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I. DATABASE GENERATION 

The equations for the potentials employed to generate the database are defined below in Table S1. For the single 
barriers the exact expressions for the transmission coefficient 𝑇(𝐸) were used.1,2 The first asymmetry parameter α for 
a single barrier was defined as the difference in energy between products and reactants. The second asymmetry 
parameter α! was defined as  α! =

"!#""
"!$""

+ %!#%"
%!$%"

 , with 𝑉&, 𝑉!	the height of the barriers and 𝑤&, 𝑤! their width. 

For double barriers, the transmission coefficient was evaluated as in equation (2) of the main text3 , with 𝑥 ∈ [−𝐿, 𝐿] 
and 𝐿 = 20	[au]. The evaluation of the transmission coefficient was carried out using scipy’s 
integrate.solve_ivp function to solve the initial value problem4 with the implicit Runge-Kutta method of order 
5 as defined by the ‘Radau’ option. The range of energy values over which the transmission coefficient was evaluated 
was a set of 300 points in the interval 𝐸'()*+, = 4-#$%

&...
; 2𝐸/(06, with 𝐸/(0 = 2 ⋅ max[𝑉(𝑥)]	.	The maximum value of 

the potential energy was evaluated over 1000 points in the range −𝐿 < 𝑥 < 𝐿.  

Table S1: Equations for the one-dimensional potential energy barriers used to build the database.  

Barrier Potential energy Parameters 

Single 
rectangular V!(𝑥) = &V" 0.0 < 𝑥 < w"

0.0 	𝑥 < 0	 ∨ 	𝑥 > w"
	 

V1 – barrier height 

w1 – barrier width 

α" =  0.0 

α# = 0.0 

𝑠	 = 	0.0 

Single 
symmetric 
Eckart 

V$%(𝑥) =
V"

cosh#(𝜋𝑥/w")
 

V1 – barrier height 

w1 – barrier width 

α" = 0.0 

α# = 0.0 

𝑠 =
V(𝑥∗) − V8𝑥∗ +𝑤"2 − Δ𝑥=

𝑤"/2
 

𝑥∗		>			V(𝑥∗) = maxBV(𝑥)CC 

Δ𝑥 = 	0.025	[𝑎𝑢] 

Single 
asymmetric 
Eckart 

V'%(𝑥) =
V"(1 − α)
1 + e(#)*/,! +

V"B1 + √αC
#

4 cosh# 𝜋𝑥/𝑤"
 

V1 – barrier height 

w1 – barrier width 

α" = 𝑉-./01 − 𝑉2-34  

α# = 0.0 

𝑠 =
|V(𝑥∗) − V(𝑥5)| + |V(𝑥∗) − V(𝑥()|

𝑤"
 

𝑥∗		|			V(𝑥∗) 	= 	max(V(𝑥)) 

𝑥±	 = 𝑥∗ ±
𝑤"
2 ∓ Δ𝑥			; 		Δ𝑥 = 0.025	[𝑎𝑢] 
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Double 
rectangular V8!(𝑥) = R

V" 0.0 < 𝑥 < w"
V# w" + Δ𝑥"# < 𝑥 < w" + Δ𝑥"# +𝑤#
0.0 elsewhere

 

Vi – barrier i height 

wi – barrier i width 

d = Δ𝑥"# + (𝑤" +𝑤#)/2   

𝛼" = 0 

𝛼# =
𝑉1 −𝑉2
𝑉1 +𝑉2

+𝑤1 −𝑤2
𝑤1 +𝑤2

 

𝑠 = 0.0 

Double 
gaussian 

VDG(𝑥) = V"e
((*(*!)"

#;!" + V#e
((*(*")"

#;""  

σ" = w"/3	; 			σ# = w#/3 

𝑥" = 0.0	; 			𝑥# = 3 ⋅ (σ" + σ#) + 𝑑  

Vi – barrier i height 

wi – barrier i width 

d – distance between barriers 

𝛼" = 0 

𝛼# =
𝑉1 −𝑉2
𝑉1 +𝑉2

+𝑤1 −𝑤2
𝑤1 +𝑤2

 

𝑠 = (𝑠" + 𝑠#)/2 

𝑠< =
V(𝑥<∗) − V8𝑥<∗ +

𝑤<
2 − Δ𝑥=

𝑤<
2

 

𝑥<∗|	𝑉(𝑥<∗) 	= 	maxB𝑉(𝑥)C		; 𝑖 = 1,2 

Δ𝑥 = 0.025	[𝑎𝑢] 

Peskin barrier 
V=>?@	(𝑥) = V′ ]

1
cosh#(𝑥) −

1
cosh#(𝛾𝑥)_ 

 

V′ – constant proportional to barrier height  

𝛾 – constant proportional to barrier width 

w1 = 𝑤# =	 |𝑥∗ − xA<B| barrier width 

𝛼" = 0.0 

𝛼# = 0.0 

𝑠 = (𝑠" + 𝑠#)/2𝑠< =
V(*#

∗)(VD*#
∗5%#" (E*F

,#/#
 ; difference 

taken with respect to 𝑥	 = 	0.0 when 𝑉A/* > 0	 ∧
𝑉A<B > 0	 

𝑥∗|	𝑉(𝑥∗) 	= 	max(𝑉(𝑥)) 
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II. DATASET 

A visualization of the distribution of the training and testing dataset with respect to its input features and output label 
is shown in Figures S1a-c. The first plot (a) displays scattering of pairwise feature distributions with kernel density 
estimate (KDE) diagonals for the entire dataset. The following plots (b-c) show the pairwise distribution of subsets of 
features and labels for the test and train sets through KDE. Figure S2 maps the correlation between variables through 
the Pearson correlation coefficient. 

 

 
Figure S1a: Database pair-wise distribution for all input features and for the output label. Points are datum. Diagonals are gaussian 
KDE of single features. 
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Figure S1b: Pair-wise distribution of a subset of the database features related to the barrier for the train and test sets. Blue surfaces 
are train set KDE, while red lines are test set KDE. KDE is normalized to 1.0. A KDE of 1.0 then indicates the region of two-
feature space with the highest density of data.   

When looking at the diagonal distribution of weights and heights in Figure S1b, we see a large number of points in 
the first bin. This comes from the fact that for single barriers the distance between barriers, the second barrier width 
and height are all equal to zero.  
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Figure S1c: Pair-wise distribution of a subset of the database features for the train and test sets. Blue surfaces are train set KDE, 
while red lines are test set KDE. KDE is normalized to 1.0. A KDE of 1.0 then indicates the region of two-feature space with the 
highest density of data.  
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Figure S2: Correlation matrix of the Pearson correlation coefficient for input features of the database. Values close to 1.0 indicate 
a strong positive correlation between variables, while -1.0 indicates a strong negative correlation. Features are perfectly correlated 
to themselves, as can be seen by the dark red diagonal. Most features have a small correlation, close to zero which indicates little 
bias. One distinct correlation is between barrier distance and second barrier width. This is due to the fact that for single barriers d 
and w2 are zero while for double barriers both are non-zero. We also note a positive correlation between temperature and rate, 
which comes from the physics of reactivity. 
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III. GRID SEARCH & HYPERPARAMETER TUNING 

As described in the main text, four subsequent grid searches were carried out. The hyperparameter search spaces for 
each are shown in Table S2-5, and optimal hyperparameters are shown in Table S6. Figure S 3 indicates how the 
logarithm of the mean absolute error, MSE, averaged over all runs, changes with the number of neurons for each single 
hidden layer. Figure S 4 shows how the loss changes with the learning rate. Figure S5 shows validation loss and 
moving average validation loss during training for a range of batch sizes, highlighting the optima. 

A. First grid search: neurons, hidden layers, batch size and epochs 

For the first grid search we searched over number of hidden layers, number of neurons per layer, and batch size. The 
range of parameters is shown in Table S2 below and the results in the following Figure S 3. We found that the optimal 
model was of neuron configuration (64, 24, 24). 

Table S2: First grid search space values for number of hidden layers, number of 
neurons per layer, batch size and epochs. 

Hyperparameter Search space 

number of hidden layers 1, 2, 3 
number of neurons in hidden layer 1, 6, 12, 24, 32, 64, 128 
batch size 32, 64, 128 

Fixed hyperparameters Default values 

hidden layer activation function softsign 
output activation function tanh  
epochs 300 
optimizer Adam 
- learning rate 0.001 
- beta 1 0.9 
- beta 2 0.9999 

weight initialization random uniform 
- range [0, 1] 

loss function mean squared error (MSE) 

Optimal hyperparameters Values 
neuron configuration (64, 24, 24) 
batch size 64 
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Figure S 3: Average model validation mean square error 
(MSE) associated with number of neurons in each of 
three hidden layers. The color scale corresponds to the 
average of the MSE over all models with three hidden 
layers trained for 300 epochs with batch size 64. The 
black line shows the neuron configuration of the optimal 
model. 

 

B. Second grid search: activation function 

For the second grid search, the choice of activation functions applied to each neuron in the hidden and output layers 
was explored. The activation functions tested are seen below in Table S3. The optimum configuration was found to 
be softsign, tanh for hidden and output layers, respectively.  

Table S3: Second grid search space values for activation function in both hidden and output layers. 

Hyperparameter Search space 

activation function softmax, softplus, softsign, relu, tanh, 
sigmoid, hard sigmoid linear 

Fixed hyperparameters Default values  
neuron configurations (64, 24, 64) 
epochs 300 
batch size 32 
optimizer Adam 
- learning rate 0.001 
- beta 1 0.9 
- beta 2 0.9999 

weight initialization random uniform 
- range [0, 1] 

loss function mean squared error (MSE) 
Optimal hyperparameters Values 
hidden layer activation softsign 
output layer activation tanh 



 S10 

C. Third grid search: learning rate 

The third grid search optimized the value of learning rate for the Adam optimizer. The range of values explored were 
on the logarithmic scale to best search hyperparameter space and are shown below in Table S4. This was conducted 
on a randomly selected portion of 30% of the training set as well as on 100% of the training set. In both cases, the best 
value was 0.0005. The results are also shown in Figure S 4. 

Table S4: Third grid search space values for the learning rate. 

Hyperparameter Search space 

learning rate 1E-5, 5E-5, 1E-4, 5E-4,1E-3, 5E-3,1E-
2, 5E-2, 1E-1, 2E-1 

Fixed Hyperparameters Default values  
neuron configuration (64, 24, 24) 
epochs 300 
batch size 64 
hidden layer activation function softsign 
output activation function tanh 
optimizer Adam 
- beta 1 0.9 
- beta 2 0.9999 

weight initialization random uniform 
- range [0, 1] 

loss function mean squared error (MSE) 
Optimal hyperparameters Values 
learning rate 0.0005 

 

 

 
Figure S 4: Validation loss as a function of learning rate in the 
third grid search. The blue and black lines correspond to grid 
search on 30% and 100% of the training dataset. Both searches 
indicate that 0.0005 is the optimal learning rate value.  
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D. Fourth grid search: batch size for optimal model 

A final grid search on the batch size was conducted to evaluate how fluctuations on the validation loss related to mini 
batch training batch sizes. Details of the search are described in Table S5. A moving average of the validation loss 
was used as a metric, to average the impact of the fluctuations. It was found that 128, and 256 performed best in terms 
of reduction in fluctuation and final validation loss magnitude and given that 128 had a lower final rolling average 
loss it was chosen as the best batch size. This result is shown in Figure S5.  

 

Table S5: Fourth grid search space for batch size. 

Hyperparameter Search space 

batch size 32, 64, 128, 256, 512, 1024, 2048, 
4096, 8192 

Fixed Hyperparameters Default values  
neuron configuration (64, 24, 24) 
epochs 300 
hidden layer activation function softsign 
output activation function tanh 
optimizer Adam 
- learning rate 0.0005 
- beta 1 0.9 
- beta 2 0.9999 

weight initialization random uniform 
- range [0, 1] 

loss function mean squared error (MSE) 
Optimal hyperparameters Values 
batch size 128 

 

 
Figure S5: Left panel) Validation loss and moving average of validation loss over 20 points for models trained with a range of 
batch sizes as a function of epochs. Batch size is seen to impact both the fluctuations in the validation loss, as well as the final 
training and validation loss value. Right panel) Moving average validation loss for the last 100 epochs of training. Batch sizes 128, 
and 256 perform best. 
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E. Optimal hyperparameters 
 

Table S6: Optimal hyperparameters identified from grid searches for the final training.   

Hyperparameter Value 
neuron configuration (64, 24, 24) 
epochs 300 
batch size 128 
hidden layer activation function softsign 
output activation function tanh 
optimizer Adam 
- learning rate 0.0005 
- beta 1 0.9 
- beta 2 0.9999 

weight initialization random uniform 
- range [0, 1] 

loss function mean squared error (MSE) 
Performance  
training loss 4.02E-6 
test loss 6.18E-6 
test MAE [log(1/ps)] 0.18 (0.60) 
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IV. INPUT FEATURES FOR RATE CONSTANTS PREDICTED IN FIGURE 6 OF MAIN TEXT 

Table S7 contains the values of the input features provided to the trained DNN to compute reaction rate constants for 
the reactions shown in Figure 6 of the main text. The input features were obtained by fitting existing minimum energy 
paths to asymmetric Eckart barriers. 

 

Table S7: Input feature values used to make predictions on the rate product for asymmetric reactions outside of the testing set. 
Reaction 1 is the Menshutkin reaction of pyridine with methyl bromide in the gas phase.5 Reaction 2 is the reaction of 
formalcyanohydrin with hydrogen sulfide in the liquid phase,6 and Reaction 3 is the reaction of F with HCl.7 Reaction 3a uses the 
activation energy obtained from the Eckart fit of the minimum energy path, while Reaction 3b uses a higher level of theory 
activation energy.7 

Feature Reaction 1 Reaction 2 Reaction 3a Reaction 3b 
mass [au] 317257.3 226395.5 101090.8 101090.8 
V1 [au] 0.04223043 0.03107522 0.01149779 0.002533826 
V2 [au] 0.0 0.0 0.0 0.0 
slope [au] 0.008847832 0.01289512 0.03025426 0.03025426 
w1 [au] 4.314845 4.0 2.303736 2.303736 
w2 [au] 0.0 0.0 0.0 0.0 
d [au] 0.0 0.0 0.0 0.0 
𝛼" -0.03879398 0.003222610 0.05662957 0.05662957 
𝛼# 0.0 0.0 0.0 0.0 
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