Supporting Information: Electrochemical N₂ Reduction to Ammonia using Single Au/Fe Atoms Supported on Nitrogen Doped Porous Carbon

Sudhir K. Sahoo,[†] Julian Heske,^{†,‡} Markus Antonietti,[‡] Qing Qin,[‡] Martin Oschatz,[‡] and Thomas D. Kühne^{*,†,¶}

[†]Dynamics of Condensed Mater and Center for Sustainable System Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany

^tDepartment of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany

[¶]Paderborn Center for Parallel Computing and Institute for Lightweight Design, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany

*Email: tdkuehne@mail.uni-paderborn.de

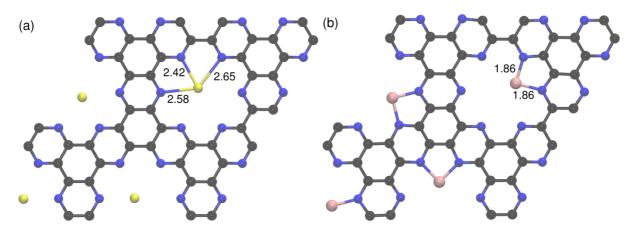


Figure S1: The structure of metal atoms supported in the C_2N framework Au- C_2N (a) and Fe- C_2N (b). The distance (in units of Å) between the metal atom and the nearest nitrogen atoms of the C_2N framework are highlighted. Atoms color: C-black, N-blue, Au-yellow and Fe-pink.

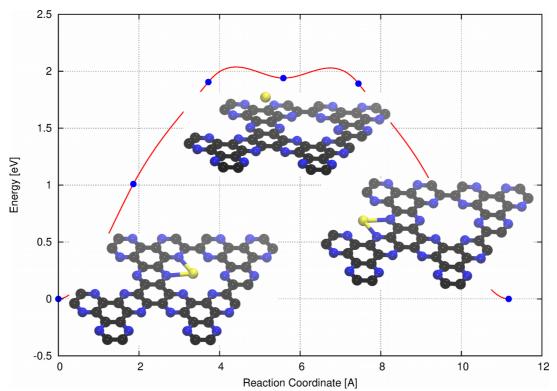


Figure S2: The potential energy surface obtained from the nudged elastic band calculation for the diffusion of a single Au atom from one site to the other on the C_2N surface.

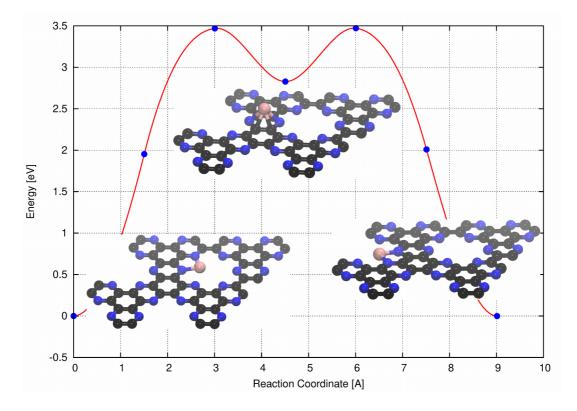


Figure S3: The potential energy surface obtained from the nudged elastic band calculation for the diffusion of a single Fe atom from one site to the other on the C₂N surface.

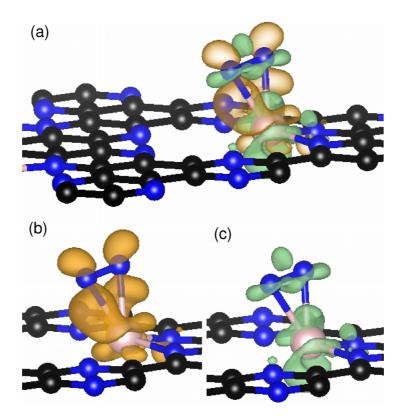


Figure S4: (a) The electron density difference (isovalue = $\pm 0.004 \text{ e/Å}^3$) plot for the N₂ adsorption over Fe-C₂N in side-wise fashion. The orange and the turquoise colors represent electron density accumulation and depletion, respectively. The accumulation and depletion of electron density are shown separately in (b) and (c), respectively.

Electrochemical N₂ reduction to NH₃

Table S1: The zero point energy (ZPE) and vibrational entropy contribution (at 300 K) of various intermediates that could be formed during the reaction using Au-C₂N as a catalyst.

Structure	ZPE (eV)	TS (eV)
NH_3	0.585	0.60006
H ₂	0.265	0.40686
N_2	0.149	0.59631
Au-C ₂ N	10.904	4.027
N_2 $@$ Au-C ₂ N	11.074	4.641
HN-N@ Au-C ₂ N	11.391	4.708
H ₂ N-N@ Au-C ₂ N	11.756	4.490
N@ Au-C ₂ N	11.091	4.251
HN@ Au-C ₂ N	11.313	4.485
$H_2N@Au-C_2N$	11.572	4.505
$H_3N@Au-C_2N$	11.986	4.395
HN-NH@ Au-C ₂ N	11.771	4.230
H ₂ N-NH@ Au-C ₂ N	12.069	4.673
$H_2N-NH_2@Au-C_2N$	12.444	4.575

ZPE (eV)	TS (eV)
11.111	3.2
11.316	3.393
11.559	3.624
11.905	3.527
11.192	3.349
11.464	3.355
11.765	3.414
12.133	3.301
11.910	3.489
12.225	3.482
12.590	3.570
Enzymatic pathway	
11.303	3.502
11.580	3.485
11.914	3.445
12.231	3.424
12.485	3.511
12.839	3.537
	11.111 11.316 11.559 11.905 11.192 11.464 11.765 12.133 11.910 12.225 12.590 Enzymatic pathway 11.580 11.914 12.231 12.485

Table S2: The zero point energy (ZPE) and vibrational entropy contribution (at 300 K) of various intermediates that could be formed during the reaction using Fe-C₂N as a catalyst.

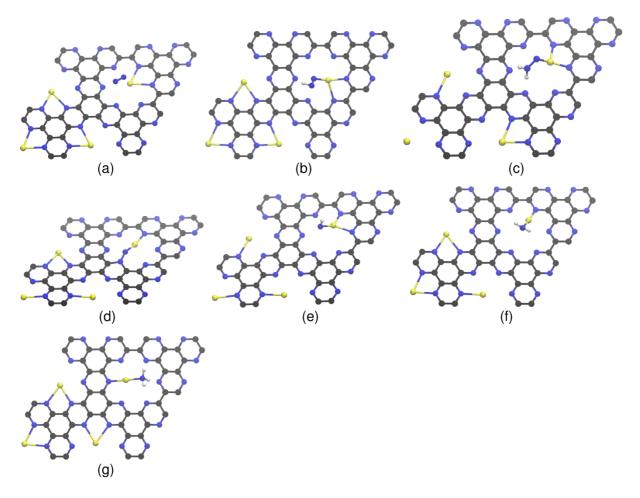


Figure S5: The atomic structure of various intermediates: (a) $N_2@Au-C_2N$, (b) HN-N@Au-C_2N, (c) $H_2N-N@Au-C_2N$, (d) $N@Au-C_2N$, (e) HN@Au-C_2N, (f) $H_2N@Au-C_2N$ and (g) $H_3N@Au-C_2N$ of the NRR through the distal pathway. Atoms color: C-black, N-blue, H-white and Au-yellow.

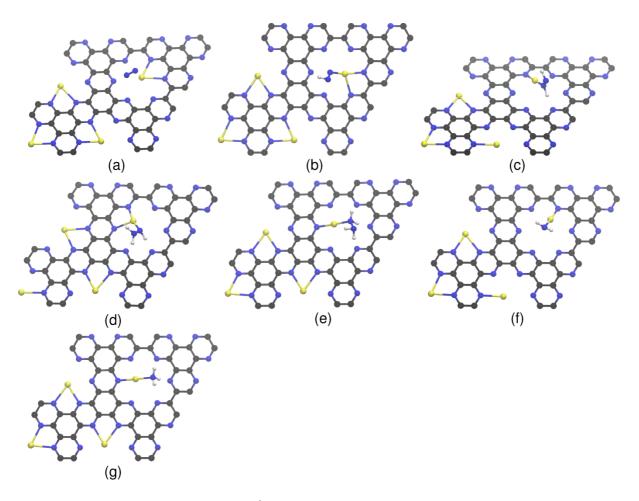


Figure S6: The atomic structure of the various intermediates: (a) $N_2@Au-C_2N$, (b) HN-N@Au-C_2N, (c) HN-NH@Au-C_2N, (d) H_2N-NH@Au-C_2N, (e) H_2N-NH_2@Au-C_2N, (f) H_2N@Au-C_2N and (g) H_3N@Au-C_2N of the NRR through the alternating pathway. Atoms color: C-black, N-blue, H-white and Au-yellow.

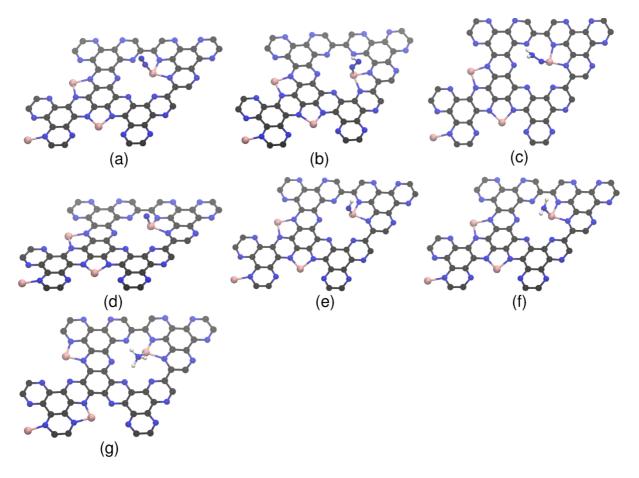


Figure S7: The atomic structure of various intermediates: (a) $N_2@Fe-C_2N$, (b) HN-N@Fe-C₂N, (c) $H_2N-N@Fe-C_2N$, (d) $N@Fe-C_2N$, (e) $HN@Fe-C_2N$, (f) $H_2N@Fe-C_2N$ and (g) $H_3N@Fe-C_2N$ of the electrochemical NRR through the distal pathway. Atoms color: C-black, N-blue, H-white and Fe-pink.

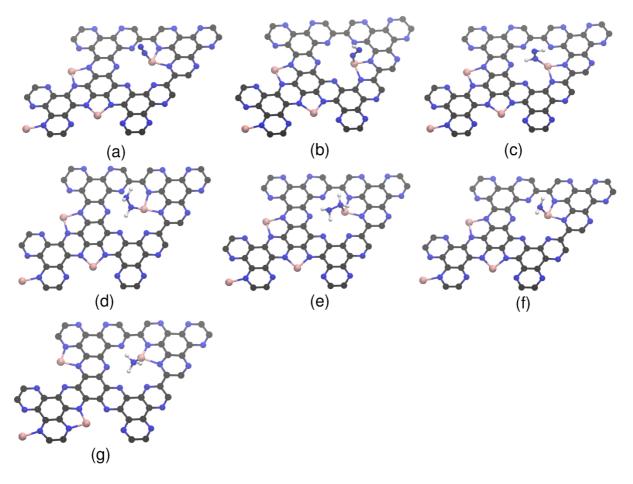


Figure S8: The atomic structure of the various intermediates: (a) $N_2@Fe-C_2N$, (b) HN-N@Fe-C₂N, (c) HN-NH@Fe-C₂N, (d) H₂N-NH@Fe-C₂N, (e) H₂N-NH₂@Fe-C₂N, (f) H₂N@Fe-C₂N and (g) H₃N@Fe-C₂N of the NRR through the alternating pathway. Atoms color: C-black, N-blue, H-white and Fe-pink.

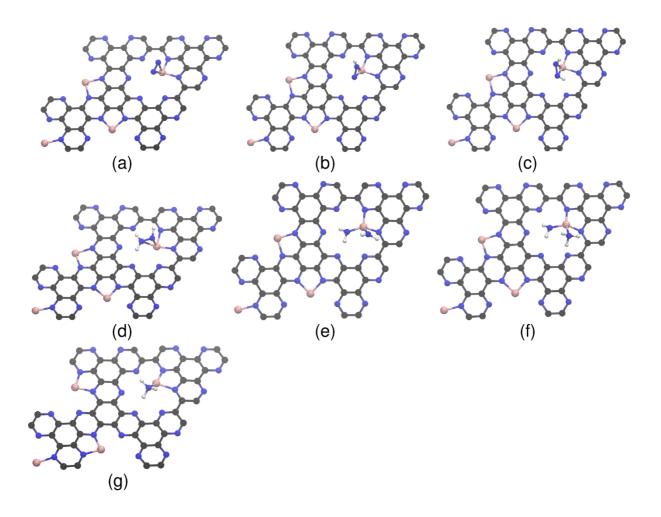


Figure S9: Structure of the various intermediates: (a) $N_2@Fe-C_2N$, (b) $HN-N@Fe-C_2N$, (c) $HN-NH@Fe-C_2N$, (d) $H_2N-NH@Fe-C_2N$, (e) $(H_2N)_2@Fe-C_2N$, (f) $(H_2N)(H_3N)@Fe-C_2N$ and (g) $H_3N@Fe-C_2N$ of the NRR through the enzymatic pathway. Atoms colour: C-black, N-blue, H-white and Fe-pink.

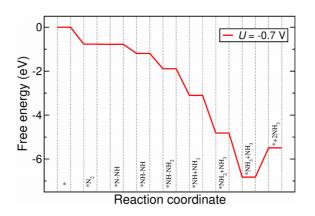


Figure S10: The minimum free energy pathway for the electrochemical NRR using Fe-C₂N as catalyst.

Hydrogen evolution reaction

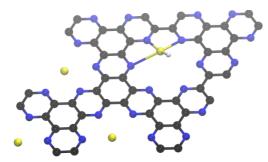


Figure S11: The structure of H@Au-C₂N, where the H atom is bonded to the Au atom.

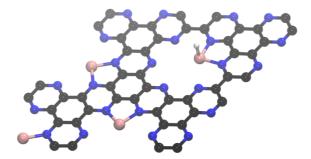


Figure S12: The structure of H@Fe-C₂N, where the H atom is bonded to the Fe atom.

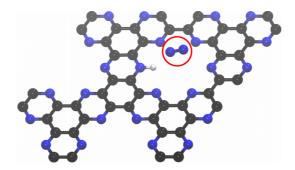


Figure S13: The final structure obtained from the geometry optimization of *NNH intermediate in bare C_2N . The N_2 molecule, which is separated from *NNH intermediate during the optimization, is highlighted in the red color circle.

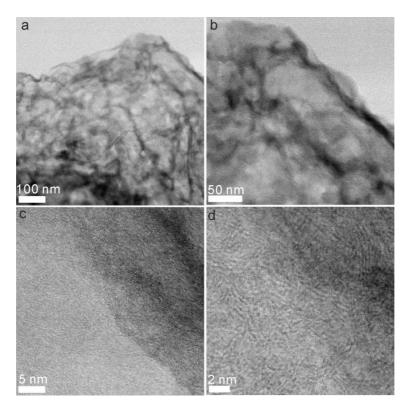


Figure S14: Representative TEM and HRTEM images of NDPC.

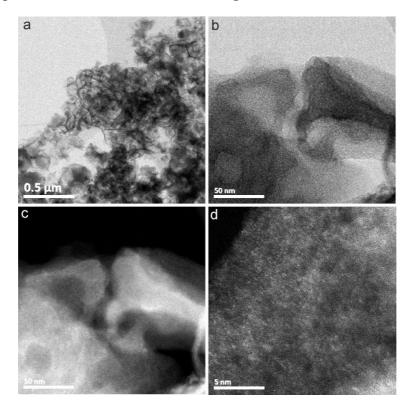


Figure S15: (a) Representative TEM image of FeSAs-NDPC. (b) Aberration-corrected STEM image in bright field mode. (c) Aberration-corrected STEM image in dark field mode. (d) High magnification HAADF-STEM image.

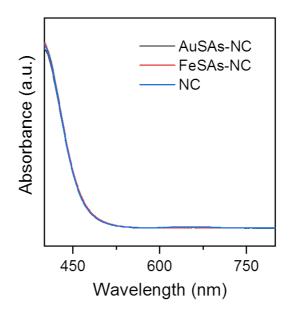


Figure S16: UV-Vis absorption spectra of the Ar-saturated electrolyte after the electrolysis at -0.2 V vs. RHE using AuSAs-NDPC, FeSAs-NDPC and NDPC as catalyst.

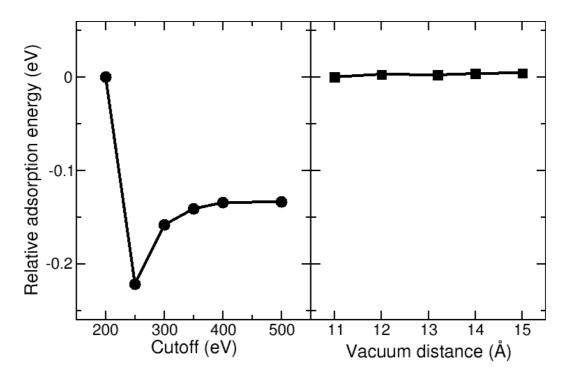


Figure S17: The relative adsorption energy of NH₃ molecule over Fe-C₂N catalyst with respect to the plane-wave cut-off energy and the vacuum distance.