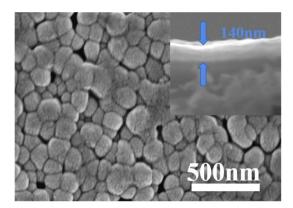

Supporting Information

Sn-W Co-doping Improves Thermochromic Performance of VO_2 Film for Smart Window


Zhengjing Zhao[†], Yi Liu[†], Zhinong Yu[‡], Chen Ling[†], Jingbo Li^{†,§,*}, Yongjie Zhao[†], Haibo Jin^{†,*}

- † Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
- [‡] Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- § Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
- * Corresponding authors

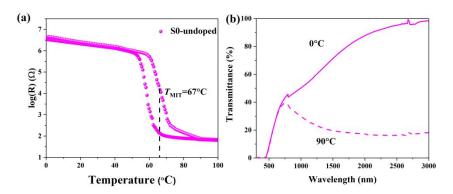
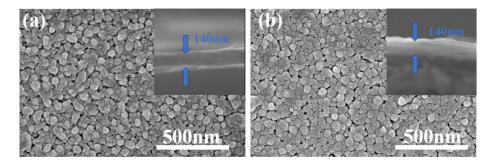
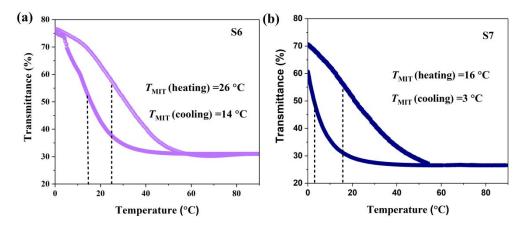
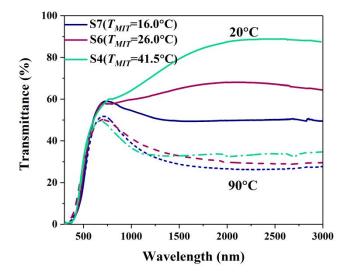
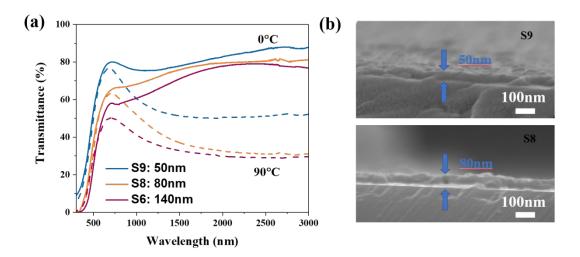


Figure S1. The Sn content of the Sn-W co-doped VO_2 films (S1-S5) determined by ICP. The abscissa is the expected composition, i.e. the input ratio of Sn/(Sn+W+V) in


the precursor solution during the hydrothermal process.


Figure S2. The SEM image of S0 film (undoped) and the inset indicates the thickness of S0 film is \sim 140nm.


Figure S3. (a) Temperature dependent resistance of the S0 (undoped); (b) Transmittance spectra of the S0 film measured at 0 °C (real line) and 90 °C (dashed line).


Figure S4. The SEM image:(a) S6; (b) S7. The insets are the corresponding cross-sectional views, indicating that the films possess similar thickness of ~140 nm.

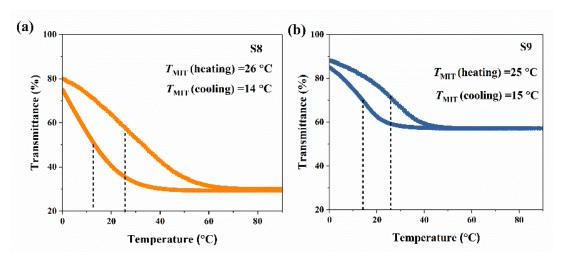

Figure S5. Hysteresis loop of the temperature-dependent transmittance (measured at the temperature range of 0 - 90°C, with a heating/cooling rate of 10 °C/min) of the Sn-W co-doped VO₂ samples at a wavelength 2500 nm: (a) S6; (b) S7.

Figure S6. (a) Transmittance spectra of the Sn-W co-doped VO₂ films with different W contents (S4, S6, S7): (S4: $T_{lum} \sim 40.7\%$, $\Delta T_{sol} \sim 13.6\%$; S6: $T_{lum} \sim 40.2\%$, $\Delta T_{sol} \sim 10.5\%$; S7: $T_{lum} \sim 40.4\%$, $\Delta T_{sol} \sim 8.9\%$). The real lines denote transmittance measured at 20 °C, and the dashed lines are measured at 90 °C.

Figure S7. (a) Transmittance spectra of the Sn-W co-doped VO₂ films with different thickness: (S6: ~140 nm, T_{lum} ~41.1%, ΔT_{sol} ~12.6%; S8: ~80nm, T_{lum} ~47.7%, ΔT_{sol} ~11.3%; S9: ~50nm, T_{lum} ~63.3%, ΔT_{sol} ~9.8%). (b) cross-sectional views of S8 and S9 films.

Figure S8. Hysteresis loop of the temperature-dependent transmittance (measured at the temperature range of 0 - 90°C, with a heating/cooling rate of 10 °C/min) of the Sn-W co-doped VO₂ samples at a wavelength 2500 nm: (a) S8; (b) S9.