(100 mL) at RT or reflux (120 °C), 24 h. 

 

 

Figure S10. X-band ESR spectra of MMT reacted with 1AA or 2AA. 
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Figure S11. XRD patterns of MMT reacted with 1AA or 2AA. 
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4. Reaction time course of SA with anthrylammoniums 

 

Figure S12. Time course of XRD patterns of SA reacted with 1AA. Reaction conditions: SA (1 g), 1AA (0.2 mmol each), EtOH (100 mL) and 1M HCl 

(100 mL) at RT.  

 

 

Figure S13. Time course of XRD patterns of SA reacted with 2AA. Reaction conditions: SA (1 g), 2AA (0.2 mmol each), EtOH (100 mL) and 1M HCl 

(100 mL) at RT 
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Figure S14. DFT calculated potential mapping of 1AA and 2AA. 
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5. Application of CCD using naphthylammonium with various substituents 

 

Figure S15. Transmittance absorption spectrum of 1 mM 1-ammonium-4-bromonaphthalene (1A4BN) of 1:1 vol% 1 M HCl/EtOH (dotted) and diffuse 

reflectance spectrum of SA reacted with 1A4BN (solid). Reaction conditions: SA (1 g), 1A4BN (0.2 mmol), 1:1 vol% 1 M HCl/EtOH (200 mL) at RT, 24 

h.  

 

 

Figure S16. Transmittance absorption spectrum of 1 mM 1,5-diammoniumnaphthalene (15DAN) of 1:1 vol% 1 M HCl/EtOH (dotted) and diffuse 

reflectance spectrum of SA reacted with 15DAN (solid). Reaction conditions: SA (1 g), 15DAN (0.2 mmol), 1:1 vol% 1 M HCl/EtOH (200 mL) at RT, 24 

h.  
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Figure S17. Transmittance absorption spectrum of 1 mM 1,8-diammoniumnaphthalene (18DAN) of 1:1 vol% 1 M HCl/EtOH (dotted) and diffuse 

reflectance spectrum of SA reacted with 18DAN (solid). Reaction conditions: SA (1 g), 18DAN (0.2 mmol), 1:1 vol% 1 M HCl/EtOH (200 mL) at RT, 24 

h. 

 

 

Figure S18. X-band ESR spectra of 1A4BN_SA, 15DAN_SA, and 18DAN_SA. 

 

 

Figure S19. Transmittance absorption spectrum of 1 mM 1-ammonium-2-naphthol (1A2Nol) of 1:1 vol% 1 M HCl/EtOH (dotted) and diffuse reflectance 

spectrum of SA reacted with 1A2Nol (solid). Reaction conditions: SA (1 g), 1A2Nol (0.2 mmol), 1:1 vol% 1 M HCl/EtOH (200 mL) at RT, 24 h. 
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Figure S20. Transmittance absorption spectrum of 1 mM 1-ammonium-4-naphthol (1A4Nol) of 1:1 vol% 1 M HCl/EtOH (dotted) and diffuse reflectance 

spectrum of SA reacted with 1A4Nol (solid). Reaction conditions: SA (1 g), 1A4Nol (0.2 mmol), 1:1 vol% 1 M HCl/EtOH (200 mL) at RT, 24 h. 

 

 

Figure S21. Transmittance absorption spectrum of 1 mM 1-ammonium-5-naphthol (1A5Nol) of 1:1 vol% 1 M HCl/EtOH (dotted) and diffuse reflectance 

spectrum of SA reacted with 1A5Nol (solid). Reaction conditions: SA (1 g), 1A5Nol (0.2 mmol), 1:1 vol% 1 M HCl/EtOH (200 mL) at RT, 24 h. 

 

 

Figure S22. X-band ESR spectra of 1A2Nol_SA, 1A4Nol_SA, and 1A5Nol_SA. 
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Table S1. CHN results of SA reacted with naphtylammonium with various substituents.  

 

 

 

Sample
H

(wt%)

C

(wt%)

N

(wt%)

Measured C/N

(mol/mol)

Theoretical C/N

(mol/mol)

1A4BN_SA 2.37 3.02 0.090 39.1 10

15DAN_SA 2.09 2.61 0.083 36.7 5

18DAN_SA 2.22 1.71 0.119 16.8 5

1A2Nol_SA 2.55 3.27 0.078 48.9 10

1A4Nol_SA 2.28 2.13 0.146 17.0 10

1A5Nol_SA 2.62 2.55 0.042 70.8 10
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6. Stability and reactivity of anthracene radical cations within SA. 

 

Figure S23. Diffuse reflectance spectra of 1AA_SA_RT after exposure in ambient condition over 6 months.  

 

 

 

Figure S24. ESR spectra of 1AA_SA_RT after exposure in ambient condition over 6 months.  

 

 

 

Figure S25. Absorption spectrum of the surpernatant turned yellow after the reaction of 1AA_SA_RT with AIBN 
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Figure S26. Absorption spectrum of the resultant of 1AA_SA_RT reacted with AIBN. 

 

 


