Supplementary Information

Conformation and orientation of branched acyl chains responsible for the physical stability of diphytanoylphosphatidylcholine

Hiroshi Tsuchikawa, ${ }^{\dagger} \boldsymbol{\|}$ Takuya Ono, ${ }^{\dagger}$ Masaki Yamagami, ${ }^{\dagger, \dagger}$ Yuichi Umegawa, ${ }^{\dagger, \dagger}$, Wataru Shinoda, ${ }^{\S}, *$ and Michio Murata ${ }^{\dagger, \ddagger, *}$
${ }^{+}$Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
"Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 8795593, Japan
${ }^{\ddagger}$ JST ERATO, Lipid Active Structure Project and Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
${ }^{\circledR}$ Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

Table of Contents
I. General information 2
II. Synthesis of epDPhPC and ${ }^{2} \mathrm{H}$-labeled epDPhPC 3
III. Evaluation of stereochemical homogeneity of comDPhPC and epDPhPC 7
IV. Measurement of water permeability 9
V. ${ }^{2} \mathrm{H}$ NMR measurements and orientation analysis 11
VI. Molecular dynamics (MD) simulation 20
VII. References 22
VIII. NMR spectra 23

I. General information

Unless otherwise indicated, all reactions were carried out with magnetic stirring in oven-dried glassware under argon atmosphere. Commercially available reagents were purchased from Nacalai Tesque, Sigma-Aldrich, TCI, and were used without further purification. The dehydrated solvents dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and tetrahydrofuran (THF) were purchased from Kanto Chemical Co. Inc. and were used without further dehydration. Analytical thin-layer chromatography (TLC) were carried out on Merck pre-coated silica gel 60 F254 plates and revealed with UV irradiation (254 nm) and stained with phosphomolybdic acid. Flash chromatographies were performed with Biotage prepacked columns using a Biotage Isolera One purification system. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECS $400(400 \mathrm{MHz})$ or JEOL ECA $500(500 \mathrm{MHz})$ spectrometer. Chemical shifts (δ) are given in parts per million (ppm) relative to the solvent residual peak of CDCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}, 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$) or $\mathrm{CD}_{3} \mathrm{OD}\left(4.78 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}, 49.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$). Splitting patterns are indicated as followed: s , singlet; d , doublet; t , triplet; q , quartet; oct, octet; m , multiplet; b , broad and combinations thereof. Coupling constants (J) are reported in hertz (Hz).

II. Synthesis of epDPhPC and ${ }^{\mathbf{2}} \mathbf{H}$-labeled epDPhPC

1) Retrosynthesis

3, 3-CD ${ }_{3}$, D-DPhPC(2): $R_{1}=C D_{3}, R^{\prime}{ }^{\prime}=D, R_{2}=C H_{3}, R_{2}{ }^{\prime}=H$
7, 7-CD $3, \mathrm{D}-\mathrm{DPhPC}(\mathbf{3}): \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{1}{ }^{\prime}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CD}_{3}, \mathrm{R}_{2}{ }^{\prime}=\mathrm{D}$

Phytol

Scheme S1. Retrosynthetic route for epDPHPC $\mathbf{1}$ and deuterated epDPhPCs $\mathbf{2}$ and $\mathbf{3}$
2) Synthesis of ${ }^{2} H$-labeled isoprene units with high optical purity $(\mathbf{1 3}, 14)$ and deuterium labeled phytanols $(9,10)$.

Deuterated phytanols $(\mathbf{9}, \mathbf{1 0})$ was synthesized by the previous method (ref. 22 of the manuscript) (Scheme S 1). They were prepared in the common synthetic route only by changing the order of connecting isoprene units. That is, in the case of 3-position deuterium-labeled phytanol (9), deuteriumlabeled Grignard reagent $\mathbf{1 3}$ was used in the 3 rd coupling reaction with non-deuterated tosylate 12, and in the case of 7-position deuterium-labeled phytanol (10), the deuterium-labeled Grignard reagent 13 was used in the 2 nd coupling reaction. All isoprene units $(\mathbf{1 3}, \mathbf{1 4}, \mathbf{1 6})$ with high optical purity were successfully synthesized from lactone 17 by following our established method (ref. 22).
3) Synthesis of deuterium labeled phytanic acids $(7,8)$

The target deuterium labeled phytanic acids $(7,8)$ was synthesized by oxidizing the phytanyl alcohols ($\mathbf{9}, 10$) with Jones reagent (Scheme S2).

Scheme S2
$\mathbf{C D}_{3}, \boldsymbol{D}$-phytanic acids $\mathbf{7}$ and 8: To a solution of $C D_{3,} D$-phytanol $\mathbf{9}$ or $\mathbf{1 0}(110 \mathrm{mg}, 0.36 \mathrm{mmol})$ in acetone (7.8 mL) was added Jones reagent $(0.39 \mathrm{ml}, 0.98 \mathrm{mmol})$ and the reaction mixture was stirred for 1 h at room temperature. Then quenched with water and the mixture was extracted with AcOEt $(\times 3)$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then filtered. Filtrate was concentrated, and the residue was purified with flush column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{Hexane}=2 / 5)$ to afford alcohol 7 or $\mathbf{8}(80 \mathrm{mg}, 0.25 \mathrm{mmol}, 70 \%)$ as a colorless oil. 7: colorless oil, $\mathrm{Rf}=0.18$ (hexane/ethyl acetate $=15 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.72-3.63(\mathrm{~m}$, $2 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.05(\mathrm{~m}, 21 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4) Synthesis of Lyso PC (4)

Lyso PC (4) was synthesized as shown in Scheme S3. First, unlabeled phytanic acid 6 was prepared from commercially available enantiopure phytol by asymmetric hydrogenation with a chiral ruthenium catalyst and the subsequent oxidization. After L- α-Glycerylphosphorylcholine (GPC) was converted to cyclic tin ester by treatment with n-dibutyltin oxide, $s n-1$ selective acylation was performed by adding a separately prepared phytanic acid chloride from the synthesized phytanic acid $\mathbf{6}$ to give the desired lyso PC (4) in 38% yield. The $s n-1$ selectivity was confirmed by ${ }^{1} \mathrm{H}$ NMR spectrum of the glycerol moiety of lyso-PC.

Scheme S3

Phytanol 18: To a solution of phytol ($1.0 \mathrm{~g}, 3.4 \mathrm{mmol}$) in $\mathrm{MeOH}(15 \mathrm{~mL})$ was added $(\mathrm{s})-\mathrm{Ru}(\mathrm{OAc})_{2}(\mathrm{~T}-$ BINAP) ($61 \mathrm{mg}, 0.067 \mathrm{mmol}$). The mixture was hydrogenated for 24 h under 50 atm of hydrogen gas. After concentration, the residue was purified by flush column chromatography on silica gel (gradient EtOAc/Hexane $=1 / 10$ to $1 / 5)$ to afford phytanol $\mathbf{1 8}(0.97 \mathrm{~g}, 3.25 \mathrm{mmol}, 96 \%)$ as a pale-yellow oil.

Phytanic acid 6: To a solution of Phytanol $18(500 \mathrm{mg}, 1.67 \mathrm{mmol})$ in acetone $(45 \mathrm{~mL})$ was added Jones reagent ($1.81 \mathrm{ml}, 4.52 \mathrm{mmol}$) and the reaction mixture was stirred for 1 h at room temperature. Then quenched with water and the mixture was extracted with $\mathrm{AcOEt}(\times 3)$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then filtered. Filtrate was concentrated, and the residue was purified with flush column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{Hexane}=2 / 5)$ to afford acid $\mathbf{6}(390 \mathrm{mg}, 1.25 \mathrm{mmol}, 75 \%)$ as a pale-yellow oil.

Lyso-PC 4: Phytanic acid 6 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) was added to the two-necked flask, and toluene azeotropy was performed three times and dissolved in toluene (2 ml). Oxalyl dichloride ($41.2 \mu \mathrm{l}, 0.48$ mmol) was added and the mixture was stirred for 30 minutes, and then azeotrope with toluene twice to give phytanic acid chloride. GPC $5(54.8 \mathrm{mg}, 0.21 \mathrm{mmol})$ was added to the two-necked flask, dissolved in 2-propanol, DBTO ($53.1 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added, and the mixture was heated under reflux for 1 hour. After cooling to room temperature, triethylamine ($44.6 \mu \mathrm{l}, 0.32 \mathrm{mmol}$) and prepared phytanic acid chloride were added and stirred for 15 min . The reaction mixture was extracted with water, washed with hexane three times, and the solvent was evaporated under reduced pressure. The residue was purified with flush column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} /\right.$ water $=65 / 25 / 0$ to $65 / 25 / 4$) to afford lyso-PC $4(45 \mathrm{mg}, 0.08 \mathrm{mmol}, 38 \%)$ as a white solid.
4: white powder; $\mathrm{R}_{\mathrm{f}} 0.40\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} /\right.$ water $\left.=65 / 35 / 4\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / d_{4}-\mathrm{MeOH}=\right.$
$1 / 2$) $\delta 3.88-3.82(\mathrm{br}, 2 \mathrm{H}), 3.76-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.22-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 9 \mathrm{H}), 1.94-$ $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.02(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.55(\mathrm{~m}, 20 \mathrm{H}), 0.50(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.44-$ $0.38(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / d 4-\mathrm{MeOH}=1 / 2$) $\delta 177.7,72.6,72.6,70.7,70.7,70.2$, $70.2,68.9,63.1,63.1,57.6,45.4,43.2,41.2,41.2,41.2,41.1,41.1,41.1,36.6,34.2,31.8,28.6,28.2$, $28.2,26.1,26.0,23.2,23.2,23.1$

5) Synthesis of epDPhPC (1) and deuterium labeled $\operatorname{DPhPC}(\mathbf{2}, \mathbf{3})$

Finally, the condensation of lyso-PC (4) with phytanic acids $(\mathbf{6}, 7,8)$ was conducted using DCC and DMAP to successfully afford the objective epDPhPC (1) and 3,3-CD $3, \mathrm{D}-\mathrm{DPhPC}(\mathbf{2})$ and 7,7CD_{3}, D-DPhPC (3) in $38 \%, 70 \%$ and 40% yields, respectively.

Scheme S4

DPhPC (1): Phytanic acid $6(92.1 \mathrm{mg}, 0.29 \mathrm{mmol})$ and lyso-PC $4(65.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ were added to flask and dissolved in dichloromethane $(2.5 \mathrm{ml})$. DCC ($102.2 \mathrm{mg}, 0.49 \mathrm{mmol}$) and one piece of DMAP were added and refluxed for 18 h . The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel, $\mathrm{CHCl}_{3} / \mathrm{MeOH} /$ water $=1 / 0 / 0$ to $65 / 25 / 0$ to $65 / 25 / 4)$ to afford $\operatorname{DPhPC}(\mathbf{1})(38.5 \mathrm{mg}, 0.046 \mathrm{mmol}, 38 \%)$ as a white solid.
1: white powder; $\mathrm{R}_{\mathrm{f}} 0.80\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} /\right.$ water $\left.=65 / 35 / 4\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / d_{4}-\mathrm{MeOH}=\right.$ $1 / 2$) $\delta 4.84-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=3.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=7.6,12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 3,19-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 9 \mathrm{H}), 1.95-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.41(\mathrm{br}$, $2 \mathrm{H}), 1.02-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.55(\mathrm{~m}, 40 \mathrm{H}), 0.52-0.48(\mathrm{~m}, 6 \mathrm{H}), 0.44-0.39(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / d 4-\mathrm{MeOH}=1 / 2\right) \delta 177.2,176.8,74.4,74.3,70.2,67.5,66.5,63.1,63.0,57.6,45.5,45.4$, $43.2,41.3,41.2,41.2,41.1,41.1,41.0,40.9,36.6,34.3,31.8,28.6,28.3,26.1,26.1,23.3,23.3,23.1$

3,3-CD D_{3}, D-DPhPC (2): 3-CD D_{3}, D-phytanic acid $7(35.9 \mathrm{mg}, 0.11 \mathrm{mmol})$ and lyso-PC $4(25.0 \mathrm{mg}, 0.045$ mmol) were added to flask and dissolved in dichloromethane (0.8 ml). DCC ($39.2 \mathrm{mg}, 0.19 \mathrm{mmol}$) and
one piece of DMAP were added, and refluxed for 18 h . The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel, $\mathrm{CHCl}_{3} / \mathrm{MeOH} /$ water $=1 / 0 / 0$ to $65 / 25 / 0$ to $65 / 25 / 4$) to afford $3,3-\mathrm{CD}_{3}, D$-DPhPC (2) ($27 \mathrm{mg}, 0.032$ $\mathrm{mmol}, 70 \%$) as a white solid.
2; white powder; $\mathrm{R}_{\mathrm{f}} 0.80\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} /\right.$ water $\left.=65 / 35 / 4\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / d_{4}-\mathrm{MeOH}=\right.$ $1 / 2$) $\delta 4.84-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=3.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=7.6,12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 3,19-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 9 \mathrm{H}), 1.95-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.41$ (br, $1 \mathrm{H}), 1.02-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.55(\mathrm{~m}, 40 \mathrm{H}), 0.52-0.48(\mathrm{~m}, 3 \mathrm{H}), 0.44-0.39(\mathrm{~m}, 24 \mathrm{H})$
$7,7-\mathrm{C} D_{3}, D-\mathrm{DPhPC}(\mathbf{3}): 7-\mathrm{C} D_{3}, D$-phytanic acid $\mathbf{8}(35.9 \mathrm{mg}, 0.11 \mathrm{mmol})$ and lyso-PC $4(25.0 \mathrm{mg}, 0.045$ mmol) were added to flask and dissolved in dichloromethane (0.8 ml). DCC ($39.2 \mathrm{mg}, 0.19 \mathrm{mmol}$) and one piece of DMAP were added, and refluxed for 18 h . The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel, $\mathrm{CHCl}_{3} / \mathrm{MeOH} /$ water $=1 / 0 / 0$ to $65 / 25 / 0$ to $65 / 25 / 4$) to afford $7,7-\mathrm{CD}_{3}, D-\mathrm{DPhPC}(3)(15 \mathrm{mg}, 0.018$ $\mathrm{mmol}, 40 \%$) as a white solid.
3; white powder; $\mathrm{R}_{\mathrm{f}} 0.80\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} /\right.$ water $\left.=65 / 35 / 4\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / d_{4}-\mathrm{MeOH}=\right.$ $1 / 2) \delta 4.84-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=3.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=7.6,12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 3,19-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 9 \mathrm{H}), 1.95-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.41(\mathrm{br}$, $2 \mathrm{H}), 1.02-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.55(\mathrm{~m}, 39 \mathrm{H}), 0.52-0.48(\mathrm{~m}, 6 \mathrm{H}), 0.44-0.39(\mathrm{~m}, 21 \mathrm{H})$

III. Evaluation of stereochemical homogeneity of comDPhPC and epDPhPC

1) Examination of stereochemical homogeneity of comDPhPC by using the 2-methoxy-2-naphtylpropionate derivative of phytanol derived from its phytanoyl chains

comDPhPC

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of the (R)-2-methoxy-2-naphtyl-propionate derivative of phytanol derived from commercial DPhPC (comDPhPC) in CDCl_{3} at 500 MHz . Regarding the stereochemistry at the C 3 or C 7 positions of the phytanol derived from comDPhPC, the spectrum shows a nearly 1:1 diastereomeric mixture, respectively.
2) Examination of stereochemical homogeneity of epDPhPC by using the 2-methoxy-2-naphtylpropionate derivative of phytanol derived from synthesized phytanic acid $\mathbf{6}$

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of the (R)-2-methoxy-2-naphtyl-propionate derivative of phytanol derived from synthetic phytanic acid $6\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$. Regarding stereochemistry at the C 3 positions of $\mathbf{6}$, the spectrum shows that the enantiomeric excess of $\mathbf{6}$ is higher than 99%.

IV. Measurement of water permeability

Water permeability parameter $\left(P_{\mathrm{f}}\right)$ was calculated by fitting the measured data (Fig S3) with the following differential equation.

$$
d \mathrm{~V}_{(t)} / d t=\left(P_{\mathrm{f}}\right)(S A V)(M V W)\left\{\left[C_{\mathrm{in}} / \mathrm{V}_{(t)}\right]-C_{\mathrm{out}}\right\}
$$

P_{f} is a water permeability parameter, $S A V$ is the surface area relative to the volume of the liposome, $M V W$ is the volume of water per mole, $C_{\text {in }}$ is the solution concentration inside the liposome, and $C_{\text {out }}$ is the solution concentration outside the liposome.

Figure S3. Measurements of water permeability of comDPhPC, epDPhPC and POPC LUVs

V. ${ }^{2} \mathrm{H}$ NMR measurements and orientation analysis

Figure S4. Experimental (black) and simulated (red) ${ }^{2} \mathrm{H}$ NMR spectra for $3^{\prime}-\mathrm{D} / \mathrm{CD}_{3}$ and $7^{\prime}-\mathrm{D}^{\prime} / \mathrm{CD}_{3}$ of epDPhPC at various temperatures. S_{CD} values obtained from the spectra are shown in Table 2. The quadrupole splitting width $\Delta \nu_{\mathrm{D}}$ and $\Delta \nu_{\mathrm{CD}}$ and asymmetry parameter η were determined through spectral simulations by changing the principal elements of the quadrupole tensor, $\delta_{\mathrm{xx}}, \delta_{\mathrm{yy}}$, and δ_{zz}. $\Delta \nu_{\mathrm{D}}=\delta_{\mathrm{xx}}+\delta_{\mathrm{yy}} ; \eta=\left(\delta_{\mathrm{xx}}-\delta_{\mathrm{yy}}\right) / \delta_{\mathrm{zz}}$.

Figure S5. Temperature-dependence of relative S_{CD} values of 3'- CD_{3} (orange) and 3'-CD (blue) of DPhPC , and $3^{\prime}-\mathrm{D}_{2}$ of DMPC (gray) ${ }^{2}$ with respect to the value at $30^{\circ} \mathrm{C}$ taken as 1.0 .

Figure S6. C7'-centered internal frame used for defining the rotational axis with angles α and β. C7'D and C7'- CD_{3} bonds of DPhPC were placed on the $x y$ plane in the direction that the bisector of the C7'D and $\mathrm{C} 7{ }^{\prime}-\mathrm{CD}_{3}$ bonds was on the y axis. In the following Table S1, the plausible orientation of the C7' system was deduced from RMSD values obtained from the experimental $S_{\mathrm{CD} 3} / S_{\mathrm{CD}}$ ratio, 0.26 , and the calculated $\left(3 \cos ^{2} \theta_{C D 3}-1\right) / 2:\left(3 \cos ^{2} \theta_{C D}-1\right) / 2$ ratio. Another condition was the wobbling order parameter, S_{mol}, which is equal to $-2 S_{\mathrm{CD}}$ for usual membrane phospholipids, but not applicable in this case. The possible range of S_{mol} was set to 0.460.70 ; the S_{CD} value of DPPC (or DMPC) is $-0.23,{ }^{1}$ which can be regarded as the smallest S_{mol} values because DPPC has the average orientation $\theta_{C D}=90^{\circ}$, where $\left(3 \cos ^{2} \theta_{C D}-1\right) / 2$ is equal to -0.5 , and its bilayer thickness is close to that of DPhPC, which means that, if $\theta_{C D}$ deviates from $90^{\circ}, S_{\text {mol }}$ should be larger than 0.46 . We set the maximum $S_{\text {mol }}$ somewhat higher than expected; if the average $\theta_{C D}$ is equal to 90°, the S_{mol} value of 0.70 corresponds to the $\left|S_{\mathrm{CD}}\right|$ value of 0.35 , which is exceptionally large for phospholipids in disordered phase.

Table S1. RMSD distribution chart of the difference between the experimental value (0.26) of the C $\mathrm{CD}_{3} / \mathrm{C}$-D ratio and the calculated value with angles α, β; for definition of angles α, β, see Figure S6.
\mathbf{A}, a relevant area in this orientation analysis. B, the whole RMSD distribution for angles α, β. The RMSD difference from the experimental ratio (0.26) at C7' was shown for α and β angles, and the limiting condition (blue frame) of wobbling $S_{\text {mol }}(0.46-0.70)$ was imposed. Red numbers in \mathbf{A} denote α, β pairs that satisfy both conditions. The α, β pair with a red oval corresponds to the bent orientation. The bottom red one (and other pairs) turned out to be unlikely based on MD simulation that revealed the θ angle of C7'-D to be $107-108^{\circ}$ (Table S2, Figs. S7 and S8C).

B

90		0.050	0.050	0.051	0.052	0.055	0.059	0.066	0.080	0.126	2.317	0.050	0.009	0.005	0.011	0.015	0.017	0.019	0.019	0.020
85		0.050	0.051	0.056	065	0.079	0.105	0.155	0.283	1.130	0.686	0.287	0.192	0.151	0.128	0.115	0.106	0.101	0.098	0.097
80		0.050	0.053	0.061	0.077	0.104	156	0.266	0.626	7.497	0.664	0.386	0.290	0.243	0.216	199	88	0.181	0.177	76
75		0.050	0.054	0.065	0.088	0.129	0.209	0.397	1.250	1.999	0.672	0.446	0.354	0.306	0.277	0.259	0.247	0.240	0.236	0.234
70		0.050	0.055	0.069	0.099	0.153	0.261	0.543	2.510	1.513	0.691	0.491	0.402	0.354	0.324	0.305	0.293	0.285	0.280	0.279
65		0.050	0.055	0.073	0.108	0.174	0.309	0.689	5.409	1.375	0.716	0.528	0.441	0.392	0.362	0.342	0.329	0.321	0.316	0.315
60		0.050	0.056	0.076	0.115	0.190	0.348	0.814	12.568	1.352	0.749	0.563	0.475	0.425	0.394	0.373	0.360	0.351	0.347	0.345
55		0.050	0.057	0.078	0.121	0.202	0.374	0.891	21.295	1.401	0.791	0.599	0.507	0.455	0.422	0.400	0.386	0.377	0.372	0.371
50		0.050	0.057	0.079	0.123	0.207	0.384	0.906	14.091	1.523	0.846	0.638	0.539	0.483	0.448	0.425	0.410	0.400	0.395	0.393
45		0.050	0.057	0.079	0.124	0.207	0.379	0.861	6.847	1.757	0.922	0.683	0.573	0.511	0.472	0.447	0.431	0.421	0.415	0.413
40		0.050	0.057	0.078	0.121	0.200	0.359	0.770	3.647	2.234	1.033	0.740	0.611	0.540	0.497	0.469	0.451	0.439	0.433	0.431
35		0.050	0.056	0.077	0.117	0.189	0.328	0.657	2.150	3.534	1.213	0.818	0.658	0.573	0.523	0.491	0.470	0.457	0.450	0.447
30		0.050	0.056	0.074	0.1	0.1	0.289	0.538	. 354	17.028	. 566	0.937	0.720	0.613	0.552	0.513	0.489	. 473	465	. 462
25		0.050	0.055	0.071	0.10	0.1	0.246	0.426	0.882	3.911	2.579	1.154	0.815	0.667	0.587	0.538	0.50	0.48	0.47	0.476
20		0.050	0.054	0.067	0.092	0.13	0.202	0.324	0.580	1.387	41.697	1.713	0.992	0.751	0.634	0.568	0.529	0.505	0.492	0.488
15		0.050	0.053	0.063	0.082	0.111	0.158	0.235	0.375	0.679	1.784	7.313	1.487	0.922	0.715	0.611	0.553	0.519	0.502	0.496
10		0.050	0.052	0.059	0.070	0.089	117	0.159	0.228	0.347	0.597	1.389	28.071	1.590	0.917	0.694	0.588	0.533	0.505	0.497
5		0.050	0.051	0.054	0.059	. 67	78	095	0.118	0.154	0.212	0.315	0.541	1.362	5.522	1.100	0.684	0.541	0.481	0.464
0		0.050	0.050	0.049	048	0.046	0.043	0.040	0.035	28	0.020	0.007	0.011	0.039	0.084	162	31	0.65	. 443	. 320
-5		0.050	0.049	0	0.037	0.026	0.0	0.	0.030	0.060	0.09	0.1	0.198	0.265	0.343	0.431	0.521	0.604	0.664	0.686
-10		0.050	0.04	0.04	0.02	0.00	0.0	0.046	0.082	0.126	0.176	0.234	0.297	0.365	0.436	0.505	0.568	0.619	0.652	0.664
-15		0.050	0.04	0.03	0.018	0.007	0.039	0.078	0.124	0.177	0.234	0.296	0.361	0.427	0.491	0.550	0.600	0.639	0.664	0.672
-20		0.050	0.045	0.03	0.010	0.021	0.060	0.106	0.158	0.217	0.279	0.344	0.409	0.473	0.532	0.585	0.630	0.663	0.684	0.691
-25		0.050	0.045	0.029	0.003	0.032	0.077	0.128	0.186	0.249	0.315	0.382	0.448	0.511	0.568	0.619	0.660	0.691	0.710	0.716
-30		0.050	0.044	0.026	0.002	0.042	0.090	0.146	0.209	0.276	0.345	0.414	0.482	0.546	0.604	0.654	0.694	0.725	0.743	0.749
-35		0.050	0.044	0.025	0.006	0.048	0.100	0.160	0.227	0.298	0.371	0.444	0.514	0.581	0.641	0.693	0.735	0.766	0.785	0.791
-40		0.050	0.043	0.024	0.009	0.053	0.107	0.170	0.240	0.315	0.393	0.471	0.547	0.618	0.683	0.739	0.785	0.819	0.839	0.846
-45		0.050	0.043	0.023	0.010	0.055	0.110	0.176	0.250	0.329	0.413	0.498	0.581	0.661	0.734	0.798	0.851	0.890	0.914	0.922
-50		0.050	0.043	0.024	0.009	0.054	0.110	0.178	0.255	0.340	0.431	0.526	0.621	0.714	0.801	0.879	0.943	0.992	1.022	1.033
-55		0.050	0.044	0.025	0.006	0.050	0.106	0.175	0.255	0.346	0.447	0.556	0.670	0.785	0.896	0.999	1.088	1.156	1.199	1.213
-60		0.050	0.044	0.027	0.002	0.044	0.098	0.167	0.250	0.348	0.462	0.592	0.736	0.891	1.050	1.207	1.349	1.464	1.540	1.566
-65		0.050	0.045	0.030	0.004	0.034	0.086	0.152	0.237	0.344	0.476	0.639	0.838	1.077	1.356	1.669	1.993	2.288	2.501	2.579
-70		0.050	0.046	0.033	0.011	0.022	0.068	0.131	0.215	0.330	0.488	0.709	1.032	1.522	2.313	3.693	6.370	12.293	26.282	41.753
-75		0.050	0.047	0.037	0.020	0.007	0.045	0.100	0.181	0.302	0.496	0.844	1.606	4.377	18.845	3.929	2.526	2.042	1.841	1.784
-80		0.050	0.048	0.041	0.030	0.011	0.017	0.059	0.128	0.247	0.497	1.289	28.170	1.690	1.017	0.794	0.688	0.633	0.605	0.597
-85		0.050	0.049	0.046	0.041	0.032	0.018	0.005	0.046	0.137	0.464	2.233	0.506	0.338	0.277	0.246	0.229	0.219	0.214	0.212

Table S2. Comparison of NMR and MD results for orientation of C-D bonds of DPhPC ${ }^{\text {a }}$

Postn.	NMR, sn-2 (30 ${ }^{\circ} \mathrm{C}$)			MD, $s n-1$			MD, $s n-2$		
	bent $S_{\text {mol }}{ }^{\text {c }}$	linear $S_{\text {mol }}{ }^{\text {c }}$	bent angle θ	bent $S_{\text {mol }}{ }^{\text {c }}$	linear $S_{\text {mol }}{ }^{\text {c }}$	bent angle θ	bent $S_{\text {mol }}{ }^{\text {c }}$	linear $S_{\text {mol }}{ }^{\text {c }}$	bent angle θ
3 '	$(0.661)^{\text {b }}$	0.466	$(108){ }^{\text {b }}$	0.49	0.35	-	0.66	0.47	- ${ }^{\text {b }}$
7 '	0.571	0.408	108	0.52	0.37	$73{ }^{\text {d }}$	0.55	0.39	107

${ }^{\text {a }}$ see Table 3 for other parameters; ${ }^{\mathrm{b}} \mathrm{C} 3$ '-D partly takes the 40°-upward bent orientation (see Fig. S10); ${ }^{\mathrm{c}} S_{\text {mol }}$ values were obtained by dividing the S_{CD} values (Tables 2 and 5) by $\left(3 \cos ^{2} \theta-1\right) / 2$. ${ }^{\mathrm{d}} \theta$ angle was deduced for the upward bent orientation.

Figure S7. Angle distribution between the C2"-C3" (C6"-C7") bond of $s n-1$ and the bilayer normal, and between the $\mathrm{C}^{\prime}-\mathrm{C} 3^{\prime}$ ($\mathrm{C}^{\prime}-\mathrm{C} 7^{\prime}$) bond of $s n-2$ and the bilayer normal, derived from MD calculation. The average orientation of the C6"-C7" bond (sn-1) significantly tilts from -180° while
that of the C6'-C7' bond (sn-2) is directed parallel to the bilayer normal. Similar angle distributions are observed for the C 7 '"- $\mathrm{C} 8^{\prime \prime}$ and $\mathrm{C} 7{ }^{\prime}-\mathrm{C} 8$ ' bonds but in the opposite way. This alternating orientation change is due to the upward and downward bent orientations of $s n-1$ and $s n-2$ chains, respectively (Fig. 6b).

Figure S 8 . Order profiles of DPhPC. A, B, S_{CD} values of C-H bond in sn-1 and sn-2 chains of DPhPC. C, Distributions of angule θ^{\prime} which is the bond angles of $\mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{D}$ and $\mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{CD}_{3}$, showing Gauss curves, where dots and lines denote the bond angles from MD calculations and standard Gauss curves, respectively. In the bent orientation, θ^{\prime} is equal to the average angle θ because the $\mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime}$ bond is in parallel to the rotational axis (Table S1 and Figure 4).

Figure S9. Distribution of dihedral angles C1' - C2' - C3' $-\mathrm{C} 4^{\prime}$ and ${ }^{\prime} 5^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}$ of the $s n-2$ phytanyl chain of DPhPC.

Table S3. Conformational populations around the C3' and C7' positions

Postn	conformation (\%)		
	anti	$g+$	$g-$
3	47	33	20
7	57	27	16

The conformation at C3' and C7' positions of DPhPC is shown as the rotational conformers anti, gauche ${ }^{+}$, and gauche ${ }^{-}$with respect to $\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$ and $\mathrm{C} 5^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}$, respectively.

In order to obtain the $S_{\mathrm{CD}(\mathrm{CD} 3)} / S_{\mathrm{CD}(\mathrm{D})}$ ratio for each of the linear, bent and upward bent structures, the rotational conformations at the C3 and C7 positions are calculated (Table S3). In the case of the linear and the 40° upward-bent structure, the angle between the membrane normal and the CD (or $\mathrm{C}-\mathrm{CD}_{3}$) bond differs among anti, gauche +, and gauche - conformations (Figure 5). To calculate the $S_{\mathrm{CD}(\mathrm{CD} 3)} / S_{\mathrm{CD}(\mathrm{D})}$ ratios, the abundance ratios of anti, gauche + , and gauche - were obtained as shown in Table S3. S_{CD} values were directly calculated from the populations of the rotational conformation and the orientation angles, the $\left|S_{\mathrm{CD}(\mathrm{CD} 3)} / S_{\mathrm{CD}(\mathrm{CD})}\right|$ ratios were obtained for the C 3 and C 7 positions as shown in Table 3. On the other hand, in the case of the usual bent structures, the angle between the membrane normal and the $\mathrm{CD}, \mathrm{C}-\mathrm{CD}_{3}$ bond is constant regardless of the anti, gauche + , or gauche -in the
rotational conformation to be $\left|S_{\mathrm{CD}(\mathrm{CD} 3)} / S_{\mathrm{CD}(\mathrm{CD})}\right| \approx 0.26$.

Figure S10. Tilt angle distribution of O1'-C1'-C2'-C3' of $s n-2$ chain of DPhPC deduced by MD calculation (a). Higher stereochemical repulsion between CH_{3} (labeled as C 17) and $\mathrm{Cl}=\mathrm{O}$ in the usual bent conformation (b, right) causes the 40°-methyl-upward bent conformation (b, left) at the C3' position of DPhPC. The angle between the $\mathrm{C} 3-\mathrm{CH}_{3}(\mathrm{C} 17)$ bond and the membrane normal is shown in Fig. 5b, in which the 40°-methyl-upward orientation appeared to be the second most stable conformation.

The C3 position of DPhPC is significantly different from that of PGP-Me with respect to the orientation angle of the methyl group. Although both of the lipids take downward bent structure at the C 3 position as a main orientation, ether-type PGP-Me has the second bent structure with 3- CH_{3} group facing upward at around $66^{\circ}(\cos \theta=0.41)$ whereas the $3-\mathrm{CH}_{3}$ of DPhPC shows more profoundly upward direction with around $40^{\circ}(\cos \theta=0.77)$ (Fig. 6b). The reason why such a structure was found in DPhPC may be due to the steric repulsion between the carbonyl oxygen and the methyl group in the usual bent conformation (Figure S10).

In order to confirm that the 40°-methyl-upward orientation of the 3-methyl group of DPhPC was due to steric repulsion between the carbonyl oxygen and the methyl group, we examined the MD simulation results more in detail. As shown in Figure S10a, the tilt angle of 90° about O1-C1-C2-C3 turned out to be stable for DPhPC in bilayers. This structure was markedly different from the conformation of PGP-Me, where the upward bent conformation with the orientation at $\theta=69^{\circ}$ was relatively stable at the C3 position. Thus, the structural difference between DPhPC and PGP-Me is the main cause to stabilize the 40°-methyl-upward orientation, implying that the steric repulsion between the carbonyl oxygen and the methyl group should be the main driving force of this orientation. The temperature-dependent change of Δv values in Fig. 3 indicates that the thermal stability of DPhPC at the C 3 position is lower than that of PGP-Me (ref. 22). The 40°-methyl-upward orientation occurring in DPhPC may loosen the chain packing to slightly decrease the thermal stability of phytanoyl chains.

C 7 " in $s n-1(s n-3)$

b 3^{\prime} in $s n-2$

d 7 ' in $s n-2$

g $\quad 15^{\prime \prime}$ in $s n-1(s n-3)$

Figure S11. Angle distribution between the methyl branching bond of the $s n-1$ and $s n-2$ chains of DPhPC and the bilayer normal derived from MD calculations. C3"-H (a), C3'- $\mathrm{H}(\mathbf{b}$), C7"- H (c), $\mathrm{C} 7^{\prime}-\mathrm{H}(\mathbf{d}), \mathrm{C} 11 "-\mathrm{H}(\mathbf{e}), \mathrm{C} 11^{\prime}-\mathrm{H}(\mathbf{f}), \mathrm{C} 15^{\prime \prime}-\mathrm{H}(\mathbf{g})$, and C 15 '- $\mathrm{H}(\mathbf{h})$, in comparison with the corresponding bonds in the $s n-3$ and $s n-1$ chains of PGPMe (ref. 22) and $s n-1$ and $s n-2$ chains of DPPC.

VI. Molecular dynamics (MD) simulations

Here we provide several basic structural quantities obtained from $1 \mu \mathrm{~s}-\mathrm{MD}$ simulation of DPhPC bilayer. Figure S12 plots lamellar repeat spacing, L_{z}, and molecular area of DPhPC. The averaged molecular area over the last 900 ns was $78.8 \AA^{2}$ (at 298 K ; simulation temperature), which is in good agreement with experimental data of $78.0 \AA^{2}$ at 293 K and $80.6 \AA^{2}$ at $303 \mathrm{~K}^{3}$. Figure S13 plots membrane thickness as represented by d_{PP}; phosphate-phosphate distance across the membrane. The averaged d_{PP} was $37.2 \AA$, which slightly overestimated the experimental value of $36.3 \pm 0.7 \AA$ at $293 \mathrm{~K}^{3}$.

Figure S12. Time evolution of the molecular area of epDPhPC and lamellar repeat spacing ($L z$) during $1 \mu \mathrm{~s}-\mathrm{MD}$ simulation.

Figure S13. Time evolution of the membrane thickness (d_{PP}; distance between two phosphorus position in upper and lower leaflets) during $1 \mu \mathrm{~s}$-MD simulation.

Figure S14. Number density profiles for several atoms of lipid and water molecule calculated from the last 900 ns -MD trajectory.

Figure S15. A snapshot of DPhPC bilayer from MD simulation.

VII. References

1) Marsh, D., Watts, A., Smith, I. C. P. (1983) Dynamic structure and phase behavior of dimyristoylphosphatidylethanolamine bilayers studied by deuterium nuclear magnetic resonance. Biochemistry, 22, 3023-3026.
2) Petrache, H. I., Dodd, S. W., and Brown, M. F. (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by ${ }^{2} \mathrm{H}$ NMR spectroscopy. Biophys. J. 79, 3172-3192.
3) Kucerka, N., Nieh, M.-P., Katsaras, J. (2011) Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. BBA-Biomembrane, 1808, 2761-2771.
VIII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of synthetic products

