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Algorithm for image processing

We used custom-developed MATLAB code to process the acquired images. For each recorded movie, we first

manually select a region of interest (ROI) that encompasses the kinetoplast throughout the movie. Then,

we perform a two-step background subtraction. The first step involves subtracting the average intensity of

the pixels on the boundary of the ROI from the intensity of all pixels in the ROI. The second step looks at

the remaining pixels with non-zero intensity values and removes bright, noisy spots that do not represent

the kinetoplast. To determine whether a given pixel corresponds to the kinetoplast or noise, we calculate the

average intensities of the eight pixels on the boundary of a three-by-three pixel box centered on the pixel of

interest and the twelve pixels on the boundary of a four-by-four pixel box surrounding the pixel of interest.

If either of the average intensities is less than 10σ, where σ is the standard deviation of the intensity of the

pixels on the boundary of the ROI, we determine the pixel to be noisy and set the intensity value to zero.

We repeat the process for all images in the movie. The analysis code is available upon request.
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Distributions of kinetoplast sizes

Figure S1: Histograms of major axis lengths for all ionic strengths investigated.

Fig. S1 shows the distributions of kinetoplast sizes across all ionic strengths studied in this work. The

number of kinetoplasts in each ensemble are 97 (0.02x TBE), 32 (0.1x TBE), 89 (0.5x TBE), 92 (2x TBE)

and 87 (5x TBE).

Excluded volume parameter for 2D polymer model

It is well known that for linear polymers with Kuhn length b much longer than width w, the mean-field

excluded volume per Kuhn monomer b2w is much larger than the occupied volume bw2.1 The goal of this

section is to calculate the effective excluded volume parameter for a 2D polymer network. Fig. S2 shows the

2D polymer model used to develop the excluded volume term in the Flory type argument presented in the

main text. To develop a tractable scaling theory, we have simplified the complex geometry of the kinetoplast

to a series of linear polymer chains of width w, with nc segments of Kuhn length b connected at fixed

vertices. For simplicity, we show the calculation for an open square lattice. Other open lattice geometries

would simply introduce a different dimensionless numerical prefactor in our final calculation, which would

then be neglected in a scaling argument.

Our calculation closely follows the lucid derivation for linear polymers in the text by Rubinstein and

Colby.1 We hence start with a simplified representation of the kinetoplast as spherical monomers of diameter

w on an open square lattice, which can be coarse-grained into cylindrical monomers of diameter w and Kuhn
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Figure S2: (a) Open lattice representation of a 2D polymer with spherical monomers of diameter w. (b) Coarse-
grained representation of a 2D polymer with cylindrical monomers of Kuhn length b and diameter w, and n monomers
between fixed vertices. The repeat units are colored in red.

length b on a square lattice. The repeat unit of the polymer, colored red in Fig. S2, consists of ns spherical

monomers of diameter w along each edge, or nc cylindrical monomers of Kuhn length b along each edge.

From the mapping of repeat units between the two representations, it follows that

nsw = ncb. (1)

Excluded volume describes the interactions between monomers in solution. Considering only two-body

interactions, the interaction part of the free energy for a polymer in bulk is described by1

Fint

kBT
∼ vN2

tot

R3
(2)

where kBT is the thermal energy, v is the mean-field approximated excluded volume parameter, Ntot is the

total number of monomers in the system and R is the size of the confined polymer. For spherical monomers

of diameter w, we have v ∼ w3. The interaction energy must not change regardless of the choice of spherical

monomers (Fig. S2a) or cylindrical monomers (Fig. S2b). Hence, we require for the polymer

vsN
2
tot,s = vcN

2
tot,c (3)

where vs and vc are the excluded volume parameters for spherical and cylindrical monomers respectively,

and Ntot,s and Ntot,c are the total number of spherical and cylindrical monomers respectively.

First, we look at the total number of spherical monomers in the system. As seen from Fig. S2, the total
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number of repeat units is N2 and the number of monomers per repeat unit is 2ns − 1. Therefore, the total

number of spherical monomers is obtained as

Ntot,s = N2(2ns − 1). (4)

Next, we consider the total number of cylindrical monomers Ntot,c in the system. The total number of repeat

units is N2 and the total number of monomers per repeat unit is 2nc. Hence, the total number of cylindrical

monomers is given by

Ntot,c = 2N2nc. (5)

Substituting Eqs. 4 and 5 into Eq. 3, we have

vsN
4(2ns − 1)2 = 4vcN

4n2c , (6)

or,

vs(4n
2
s − 4ns + 1) = 4vcn

2
c . (7)

Keeping only the leading order term in Eq. 7 and taking into account vs ∼ w3, we obtain

vc ∼ w3
(ns
nc

)2

. (8)

Substituting in Eq. 1, we arrive at

vc ∼ w3
( b
w

)2

∼ b2w. (9)

It is interesting to note that the excluded volume parameter vc for our 2D polymer model is the same as

that for 1D polymers.1
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Scaling argument using a blob model

We can use a blob model to develop the same scaling argument as that obtained from a Flory type

approach in the main text. The size of a slit confined polymer R‖ is given by

R‖ ∼ hn
1/2
blob (10)

where h is the channel height equal to the blob size and nblob is the number of blobs. Inside a blob, we have

Flory scaling in the bulk

h ∼ b2/5v1/5n4/5mer (11)

where b is the Kuhn length, v is the excluded volume parameter and nmer is the number of monomers in a

blob. We solve for the number of monomers in a blob

nmer ∼ h5/4b−1/2v−1/4. (12)

The mass of monomers in a blob mmer is thus

mmer ∼ n2mer ∼ h5/2b−1v−1/2. (13)

We obtain the total number of blobs nblob

nblob ∼ M

mmer
∼ N2

mmer
∼ N2h−5/2bv1/2 (14)

where M is the total mass of the polymer and N is the total number of monomers in a given direction.

Substituting Eq. (14) into Eq. (10), we have

R‖ ∼ hn
1/2
blob ∼ h−1/4Nb1/2v1/4. (15)

Taking into account N = L/b and v ∼ b2w, where L is the linear size of the polymer and w is the effective

width, we arrive at

R‖ ∼
w1/4L

h1/4
, (16)

as was obtained from the Flory type approach presented in the main text.
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Ratio of polymer charge concentration to salt concentration

To estimate the polymer charge concentration, we assume the kinetoplast to have dimensions of 5 µm by 5

µm by 3 µm, resulting in a volume of 75 µm3, or 7.5 ×10−14 L. Taking into account 5000 minicircles of 2.5

kbp each and 25 maxicircles of 40 kbp each, a single kinetoplast has 1.35 × 107 base pairs. Since every base

pair carries two negative charges from the phosphate groups, each kinetoplast has a total of 2.7×107 charges

along the polymer backbone. This leads to a charge density of 6.0×10−4 M for each kinetoplast. The lowest

ionic strength used in the experiments is 4.74×10−3 M (see Table 1 in main text). Even without accounting

for the reduced effective charge on the polymer due to counterion condensation, the salt concentrations used

in the experiments are at least an order of magnitude greater than the kinetoplast charge concentration.

Hence, the interactions between monomers are predominantly short-range and can be viewed as excluded

volume interactions.2

Principal component analysis for kinetoplast shape

Figure S3: Scatter plots of the (a) fifth and sixth PC amplitudes, and (b) seventh and eighth PC ampitudes for
ensembles of kinetoplasts in 0.02x TBE, 0.5x TBE and 5x TBE.

Fig. S3 shows the locations of each kinetoplast outline in the PC5-PC6 and PC7-PC8 space. We note

that there is no obvious shift in distribution of locations in the higher PC space with a change in ionic

strength, further supporting the notion that the shapes of kinetoplasts are not noticeably affected by ionic

strength.

In the main text, we applied PCA to a combined ensemble of kinetoplasts in 0.02x TBE, 0.5x TBE and

5x TBE. Alternatively, we can apply PCA to each ensemble at a different ionic strength and consider the

PCs identified for each population of kinetoplasts. Fig. S4 shows images of the first eight PCs for each

ensemble of kinetoplasts in 0.02x TBE, 0.5x TBE and 5x TBE, along with plots of the first twenty PCs.
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Figure S4: Images of the first eight principal components (PCs) for ensembles of kinetoplasts in 0.02x TBE, 0.5x
TBE and 5x TBE. (b) Plots of the first twenty PCs for ensembles of kinetoplasts in 0.02x TBE, 0.5x TBE and 5x
TBE on shifted y-axes.

Qualitatively, we do not observe any discernible differences in the first eight PCs, with the images for the

PCs of different ensembles looking approximately to be rotations relative to each other, or in the plots of

the first twenty PCs, with the evolution in the number of peaks and troughs for each PC appearing to be

similar. The result of analyzing each ensemble at a different ionic strength using PCA is consistent with that

obtained from analyzing the combined ensemble, showing that the shape of kinetoplasts does not exhibit a

strong dependence on ionic strength.
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