Enantiospecific generation and trapping reactions of aryne atropisomers

Yun-Long Wei, Guillaume Dauvergne, Jean Rodriguez*, Yoann Coquerel*

Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille (France)

Supporting Information

Synthetic procedures and characterization data	
- General information and complementary optimization studies	S2
- Procedures and characterization data for all new compounds	S5
Computational studies	
- Aryne atropisomers 2a (R = Me) and 2c: geometries and configurational stabilitiesS	33
- 7,8-[5]helicynes: geometry and configurational stability S	37
- 1,2-Elimination vs thia-Fries rearrangement from Kobayashi-type precursors S	38
- Cartesian coordinates of all stationary pointsS	39
Copies of NMR spectra and HPLC chromatograms, CD spectroscopy	
- copies of NMR spectraS	51
- copies of HPLC chromatogramsS	94
- VCD and ECD spectroscopic analyses of 3c	22

Synthetic procedures and characterization data

General information and Complementary optimization studies

Reactions were generally carried out under an argon atmosphere in oven-dried reaction vessels in anhydrous solvents. All reagents were weighed and handled in air at room temperature unless otherwise mentioned, and all commercially available reagents and solvents were used as received unless otherwise mentioned. Anhydrous methanol was obtained by refluxing over magnesium turning and then distilled. Anhydrous hexane was obtained by refluxing over the benzophenone sodium dianion (purple color) and then distilled. Anhydrous dichloromethane, diethyl ether, tetrahydrofuran and toluene were dried by filtration over solid dehydrating agents using a commercial solvent purification system. Anhydrous acetonitrile and dimethylformamide were obtained directly from commercial sources. The reactions were monitored by TLC visualized by UV (254 nm) and/or with an ethanolic solution of *p*-anisaldehyde and sulfuric acid. Purifications were routinely performed using flash chromatography with 40-63 μ m silica gel generally eluted with a mixture ethyl acetate/petroleum ether (bp 40-60°C) or ethyl acetate/cyclohexane. NMR data were generally recorded in deuterated chloroform using as internal standards the residual chloroform signal for ¹H NMR (δ = 7.26 ppm) and the deuterated solvent signal for ¹³C NMR $(\delta = 77.16 \text{ ppm})$. Chemical shifts (δ) are in ppm, coupling constants (J) are in Hertz (Hz) and the classical abbreviations are used to describe the signal multiplicities. Melting points were measured with an air-flow apparatus. Specific rotations were recorded at 25 °C and 589 nm. The ratios of enantiomers were determined by HPLC analyses at 25 °C using chiral stationary phases at the ChirBase platform (see http://chirbase.u-3mrs.fr). High-resolution mass spectra were recorded in triplicate at the Spectropole (http://fr-chimie.univamu.fr/spectropole//). Circular dichroism spectroscopy was performed at the Spectropole (http://fr-chimie.univ-amu.fr/spectropole//)

The so-called Soós's quinine thiourea catalyst was prepared according to the procedure described by Soós,¹ and the known racemic and enantio-enriched bromophenol (aS)-**3a** was prepared as described by Wang and co-workers, using 15 mol% of the Soós catalyst, with similar yields and enantioselectivity.²

All molecules in the main text and this document are represented with their correct and verified absolute configuration.

A selection of results from the optimization study is presented in Table S1.

⁽¹⁾ Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalyst. *Org. Lett.* **2005**, *7*, 1967–1969.

⁽²⁾ Yu, C.; Huang, H.; Li, X.; Zhang, Y.; Wang, W. Dynamic Kinetic Resolution of Biaryl Lactones via a Chiral Bifunctional Amine Thiourea-Catalyzed Highly Atropo- enantioselective Transesterification. J. Am. Chem. Soc. 2016, 138, 6956–6959.

RO ₂ C O-S-R' O X	(10 equiv) conditions	RO ₂ C	+	RO ₂ C OH O S ^S B ³
$\begin{array}{l} \textbf{4a: X = SiMe_3, R' = CF_3} \\ \textbf{4b: X = SiMe_3, R' = 4-NO_2-C_6H_4} \\ \textbf{4c: X = SiMe_3, R' = 4-CH_3-C_6H_4} \\ \textbf{5a: X = Br, R' = CF_3} \\ \textbf{5b: X = I, R' = CF_3} \end{array}$	R =OBn OBn	dr = 1:1 6a		$\begin{array}{l} \mathbf{O} \\ \mathbf{7a:} \ \mathbf{R'} = \mathbf{CF}_3 \\ \mathbf{7b:} \ \mathbf{R'} = 4 \cdot \mathbf{NO}_2 \cdot \mathbf{C}_6 \mathbf{H}_4 \\ \mathbf{7c:} \ \mathbf{R'} = 4 \cdot \mathbf{CH}_3 \cdot \mathbf{C}_6 \mathbf{H}_4 \end{array}$
HO O U SiMe ₃	(10 equiv) conditions	HO	+	HO OH S CF ₃
4d		dr = 1.2:1 6m		7d

Table S1. Highlights of the optimization study.

1.			1.1.1	
entry	precursor	conditions	yield of 6 ^[a]	ratio 6 : / ^{10]}
1	rac- 4a	TBAF (3 equiv), CH₃CN, 25 °C, 0.5 h	42%	1:1
2	rac- 4a	TBAF (3 equiv), THF, 25 °C, 0.5 h	43%	1:1
3	rac- 4a	TBAF (3 equiv), hexane, 25 °C, 3 h	40%	1.7:1
4	rac- 4a	KF / 18-crown-6 (1.5 equiv), THF, 25 °C, 12 h	35%	1:1.3
5	rac- 4a	KF / 18-crown-6 (1.5 equiv), hexane, 25 °C, 72 h	58%	2:1
6	rac- 4a	CsF (3 equiv), CH₃CN, 30 ºC, 3 h	30%	1:1.4
7	rac- 4a	CsF (3 equiv), CH₃CN, 0 ºC, 8 h	41%	1:1
8	rac- 4a	CsF (3 equiv), PhCN, 20 °C, 12 h	nr	nd
9	rac- 4a	CsF (3 equiv), <i>t</i> BuCN, 20 °C, 12 h	nr	nd
10	rac- 4a	CsF (3 equiv), DMF, 20 °C, 24 h	21%	1:3.4
11	rac- 4b	CsF (3 equiv), CH₃CN, 20 ºC, 24 h	<10%	< 1:5, 43% ^[c]
12	rac- 4c	CsF (3 equiv), CH₃CN, 20 ºC, 72 h	<2%	< 1:30, 54% ^[c]
13	rac- 4d	CsF (3 equiv), CH₃CN, 20 ºC, 12 h	37%	1.1:1, 33% ^[c]
14	rac- 5a	Mg turnings, THF, 65 °C under microwaves, 1 h	<5%	nd
15	rac -5a	Mg turnings, THF, 80 °C under microwaves, 2 h	22%	> 30:1
16	rac- 5a	Mg turnings, THF, 80 °C under microwaves, 8 h	60%	> 30:1

17	rac- 5b	<i>i</i> PrMgCl (2 equiv), hexane, -30 °C, 24 h	nr	nd
18	rac- 5b	MeMgCI (2 equiv), hexane, -30 °C, 24 h	nr	nd
19	rac- 5b	MeMgCl (2 equiv), THF, -10 °C, 24 h	<5%	nd
20	rac- 5b	MeMgCl (3 equiv), hexane, 30 °C, 24 h	<15%	>30:1
21	rac- 5b	Me ₃ SiCH ₂ MgCl (2 equiv), hexane, -30 °C, 24 h	nr	nd
22	rac- 5b	Me ₃ SiCH ₂ MgCl (14 equiv), Et ₂ O, 0 °C, 3 h	85%	> 50:1

[a] Isolated yield after purification. [b] Determined by ¹H NMR analysis from the crude reaction mixtures. [c] Isolated yield of **7** after purification. nr = no reaction, nd = not determined.

Scheme S1. Highlights of the syntheses of 3b (top), 5c and 5b (bottom).

A solution of TiCl₄ (2.0 mL, 18.2 mmol) and dichloromethyl(methyl)ether (0.82 mL, 9.1 mmol) in anhydrous dichloromethane (10 mL) was stirred at 0 °C for 15 min. A solution of the 3-iodonaphthalen-2-ol (9, 2.43 g, 9.0 mmol) in CH₂Cl₂ (30 mL) was added dropwise over 1 hour, the reaction mixture was warmed to room temperature and stirred for 14 h, whereupon 1 N HCl (10 mL) was added under vigorous stirring. The aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL), and the combined organic layers were dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude product. This material was purified by flash chromatography eluted with hexane/EtOAc = 20:1 to afford the pure product as a white solid (**10**, 2.09 g, 78%). **HRMS** (ESI+) *m/z* calcd for C₁₁H₈IO₂⁺ [M+H]⁺ 298.9563, found 298.9567; ¹**H NMR** (400 MHz, CDCl₃) δ 14.00 (s, 1H), 10.69 (s, 1H), 8.56 (s, 1H), 8.35 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.69 (ddd, *J* = 7.6, 7.2, 0.8 Hz, 1H), 7.48 (ddd, *J* = 7.8, 7.3, 1.0 Hz, 1H); ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 193.0 (CH), 162.9 (C), 148.3 (CH), 132.8 (C), 129.8 (CH), 129.5 (C), 128.7 (CH), 125.3 (CH), 118.7 (CH), 111.3 (C), 87.8 (C).

To an ethanolic solution (30 mL) of **10** (3.50 g, 11.7 mmol) and Meldrum's acid (1.72 g, 11.9 mmol) was added pyridine (0.2 mL, 2.5 mmol) and the mixture was refluxed for 4 h. The yellow solid formed during the reaction was filtered off to give directly the desired product (**11**, 1.89 g, 44%) requiring no additional purification. **Mp**: 284–286 °C (amorphous); **HRMS** (ESI+) *m/z* calcd for C₁₄H₈IO₄⁺ [M+H]⁺ 366.9462, found 366.9456; ¹H NMR (400 MHz, *d6*-DMSO) δ 13.39 (broad s, 1H), 9.27 (s, 1H), 8.85 (s, 1H), 8.54 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 8.1 Hz, 1H), 7.76 (dd, *J* = 7.6, 7.5 Hz, 1H), 7.64 (dd, *J* = 7.6, 7.5 Hz, 1H); ¹³C{¹H} NMR (101 MHz, *d6*-DMSO) δ 164.0 (C), 156.2 (C), 153.1 (C), 144.4 (CH), 143.5 (CH), 131.1 (C), 129.2 (CH), 128.8 (C), 128.0 (CH), 126.8 (CH) 122.3 (C), 117.9 (C), 112.5 (C), 84.5 (CH).

A mixture of the carboxylic acid **11** (365 mg, 1.00 mmol), (*E*)-2-pentenal (147 μ L, 1.5 mmol) and (*S*)-diphenylprolinol(trimethylsilyl) ether (0.20 mmol, 65 mg) was stirred in 5 mL

chloroform at 40 °C for 3 h. Then, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 480 mg, 2.1 mmol) was added to the reaction mixture that was stirred for an additional 8 h at 40 °C. Silica gel (1.2 g) was added to the cooled reaction mixture and all volatiles were removed under vacuum. Purification of the resulting material by flash chromatography eluted with hexane/dichloromethane/diethyl ether 20:4:1 afforded the Bringmann's lactone as a white solid (**12**, 279 mg, 70%). **Mp** 220–221 °C (amorphous); **HRMS** (ESI+) *m/z* calcd for $C_{19}H_{14}IO_2^+$ [M+H]⁺ 401.2229, found 401.2229; ¹H **NMR** (400 MHz, CDCl₃) δ 8.46 (s, 1H), 8.13 (s, 1H), 7.80 (d, *J* = 8.3 Hz, 1H), 7.72 (d, *J* = 8.3 Hz, 1H), 7.55–7.45 (m, 3H), 2.53 (s, 3H), 2.28 (s, 3H); ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 161.7 (C), 147.8 (C), 140.1 (CH), 139.1 (CH), 139.0 (C), 135.9 (C), 132.2 (C), 131.5 (C), 129.2 (CH), 128.2 (CH), 127.3 (CH), 127.2 (CH), 126.6 (CH), 125.8 (CH), 124.7 (C), 114.7 (C), 83.9 (C), 23.6 (CH₃), 21.2 (CH₃).

A mixture of the lactone 12 (40 mg, 0.10 mmol), 1,3-bis(benzyloxy)propan-2-ol (33 mg, 0.12 mmol) and the Soós quinine catalyst (9 mg, 0.015 mmol) in 1.0 mL trifluorotoluene was stirred for 4 days at 23 °C, concentrated, and directly purified by silica gel chromatography, eluted with hexane/EtOAc = 20:1 to afford 3b (54.3 mg, 81% yield) as a colorless oil. HRMS (ESI+) *m/z* calcd for C₃₆H₃₇NIO₅ [M+NH₄]⁺ 690.1711, found 690.1710; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.67 (s, 1H), 7.52 (dd, J = 7.0, 2.4 Hz, 1H), 7.32–7.11 (m, 11H), 7.08– 7.02 (m, 2H), 6.92-6.90 (m, 1H), 5.29 (s, 1H), 4.93 (p, J = 5.6 Hz, 1H), 4.30 (broad s, 2H), 4.07 (broad s, 2H), 3.15 (dd, J = 10.5, 4.7 Hz, 1H), 3.07 (dd, J = 10.5, 5.9 Hz, 1H), 2.92 (dd, J = 10.3, 5.4 Hz, 1H), 2.68 (dd, J = 10.3, 5.8 Hz, 1H), 2.38 (s, 3H), 1.81 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.0 (C), 148.3 (C), 139.4 (C), 138.8 (C), 138.3 (C), 138.2 (CH), 138.1 (C), 135.2 (CH), 133.4 (C), 132.9 (C), 130.8 (C), 130.4 (C), 129.4 (CH), 128.4 (2CH), 128.4 (2CH), 127.7 (2CH), 127.7 (CH), 127.6 (CH), 127.6 (2CH), 127.2 (CH), 127.0 (CH), 124.4 (CH), 124.1 (CH), 120.6 (C), 87.1 (C), 73.2 (CH₂), 73.0 (CH₂), 71.8 (CH), 68.5 (CH₂), 68.1 (CH₂), 21.2 (CH₃), 19.9 (CH₃); **HPLC** Chiralpak IF column, heptane/ethanol = 90:10, 1 mL/min, 220 nm, retention time: t_{major} = 8.74 min, t_{minor} = 11.73 min, 90% ee; Specific **rotation** $[\alpha]_{D^{25}} = 4.6$ (c = 1.0, CHCl₃). Repeating this experiment with minor variations at various scales (up to 2 g) consistently afforded 3b in 40-81% yield with 75-91% ee. The absolute configuration of the major enantiomer of **3b** was determined as (aS) by comparison of the HPLC data and chiroptical properties of the products 6a derived from 3a and 3b (see Schemes 2 and 3).

To a solution of 3a (190 mg, 0.304 mmol) in THF (3.0 mL) was added hexamethyldisilazane (0.13 mL, 0.62 mmol) at room temperature and the resulting mixture was stirred 2 h at 60 °C. After evaporating the solvent and HMDS under reduced pressure, the residue was dissolved in THF (3.0 mL) and the resulting solution was cooled down to -100 °C. n-BuLi (2.5 M in hexanes, 0.24 mL, 0.60 mmol) was slowly added at -100 °C and the temperature was allowed to warm to -80 °C over 20 min. After cooling to -100 °C again, Tf₂O (0.11 mL, 0.65 mmol) was added dropwise to the reaction mixture, and the stirring was continued until the temperature reached -65 °C (20 min). Then, 5 mL of a cold saturated aqueous solution of NaHCO₃ were added to the reaction mixture that was allowed to warm to room temperature. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluted with petroleum ether/EtOAc = 40:1 to afford 4a (115 mg, 50%) as a colorless oil. HRMS (ESI+) m/z calcd for C₄₀H₄₅NF₃O₇SSi⁺ [M+NH₄]⁺ 768.2633, found 768.2633; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.85 (m, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.36–7.19 (m, 13H), 5.04 (p, J = 5.0 Hz, 1H), 4.37 (s, 2H), 4.30 (s, 2H), 3.36 (dd, J = 10.2, 5.5 Hz, 1H), 3.29 (dd, J = 10.3, 5.0 Hz, 1H), 3.24 (dd, J = 10.3, 5.2 Hz, 1H),3.06 (dd, J = 10.3, 5.2 Hz, 1H), 2.47 (s, 3H), 1.90 (s, 3H), 0.48 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.1 (C), 147.5 (C), 139.2 (C), 138.5 (C), 138.3 (2C), 137.9 (CH), 135.1 (CH), 134.4 (C), 132.5 (C), 132.1 (C), 132.0 (C), 131.2 (C), 130.9 (C), 129.5 (CH), 128.4 (2CH), 128.3 (2CH), 128.3 (CH), 127.7 (CH), 127.6 (2CH), 127.6 (CH), 127.6 (2CH), 127.6 (CH), 126.8 (CH), 126.3 (CH), 118.1 (q, ${}^{1}J_{C-F}$ = 320.7 Hz, CF₃), 73.1 (CH₂), 73.0 (CH₂), 71.5 (CH), 68.4 (CH₂), 68.3 (CH₂), 21.2 (CH₃), 20.2 (CH₃), 0.4 (3CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -74.0; **HPLC**: (S,S) Whelk-O1, heptane/isopropanol = 95:5, 1 mL/min, 220 nm, retention time: $t_{major} = 10.61 \text{ min}, t_{minor} = 12.48, 92\% ee;$ Specific rotation $[\alpha]_D^{25} = 12.3$ (c = 1.00. CHCl₃).

To a solution of *ortho*-bromonaphthol *rac*-**3a** (190 mg, 0.304 mmol) in THF (3.0 mL) was added hexamethyldisilazane (0.13 mL, 0.62 mmol) at room temperature and the resulting mixture was stirred 2 h at 60 °C. After evaporating the solvent and HMDS under reduced pressure, the residue was dissolved in THF (3.0 mL) and the resulting solution was cooled down to -100 °C. *n*-BuLi (2.5 M in hexanes, 0.24 mL, 0.60 mmol) was slowly added at -100 °C and the temperature was allowed to warm to -65 °C over 30 min. Then, 5 mL of a cold

saturated aqueous solution of NaHCO₃ were added to the reaction mixture that was allowed to warm to room temperature. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluted with petroleum ether/EtOAc = 20:1 to afford desired ortho-trimethylsilylnaphthol (18, 121 mg, 65%) as a white solid. Mp 94–96 °C (amorphous); **HRMS** (ESI+) m/z calcd for C₃₉H₄₆NO₅Si⁺ [M+NH₄]⁺ 636.3140, found 636.3137; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.74–7.69 (m, 2H), 7.37 (s, 1H), 7.31– 7.12 (m, 12H), 6.99-6.97 (m, 1H), 5.01 (p, J = 5.6 Hz, 1H), 4.93 (s, 1H), 4.36-4.23 (m, 2H), 4.19–4.05 (m, 2H), 3.16–3.03 (m, 2H), 2.93 (dd, J = 10.3, 5.7 Hz, 1H), 2.61 (dd, J = 10.3, 5.8 Hz, 1H), 2.46 (s, 3H), 1.89 (s, 3H), 0.36 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.5 (C), 154.2 (C), 140.1 (C), 138.8 (C), 138.2 (C), 135.7 (CH), 135.1 (CH), 134.2 (C), 134.1 (C), 130.2 (C), 129.2 (CH), 128.8 (C), 128.4 (C), 128.3 (2CH), 128.3 (2CH), 128.2 (CH), 127.6 (2CH), 127.6 (2CH), 127.6 (CH), 127.5 (CH), 127.5 (CH), 126.9 (CH), 123.9 (CH), 123.1 (CH), 118.1 (C), 73.0 (CH₂), 72.7 (CH₂), 71.7 (CH), 68.5 (CH₂), 68.1 (CH₂), 21.2 (CH₃), 19.9 (CH₃), -0.7 (3CH₃)

To a stirred solution of rac-18 (74 mg, 0.12 mmol) in dry MeCN (1.0 mL) at 23 °C was added K₂CO₃ (32 mg, 0.23 mmol). After 5 min, 4-nitrobenzenesulfonyl chloride (53 mg, 0.24 mmol) was added. The reaction mixture was stirred for 24 h at 23 °C and diethyl ether (5 mL) and water (5 mL) were added. The organic phase was separated and was successively washed with water and brine and dried over anhydrous MgSO₄. Filtration and concentration of the filtrate under vacuum afforded the crude product that was purified by silica gel chromatography eluted with petroleum ether/EtOAc = 10:1 to afford rac-4b (34 mg, 35%) as a colorless oil. HRMS (ESI+) m/z calcd for C₄₅H₄₉N₂O₉SSi⁺ (M+NH₄)⁺ 821.2923, found 821,2913: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s. 1H), 7.94-7.88 (m. 2H), 7.82 (d. J = 8.1 Hz. 1H), 7.65–7.55 (m, 2H), 7.41 (ddd, J = 8.1, 6.9, 1.0 Hz, 2H), 7.36–7.20 (m, 10H), 7.11 (d, J = 4.0 Hz, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.93 (s, 1H), 5.03 (p, J = 5.2 Hz, 1H), 4.39 (s, 2H), 4.33 (s, 2H), 3.38 (dd, J = 10.4, 6.0 Hz, 1H), 3.25 (dd, J = 10.4, 5.1 Hz, 1H), 3.19 (dd, J = 10.3, 4.9 Hz, 1H), 2.95 (dd, J = 10.4, 5.4 Hz, 1H), 2.13 (s, 3H), 1.81 (s, 3H), 0.57 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.2 (C), 149.5 (C), 149.4 (C), 143.6 (C), 139.0 (C), 138.5 (C), 138.1 (C), 138.1 (C), 137.5 (CH), 134.6 (CH), 134.1 (C), 133.9 (C), 132.4 (C), 131.8 (C), 131.7 (C), 129.5 (C), 128.9 (CH), 128.5 (2CH), 128.5 (2CH), 128.5 (CH), 127.9 (2CH), 127.8 (CH), 127.8 (CH), 127.8 (2CH), 127.7 (2CH), 127.5 (CH), 126.3 (CH), 125.8 (CH), 123.6 (2CH), 73.2 (CH₂), 73.2 (CH₂), 71.7 (CH), 68.5 (CH₂), 68.3 (CH₂), 20.8 (CH₃), $20.2 (CH_3), 0.4 (3CH_3)$

Following the same protocol as above with tosyl chloride (46 mg, 0,24 mmol) instead of 4nitrobenzenesulfonyl chloride afforded *rac*-**4c** (71 mg, 77%) as a colorless oil. **HRMS** (ESI+) *m*/z calcd for C₄₆H₅₂NO₇SSi⁺ [M+NH₄]⁺ 790.3228, found 790.3225; ¹H **NMR** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.39–7.34 (m, 1H), 7.33–7.17 (m, 14H), 7.11–7.08 (m, 1H), 6.97–6.90 (m, 3H), 5.00 (p, *J* = 5.4 Hz, 1H), 4.41–4.32 (m, 2H), 4.26 (s, 2H), 3.32 (dd, *J* = 10.3, 5.6 Hz, 1H), 3.18 (dd, *J* = 10.3, 5.1 Hz, 1H), 3.11 (dd, *J* = 10.3, 5.4 Hz, 1H), 2.88 (dd, *J* = 10.3, 5.5 Hz, 1H), 2.34 (s, 3H), 2.23 (s, 3H), 1.81 (s, 3H), 0.54 (s, 9H); ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 166.5 (C), 149.3 (C), 143.0 (C), 138.8 (C), 138.3 (C), 138.3 (C), 137.6 (C), 137.2 (CH), 135.6 (C), 134.4 (CH), 134.3 (C), 134.2 (C), 134.1 (C), 132.0 (C), 131.5 (C), 130.1 (C), 129.0 (2CH), 128.4 (2CH), 128.4 (2CH), 128.3 (CH), 127.7 (2CH), 127.6 (2CH), 127.6 (2CH), 127.6 (CH), 127.1 (CH), 126.6 (2CH), 125.9 (CH), 125.5 (CH), 73.1 (CH₂), 73.0 (CH₂), 71.4 (CH), 68.4 (CH₂), 68.3 (CH₂), 21.8 (CH₃), 21.1 (CH₃), 20.3 (CH₃), 0.5 (3CH₃).

To a solution of rac-4a (75 mg, 1.0 mmol) in dichloromethane (2.0 mL) at 0 °C was slowly added a solution of DIBAL-H (1M in hexane, 4 mL, 4 mmol) and the reaction mixture was warmed to 23 °C and maintained at that temperature for 2 h. Then, aqueous 1N HCI (4 mL) was added under vigorous stirring and the layers were decanted and separated. The aqueous layer was extracted twice with EtOAc. The combined organic layers were washed successively with water and brine and dried over anhydrous MgSO₄, Filtration and concentration of the filtrate under vacuum afforded the crude product that was purified by silica gel chromatography eluted with petroleum ether/EtOAc = 10:1 to afford rac-4d (46 mg, 95%) as a colorless oil. **HRMS** (ESI+) m/z calcd for C₂₃H₂₉NO₄F₃SSi⁺ [M+NH₄]⁺ 500.1533, found 500.1530; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.39 (s, 1H), 7.25 (d, J = 9.7 Hz, 1H), 7.11 (s, 1H), 4.24 (d, J = 13.2 Hz, 1H), 4.15 (d, J = 13.3 Hz, 1H), 2.44 (s, 3H), 1.89 (s, 3H), 0.51 (s, 9H), OH resonance not detected; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 148.3 (C), 141.0 (C), 139.0 (C), 138.4 (CH), 137.6 (C), 134.2 (C), 132.9 (C), 132.4 (C), 130.3 (CH), 129.8 (C), 128.5 (CH), 128.1 (CH), 128.1 (C), 127.2 (CH), 126.4 (CH), 126.3 (CH), 118.2 (q, ${}^{1}J_{C-F}$ = 320.9 Hz, CF₃), 63.0 (CH₂), 21.4 (CH₃), 19.9 (CH₃), 0.4 (3CH₃); ¹⁹F NMR (376 MHz, CDCI₃) δ -73.9.

To a solution of rac-3a (189 mg, 0.302 mmol) in THF (5.0 mL) at 23 °C was added in order di(isopropyl)ethyl amine (0.10 mL, 0.60 mmol) and Tf₂O (0.10 mL, 0.60 mmol) and the reaction was stirred 12 h at 23 °C. After addition of water (10 mL), the layers were decanted, and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to afford rac-5a (148 mg, 65%) as a colorless oil. HRMS (ESI+) m/z calcd for C₃₇H₃₆NBrF₃O₇S⁺ [M+NH₄]⁺ 774.1342, found 774.1342; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.90 (s, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.39–7.20 (m, 11H), 7.17–7.13 (m, 2H), 5.07 (p, J = 5.3 Hz, 1H), 4.4.1 (s, 2H), 4.22 (s, 2H), 3.34 (dd, J = 10.4, 5.6 Hz, 1H), 3.28 (dd, J = 10.4, 5.1 Hz, 1H), 3.21 (dd, J = 10.5, 4.9 Hz, 1H), 2.98 (dd, J = 10.4, 5.5 Hz, 1H), 2.48 (s, 3H), 1.91 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.1 (C), 141.2 (C), 139.2 (C), 139.0 (C), 138.2 (C), 138.1 (C), 135.4 (CH), 134.1 (C), 133.1 (CH), 133.0 (C), 132.3 (C), 131.6 (C), 130.0 (C), 129.9 (CH), 129.7 (CH), 128.4 (2CH), 128.4 (2CH), 127.8 (CH), 127.7 (CH), 127.7 (2CH), 127.6 (CH), 127.6 (2CH), 127.3 (CH), 126.5 (CH), 123.6 (CH), 118.3 (q, ${}^{1}J_{C-F}$ = 322.3 Hz, CF₃), 113.6 (C), 73.1 (CH₂), 73.0 (CH₂), 71.9 (CH), 68.3 (CH₂), 68.3 (CH₂), 21.2 (CH₃), 20.1 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.6.

To a stirred solution of **3b** (726 mg, 1.08 mmol, 90 % *ee*) in dichloromethane (10 mL) at 0 °C was added in order *N*-phenyl-bis(trifluoromethanesulfonimide) (785 mg, 2.20 mmol), triethylamine (0.30 mL, 2.2 mmol) and 4-(dimethylamino)pyridine (68 mg, 0.56 mmol). The reaction mixture was allowed to slowly warm to room temperature. After 13 h, volatiles were removed by rotary evaporation under vacuum and the residue was dissolved in EtOAc and washed three time with water and once with brine. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude material was filtered on a short pad of silica gel eluted with petroleum ether/ethyl acetate = 40:1 to afford **5b** (867 mg, quant., 90% *ee*) as a colorless oil. **HRMS** (ESI+) *m/z* calcd for C₃₇H₃₆NF₃IO₇S⁺ [M+NH₄]⁺ 822.1204, found 822.1199; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.87 (s, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.46–7.42 (m, 1H), 7.35–7.13 (m, 13H), 5.06 (p, *J* = 5.3 Hz, 1H), 4.40 (s, 2H), 4.20 (s, 2H), 3.33 (dd, *J* = 10.4, 5.6 Hz, 1H), 2.45 (s, 3H), 1.89 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.0 (C), 143.7 (C), 140.7 (CH), 139.2 (C), 139.0 (C), 138.3 (C), 138.2 (C), 135.3 (CH), 133.7 (C), 133.4 (C), 133.1 (C), 131.8 (C), 130.3 (C), 129.8 (C), 128.4 (2CH), 128.4

(2CH), 127.8 (CH), 127.7 (2CH), 127.6 (CH), 127.6 (CH), 127.4 (2CH), 127.1 (CH), 126.6 (CH), 118.4 (q, ${}^{1}J_{C-F}$ = 321.6 Hz, CF₃), 116.8 (C), 86.2 (C), 73.2 (CH₂), 73.1 (CH), 71.8 (CH₂), 68.4 (C), 68.3 (C), 21.3 (CH₃), 20.2 (CH₃); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -72.0; **HPLC** Chiralpak IE, heptane/ethanol = 90:10, 1 mL/min, 220 nm, t_{major} = 6.95 min, t_{minor} = 6.33 min, 90% *ee*; **Specific rotation** [α]_D²⁵ = 18.4 (*c* = 1.0, CHCl₃).

To a solution of 1,3-dimethyl-6H-benzo[b]naphtho[1,2-d]pyran-6-one³ (500 mg, 1.82 mmol) and N-bromosuccinimide (340 mg, 1.91 mmol) in dichloromethane (20 mL) was added silver bis(trifluoromethanesulfonyl)imide (35 mg, 0.091 mmol) under an inert atmosphere (glovebox). The reaction mixture was stirred at room temperature (23–25 °C) for 24 h. leading to a dark red suspension. Then, the mixture was diluted in EtOAc and washed three times with water and once with brine. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by flash column chromatography on silica gel eluted with petroleum ether/CHCl₃ =1:1 to afford the desired brominated lactone (13, 592 mg, 92%) as a light yellow solid. Mp 186–187 °C (CHCl₃); HRMS (ESI+) m/z calcd for C₁₉H₁₄O₂Br⁺ [M+H]⁺ 353.0172, found 353.0166; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.69 (ddd, J = 8.5, 7.5, 1.2 Hz, 1H), 7.60 (ddd, J = 8.8, 7.7, 1.4 Hz, 2H), 7.26 (s, 1H), 2.58 (s, 3H), 2.32 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.5 (C), 150.5 (C), 140.7 (C), 136.5 (C), 136.4 (C), 135.1 (C), 129.5 (CH), 129.1 (CH), 128.7 (CH), 128.6 (CH), 128.4 (CH), 126.5 (CH), 125.4 (C), 124.1 (CH), 121.9 (C), 117.8 (C), 116.3 (CH), 27.1 (CH₃), 24.4 (CH₃).

Solid 1,3-dimethyl-2-bromo-*6H*-benzo[*b*]naphtho[1,2-*d*]pyran-6-one (**13**, 562 mg, 1.59 mmol) was added to a 30% KOH ethanolic solution (30 mL). The mixture was heated at reflux until no starting material can be detected by TLC analysis (1 hour). Then, the solution was cooled down to 0°C and concentrated hydrochloric acid was slowly added until pH = 1. The yellow precipitate that formed upon acidification was filtered off, triturated with water and dried under vacuum to give the desired biaryl **14** (585 mg, 99%) requiring no additional purification. **Mp** 192–193 °C (amorphous); **HRMS** (ESI+) *m*/*z* calcd for C₁₉H₁₆O₃Br⁺ [M+H]⁺ 371.0277, found 371.0273; ¹H NMR (400 MHz, (CD₃)₂CO) δ 8.07 (d, *J* = 8.7 Hz, 1H), 8.04

⁽³⁾ Bringmann, G.; Hartung, T.; Gobel, L.; Schupp, O.; Peters, K.; von Schnering, H. G. Synthesis and Structure of Benzonaphthopyrans; Helically Distorted, Bridged Biaryls with Different Steric Hindrance at the Axis. *Liebigs Ann. Chem.* **1992**, 769–775.

(d, J = 9.0 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.61 (ddd, J = 8.5, 7.3, 1.7 Hz, 1H), 7.50–7.41 (m, 2H), 6.85 (s, 1H), 2.43 (d, J = 0.3 Hz, 3H), 1.91 (s, 3H); ¹³C{¹H} NMR (75 MHz, (CD₃)₂CO) δ 168.6 (C), 154.5 (C), 138.5 (C), 138.2 (C), 138.0 (C), 136.1 (C), 133.4 (C), 130.2 (C), 129.0 (CH), 128.7 (CH), 128.4 (CH), 127.7 (CH), 127.4 (CH), 127.1 (CH), 126.2 (C), 117.9 (C), 116.3 (CH), 24.2 (CH₃), 21.5 (CH₃).

2-naphthalenecarboxylic acid 14 (156 mg, 0.42 mmol) was dissolved in The dichloromethane (10 mL) and the solution was cooled down to 0 °C with an ice bath. A solution of N-iodosuccinimide (99 mg, 0.44 mmol) in dichloromethane (10 mL) was added dropwise at 0 °C, leading to a red solution. When the starting material is no longer detectable by TLC analysis, 10 mL of saturated Na₂S₂O₃ aqueous solution were added under vigorous stirring and the layers were decanted and separated. The organic layer was washed successively with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated to afford the crude product. This material was purified by flash column chromatography on silica gel eluted with petroleum ether/EtOAc = 2:1 to afford the desired iodinated product 15 (190 mg, 91%) as a yellow solid. Mp 204–205 °C (amorphous); HRMS (ESI+) m/z calcd for C₁₉H₁₅O₃Brl⁺ [M+H]⁺ 496.9244, found 496.9246; ¹H NMR (400 MHz, (CD₃)₂CO) δ 8.12–8.02 (m, 3H), 7.64 (ddd, J = 8.5, 6.9, 1.3 Hz, 1H), 7.50 (ddd, J = 8.8, 7.2, 1.4 Hz, 1H), 7.37 (ddd, J = 8.5, 1.2, 0.6 Hz, 1H), 2.85 (s, 3H), 1.90 (s, 3H); ¹³C{¹H} NMR (101 MHz, (CD₃)₂CO) δ 168.2 (C), 153.7 (C), 140.7 (C), 138.1 (C), 137.0 (C), 136.3 (C), 133.1 (C), 130.3 (C), 129.5 (CH), 129.2 (CH), 128.8 (CH), 128.2 (CH), 127.2 (CH), 127.0 (CH), 125.7 (C), 117.5 (C), 90.7 (C), 31.4 (CH₃), 22.0 (CH₃).

The iodinated phenol **15** (62 mg, 0.13 mmol) was dissolved in toluene (5 mL) and *para*toluenesulfonic acid (4.3 mg, 0.025 mmol) was added. The mixture was heated at reflux. When the starting material is no longer detectable by TLC analysis, 5 mL of saturated NaHCO₃ aqueous solution were added under vigorous stirring and the layers were decanted and separated. The aqueous layer was extracted with dichloromethane (15 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The resulting crude product was purified by flash column chromatography on silica gel eluted with petroleum ether/CHCl₃ = 1:1 to afford the iodinated lactone **16** (55 mg, 88%) as a white solid. **Mp** 176–177 °C (CHCl₃); **HRMS** (ESI+) *m/z* calcd for C₁₉H₁₃O₂Brl⁺ [M+H]⁺ 478.9138, found 478.9137; ¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.5 Hz, 1H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.86 (d, *J* = 8.5 Hz, 1H), 7.69 (ddd, *J* = 9.0, 8.0, 1.3 Hz, 1H), 7.60 (ddd, J = 8.7, 8.0, 1.4 Hz, 2H), 2.94 (s, 3H), 2.28 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.0 (C), 149.9 (C), 143.3 (C), 136.5 (C), 136.5 (C), 134.7 (C), 130.1 (CH), 129.2 (CH), 128.6 (CH), 128.6 (CH), 128.4 (CH), 126.8 (CH), 124.1 (C), 124.0 (CH), 121.1 (C), 118.2 (C), 88.5 (C), 31.2 (CH₃), 27.4 (CH₃).

The organocatalytic atroposelective opening of the above lactone was attempted under the conditions described above for the synthesis of **3b** (90% *ee*). The expected ester was obtained in 67% yield but only 73% *ee*. It was decided to prepare the corresponding racemic methyl ester **3c** and resolve it by HPLC techniques.

To a suspension of NaH (60% dispersion in oil, 92 mg, 2.3 mmol) in anhydrous Et₂O (20 mL) was added anhydrous methanol (94 mg, 2.94 mmol) at 0 °C and the mixture was stirred 30 min at this temperature. Then, a solution of lactone 16 (613 mg, 1.28 mmol) in Et₂O (20 mL) was added dropwise, and the mixture was stirred at room temperature until the starting material is no longer detectable by TLC analysis (30 min). The mixture was then hydrolyzed with 50 mL of aqueous NH₄Cl solution and extracted with Et₂O three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. Flash column chromatography on silica gel eluted with with pentane/EtOAc = 8:1 affords the corresponding biaryl (3c, 539 mg, 88% yield) as a white solid. The two atropisomers of 3c were separated by semi-preparative chiral HPLC (Chiralpak IG column, heptane/ethanol = 90:10, 1 mL/min, 254 nm) to provide highly enantio-enriched samples (>99.5% ee). Mp 68-70 °C (amorphous); HRMS (ESI+) m/z calcd for C₂₀H₁₇O₃Brl⁺ [M+H]⁺ 512.9382, found 512.9383; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 8.6 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.59 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.44 (ddd, J = 8.8, 7.3, 1.2 Hz, 1H), 7.39 (d, J = 8.6 Hz, 1H), 5.19 (s, 1H), 3.74 (s, 3H), 2.86 (s, 3H), 1.94 (s, 3H); ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 167.4 (C), 151.1 (C), 140.3 (C), 138.2 (C), 136.9 (C), 135.4 (C), 132.0 (C), 128.9 (C), 128.4 (CH), 128.3 (C), 128.1 (CH), 127.6 (CH), 126.6 (CH), 126.0 (CH), 123.7 (CH), 118.1 (C), 90.0 (C), 52.4 (CH₃), 31.3 (CH₃), 21.8 (CH₃). Specific rotation: for the first eluted atropisomer (aS)-3c $[\alpha]_{D}^{25}$ = +4.3 (c = 1.0, CHCl₃), for the second eluted atropisomer (*aR*)-**3c** $[\alpha]_{D}^{25} = -4.3$ (c = 1.0, CHCl₃).

In order to determine the absolute configuration of the first and second eluted atropisomers from the HPLC resolution, both atropisomers were submitted to vibrational circular dichroism (Figures S1) and electronic circular dichroism spectrocopies (Figure S2), and the experimental spectra were compared with the simulated spectra for the (aS)-3c. It was found that the first eluted atropisomer is (aS)-configured and that the second eluted is (aR)-configured. Full details are available at the end of this document. Products 5c, 5d, 6k, 6l, and 8 all derived from the second eluted enantiomer of 3c having an (aR) absolute configuration, which is consistent with the (aS) absolute configuration in 6k acertained by X-ray crystallography (see below, CCDC 2019279, note that the priority order in the Cahn–Ingold–Prelog convention is inverted in this case)

Figure S1. IR and VCD spectra measured in dichloromethane and calculated for *(aS)*-**3c** using SMD(CD₂Cl₂)/B3LYP/6-311+G(d,p)-MWB46 level.

Figure S2. UV-vis and ECD spectra measured in acetonitrile and calculated for (aS)-3c using SMD(CH₃CN)/B3LYP/6-311+G(d,p)-MWB46 level.

To a solution of (aR)-**3c** (120 mg, 0.23 mmol, >99.5% ee, (aR)-configured) in anhydrous dichloromethane (5 mL) was added pyridine (56 mg, 0.7 mmol) at 0 °C. To the resulting mixture was added Tf₂O (197 mg, 0.7 mmol) at this temperature and the reaction was monitored by TLC until the starting material is no longer detectable by TLC (1 h) whereupon a saturated aqueous NH₄Cl solution was added. The resulting mixture was extracted three times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered,

and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (pentane/EtOAc = 15:1) to afford **5c** (148 mg, quantitative) as a white solid. **Mp** 39–40 °C (amorphous); **HRMS** (ESI+) *m/z* calcd for C₂₁H₁₆O₅BrSF₃I⁺ [M+H]⁺ 643.8875, found 643.8875; ¹H NMR (400 MHz, CDCI₃) δ 8.14 (d, *J* = 8.7 Hz, 1H), 8.01 (d, *J* = 8.7 Hz, 1H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.60 (ddd, *J* = 8.5, 7.0, 1.2 Hz, 1H), 7.47 (ddd, *J* = 8.9, 7.2, 1.2 Hz, 1H), 7.31 (dd, *J* = 8.6, 0.8 Hz, 1H), 3.77 (s, 3H), 2.98 (s, 3H), 1.99 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 166.7 (C), 147.1 (C), 143.5 (C), 140.6 (C), 135.4 (C), 135.0 (C), 132.5 (C), 132.0 (C), 129.8 (CH), 128.4 (CH), 128.3 (CH), 128.3 (C), 127.7 (CH), 126.9 (C), 126.6 (CH), 126.1 (CH), 118.2 (q, ¹*J*_{C-F} = 322.2 Hz, CF₃), 94.1 (C), 52.5 (CH₃), 32.5 (CH₃), 22.8 (CH₃); ¹⁹F NMR (376 MHz, CDCI₃) δ -71.8; HPLC Lux-Amylose-1 column, heptane/isopropanol = 95:5, 1 mL/min, 254 nm, retention time: t_{minor} = 4.28 min, t_{major} = 5.11 min, 97.5% ee; **Specific rotation** [α]_D²⁵ = -17.1 (c = 1.0, CHCI₃).

5c, 97% ee

17, ee not measured

To a solution of **5c** (96 mg, 0.15 mmol, 97% *ee*) in anhydrous dichloromethane (5 mL) was slowly added DIBAL-H (1 M in hexane, 0.58 mmol) at 0 °C. Then the mixture was warmed to room temperature and monitored by TLC until no starting material is detectable by TLC analysis (30 min). The reaction was quenched by 1M HCl and extracted with EtOAc. The organic phase was washed with water, brine, and dried over Na₂SO₄. After concentration *in vacuo*, the residue was purified by flash column column chromatography on silica gel (pentane/EtOAc = 6:1) to provide a colorless oil (90 mg, 96%). **HRMS** (ESI+) *m/z* calcd for C₂₀H₁₉NO₄BrSF₃I⁺ [M+NH₄]⁺ 633.9191, found 633.9195; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.6 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.6 Hz, 1H), 7.50 (ddd, *J* = 8.4, 6.9, 1.2 Hz, 1H), 7.42 (ddd, *J* = 8.9, 7.0, 1.4 Hz, 1H), 7.19 (dd, *J* = 8.5, 0.6 Hz, 1H), 4.58 (d, *J* = 13.2 Hz, 1H), 4.49 (d, *J* = 13.2 Hz, 1H), 2.99 (s, 3H), 2.03 (s, 3H), 1.94 (broad s, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.0 (C), 144.1 (C), 141.2 (C), 138.2 (C), 133.3 (C), 131.7 (C), 131.4 (C), 130.2 (CH), 129.5 (C), 128.4 (CH), 127.4 (C), 127.2 (CH), 126.3 (CH), 125.7 (CH), 125.2 (CH), 118.1 (q, ¹*J*_{C-F} = 322.1 Hz, CF₃), 94.2 (C), 63.1 (CH₂), 32.5 (CH₃), 22.7 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -71.72.

17, ee not measured

To a solution of the above primary alcohol (**17**, 87 mg, 0.14 mmol) in 5 mL of anhydrous dichloromethane, 2,6-lutidine (32 mg, 0.3 mmol) and $tBuMe_2SiOTf$ (79 mg, 0.3 mmol) were added subsequently at 0 °C. Then the reaction was stirred at room temperature and monitored by TLC until no starting material is no longer detectable by TLC analysis (15 min). A saturated aqueous NH₄Cl solution was added and the organic compounds were extracted with EtOAc twice. The organic phase was washed with water, brine, and dried over Na₂SO₄.

After concentration, the residue was purified by flash column chromatography (pentane/EtOAc = 100:1) to afford the desired product (100 mg, 99%) as a colorless oil. **HRMS** (ESI+) *m/z* calcd for C₂₆H₃₀O₄BrSiSF₃I⁺ [M+H]⁺ 730.9792, found 730.9788; ¹H NMR (400 MHz, CDCI₃) δ 7.97 (d, *J* = 8.7 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.75 (d, *J* = 8.7 Hz, 1H), 7.47 (ddd, *J* = 8.5, 6.9, 1.2 Hz, 1H), 7.39 (ddd, *J* = 8.9, 7.0, 1.4 Hz, 1H), 7.22 (dd, *J* = 8.5, 0.7 Hz, 1H), 4.60 (d, *J* = 13.1 Hz, 1H), 4.49 (d, *J* = 13.1 Hz, 1H), 2.99 (s, 3H), 2.02 (s, 3H), 0.89 (s, 9H), 0.04 (s, 3H), 0.00 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 148.1 (C), 143.9 (C), 141.2 (C), 138.0 (C), 133.0 (C), 131.9 (C), 131.6 (C), 129.8 (CH), 129.1 (C), 128.4 (CH), 127.4 (C), 126.8 (CH), 126.0 (CH), 125.6 (CH), 125.2 (CH), 118.1 (q, ^{*1*}*J*_{C-F} = 322.1 Hz, CF₃), 94.5 (C), 63.4 (CH₂), 32.5 (CH₃), 26.0 (3CH₃), 22.9 (CH₃), 18.5 (C), -5.31 (CH₃), -5.34 (CH₃); ¹⁹F NMR (376 MHz, CDCI₃) δ -71.84; HPLC Lux-Amylose-1 column, heptane/isopropanol = 99.9:0.1, 1 mL/min, 254 nm, retention time: t_{minor} = 4.01 min, t_{major} = 4.52 min, 94% ee; Specific rotation [α]_D²⁵ = -14.32 (c = 1.0, CHCI₃).

This procedure corresponds to Scheme 3a. The optimized procedure for the synthesis of 6a is described below. A 10 mL round-bottom flask was charged at room temperature in this order with CsF (23 mg, 0.15 mmol), acetonitrile (1.0 mL), furan (39 μL, 0.54 mmol) and the silvlated aryne precursor 4a (40 mg, 0.053 mmol, 92% ee). The reaction mixture was stirred at 25 °C for 3 h and poured in a separating funnel containing water (10 mL) and ethyl acetate (10 mL). The layers were separated, the aqueous layer was extracted twice with ethyl acetate and the combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel eluted with petroleum ether/ethyl acetate = 200:1 to afford in order the two diastereomers of **6a** (dr = 1:1 as determined by the ¹H NMR analysis of the crude material, 13 mg, 42%, 91% ee for each diastereomer) as a colorless oil and the thia-Fries product **7a** (15.5 mg, 43%, 88% ee) as a colorless oil. Analytical samples of the two diastereomers of **6a** could be obtained by flash chromatography (pure fractions) facilitating the analyses. For **6a** (1st eluted diastereomer during the flash chromatography): colorless oil, **HRMS** (ESI+) *m*/*z* calcd for C₄₀H₄₀NO₅⁺ [M+NH₄]⁺ 614.2901, found 614.2901; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.67 \text{ (d, } J = 8.0 \text{ Hz}, 1\text{H}), 7.63 \text{ (s, 1H)}, 7.45 \text{ (s, 1H)}, 7.36-7.19 \text{ (m, 10H)},$ 7.11–7.12 (m, 4H), 6.74 (dd, J = 5.6, 1.8 Hz, 1H), 6.67 (dd, J = 5.6, 1.8 Hz, 1H), 5.75–5.73 (m, 1H), 5.18-5.16 (m, 1H), 4.89 (p, J = 5.8 Hz, 1H), 4.30-4.15 (m, 4H), 3.08 (dd, J = 10.4, 4.8 Hz, 1H), 2.83 (dd, J = 10.3, 5.3 Hz, 1H), 2.73 (dd, J = 10.5, 6.1 Hz, 1H), 2.68 (dd, J = 10.2, 6.0 Hz, 1H), 2.46 (s, 3H), 1.95 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.6 (C), 143.5 (C), 142.4 (C), 141.8 (CH), 141.0 (CH), 138.2 (C), 138.2 (C), 138.2 (C), 137.8 (C), 134.6 (CH), 133.8 (C), 132.7 (C), 132.0 (C), 131.3 (C), 129.7 (C), 128.5 (CH), 128.5 (2CH), 128.4 (2CH), 128.4 (CH), 127.8 (CH), 127.7 (2CH), 127.7 (CH), 127.6 (2CH), 126.3 (CH), 125.9 (CH), 125.9 (CH), 118.0 (CH), 82.2 (CH), 81.2 (CH), 73.0 (CH₂), 73.0 (CH₂), 71.3 (CH), 68.3 (CH₂), 67.8 (CH₂), 21.2 (CH₃), 20.1(CH₃); **HPLC** Chiralpak IE, heptane/ethanol = 80:20, 1 mL/min, 220 nm, t_{maior} = 7.69 min, t_{minor} = 8.48 min, 91% ee; Specific rotation

 $[\alpha]_{D}^{25} = 5.2$ (c = 1.0, CHCl₃). For **6a** (2nd eluted diastereomer during the flash chromatography): colorless oil, **HRMS** (ESI+) m/z calcd for C₄₀H₄₀NO₅⁺ [M+NH₄]⁺ 614.2901, found 614.2904; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s. 1H), 7.63 (d. J = 8 Hz, 1H), 7.41 (s. 1H), 7.36–7.07 (m, 14H), 6.95 (dd, J = 5.6, 1.8 Hz, 1H), 6.78 (dd, J = 5.6, 1.8 Hz, 1H), 5.68 (m, 1H), 5.37-5.28 (m, 1H), 5.04-4.98 (m, 1H), 4.28 (d, J = 11.6, 1H), 4.36 (d, J = 11.6, 1H),4.14 (d, J = 12.1 Hz, 1H), 4.11 (d, J = 12.1 Hz, 1H), 3.10 (dd, J = 7.8, 6 Hz, 1H), 3.08 (dd, J = 7.8, 6 Hz, 1H), 2.93 (dd, J = 10.4, 5.6 Hz, 1H), 2.68 (dd, J = 10.5, 6.1 Hz, 1H), 2.43 (s, 3H), 1.71 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ167.6 (C), 143.4 (C), 143.1 (C), 142.4 (CH), 141.1 (CH), 138.5 (C), 138.4 (C), 138.3 (C), 137.8 (C), 134.3 (CH), 133.7 (C), 132.3 (C), 132.0 (C), 131.4 (C), 129.7 (C), 128.7 (CH), 128.4 (2 CH), 128.3 (2CH), 128.3 (CH), 127.6 (2CH), 127.6 (2CH), 127.5 (CH), 127.5 (CH), 126.3 (CH), 125.9 (CH), 125.9 (CH), 117.9 (CH), 82.1 (CH), 81.0 (CH), 73.0 (CH₂), 72.9 (CH₂), 71.7 (CH), 68.5 (CH₂), 68.3 (CH₂), 21.2 (CH₃), 20.4 (CH₃); **HPLC**: Chiralpak IE, heptane/ethanol = 80:20, 1 mL/min, 220 nm; $t_{maior} = 10.58 \text{ min}, t_{minor} = 9.66 \text{ min}, 91\% \text{ ee};$ Specific rotation [α]_D²⁵ = -5.4 (*c* = 1.0, CHCl₃). For **7a**: **HRMS** (ESI+) *m*/*z* calcd for C₃₇H₃₇F₃NO₇S⁺ [M+NH₄]⁺ 696.2237, found 696.2238; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.86 (m, 2H), 7.65 (s, 1H), 7.34–7.12 (m, 14H), 5.03 (p, J = 5.2 Hz, 1H), 4.38 (m, 2H), 4.26 (m, 2H), 3.30 (dd, J = 10.5, 4.7 Hz, 1H), 3.26 (dd, J = 10.5, 5.7 Hz, 1H), 3.18 (dd, J = 10.4, 5.0 Hz, 1H), 3.03 (dd, J = 10.4, 5.6 Hz, 1H),2.47 (s, 3H), 1.90 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.4 (C), 149.0 (C), 138.7 (C), 138.6 (C), 138.3 (C), 138.0 (C), 138.0 (C), 135.3 (CH), 134.9 (CH), 131.7 (C), 131.4 (CH), 130.7 (C), 130.4 (CH), 129.6 (CH), 128.4 (2CH), 128.4 (2CH), 127.7 (2CH), 127.7 (2CH), 127.5 (2CH), 127.4 (C), 125.6 (C), 125.5 (CH), 124.8 (CH), 120.1 (q, ${}^{1}J_{CF}$ = 323.2 Hz, CF₃), 115.9 (C), 73.1 (CH₂), 73.0 (CH₂), 71.7 (CH), 68.3 (CH₂), 68.2 (CH₂), 21.2 (CH₃), 19.8 (CH₃); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -78.4.

This procedure corresponds to Entry 11 in Table S1. Following the procedure described for the synthesis of **7a** with the silylated aryne precursor **4b** (40 mg, 0.050 mmol) for 24 h at 20 °C, and using petroleum ether/ethyl acetate = 10:1 for the purification, **7b** (15.6 mg, 43%) was obtained as a colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ 8.24–8.19 (m, 2H), 7.81–7.73 (m, 5H), 7.43 (s, 1H), 7.34–7.19 (m, 8H), 7.15–7.09 (m, 4H), 7.02 (d, *J* = 8.2 Hz, 1H), 5.10 (s, 1H), 5.04 (p, *J* = 5.5 Hz, 1H), 4.34–4.21 (m, 2H), 4.21–4.10 (m, 1H), 3.23 (dd, *J* = 10.6, 4.4 Hz, 1H), 3.14 (dd, *J* = 10.7, 5.7 Hz, 1H), 2.99 (dd, *J* = 10.3, 5.6 Hz, 1H), 2.79 (dd, *J* = 10.3, 5.8 Hz, 1H), 2.49 (s, 3H), 1.96 (s, 3H), O<u>H</u> resonance not detected; ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 167.2 (C), 147.4 (C), 147.0 (C), 145.2 (C), 140.0 (C), 139.3 (C), 138.1 (C), 138.0 (C), 135.4 (CH), 133.8 (C), 133.4 (C), 130.6 (2CH), 130.0 (CH), 129.6 (C), 129.6 (CH), 129.0 (CH), 128.4 (2CH), 128.2 (C), 127.7 (CH), 127.7 (C), 127.6 (CH), 127.5 (2CH), 127.4 (CH), 124.2 (CH), 124.2 (CH), 123.5 (2CH), 121.2 (C), 73.2 (CH₂), 73.1 (CH₂), 71.8 (CH), 68.6 (CH₂), 68.0 (CH₂), 21.3 (CH₃), 20.0 (CH₃).

This procedure corresponds to Entry 12 in Table S1. Following the procedure described for the synthesis of **7a** with the silylated aryne precursor **4c** (35 mg, 0.045 mmol) for 72 h at 20 °C, and using petroleum ether/ethyl acetate = 10:1 for the purification, **7c** (17.1 mg, 54%) was obtained as a colorless oil. **HRMS** (ESI+) *m/z* calcd for C₄₃H₄₄O₇NS⁺ [M+NH₄]⁺ 718.2833, found 718.2834; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.67 (s, 1H), 7.49 (d, *J* = 9.0 Hz, 1H), 7.43–7.35 (m, 3H), 7.32–7.20 (m, 10H), 7.19–7.13 (m, 3H), 7.05 (m, 2H), 4.99 (p, *J* = 5.4 Hz, 1H), 4.35 (s, 2H), 4.19 (s, 2H), 3.16 (dd, *J* = 10.4, 5.7 Hz, 1H), 3.12–3.05 (m, 2H), 2.83 (dd, *J* = 10.5, 5.7 Hz, 1H), 2.43 (s, 3H), 2.36 (s, 3H), 1.78 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.4 (C), 144.5 (C), 144.1 (C), 138.8 (C), 138.3 (C), 138.3 (C), 137.7 (C), 134.6 (CH), 134.1 (C), 133.3 (C), 131.8 (C), 131.8 (C), 131.8 (C), 130.4 (C), 129.4 (2CH), 129.1 (CH), 128.9 (CH), 128.4 (2CH), 128.3 (2CH), 128.2 (CH), 127.8 (2CH), 127.7 (2CH), 127.6 (CH), 127.5 (CH), 126.9 (CH), 126.1 (CH), 126.0 (CH), 121.5 (CH), 73.1 (CH₂), 73.0 (CH₂), 71.6 (CH), 68.3 (CH₂), 68.3 (CH₂), 21.8 (CH₃), 21.2 (CH₃), 20.2 (CH₃).

This procedure corresponds to Entry 13 in Table 1. Following the procedure described for the synthesis of 7a with the silvlated aryne precursor 4d (32 mg, 0.066 mmol) for 12 h at 20 °C, and using petroleum ether/ethyl acetate = 10:1 for the purification, afforded in that order 6m (8.0 mg, 37%, dr = 1.2:1) and 7d (9.0 mg, 33%) as colorless oils. For 6m (1.2:1 mixture of diastereomers): **HRMS** (ESI+) *m/z* calcd for C₂₃H₂₁O₂⁺ [M+H]⁺ 329.1536, found 329.1536; ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, J = 8.0 Hz, 2H), 7.63 (broad s, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.35–7.28 (m, 4H), 7.26 (s, 1H), 7.22–7.10 (m, 4H), 7.04–6.98 (m, 2H), 6.90–6.84 (m, 2H), 5.85 (broad s, 2H), 5.37 (s, 1H), 5.31 (s, 1H), 4.29-4.18 (m, 2H), 4.13-4.01 (m, 2H), 2.45 (s, 6H), 1.95 (s, 3H), 1.76 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.7 (C), 143.7 (C), 143.5 (C), 143.5 (C), 142.1 (CH), 141.9 (CH), 141.2 (CH), 140.9 (CH), 139.6 (C), 139.3 (C), 138.0 (C), 137.9 (C), 137.2 (C), 137.2 (C), 132.3 (C), 132.3 (C), 132.2 (C), 132.2 (C), 130.9 (CH), 130.9 (C), 130.3 (CH), 130.0 (CH), 128.5 (CH), 128.5 (CH), 128.4 (C), 128.2 (C), 126.5 (CH), 126.5 (C), 126.4 (CH), 126.2 (CH), 126.2 (CH), 126.1 (CH), 125.3 (CH), 125.2 (CH), 118.3 (CH), 118.3 (CH), 82.2 (CH), 82.2 (CH), 81.0 (C), 81.0 (CH), 63.5 (CH₂), 63.5 (CH₂), 21.3 (CH₃), 21.3 (CH₃), 20.0 (CH₃), 19.9 (CH₃). For 7d: HRMS (ESI+) m/z calcd for C₂₀H₂₁F₃O₄NS⁺ [M+NH₄]⁺ 428.1138, found 428.1134; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.63 (broad s, 1H), 7.57–7.46 (m, 2H), 7.33 (s, 1H), 7.24– 7.16 (m, 2H), 4.2. (s, 2H), 2.45 (s, 3H), 1.85 (s, 3H), O<u>H</u> resonance not detected; ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 148.3 (C), 139.9 (C), 139.3 (C), 138.2 (C), 137.9 (C), 135.4 (CH), 131.9 (CH), 131.1 (CH), 130.4 (CH), 128.3 (C), 127.6 (C), 127.2 (CH), 126.0 (CH), 124.8 (CH), 124.1 (C), 120.19 (q, ¹J_{C-F} = 327.5 Hz, CF₃), 116.9 (C), 63.9 (CH₂), 21.5 (CH₃), 19.7 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -78.0.

Representative optimized procedure for the synthesis of **6a** (corresponds to Scheme 3b): a round-bottom 25 mL flask was charged with the iodinated aryne precursor (*aS*)-**5b** (81 mg, 0.10 mmol, 90% *ee*), diethyl ether (2.0 mL) and furan (73 μ L, 1.0 mmol), and the reaction mixture was placed at 0 °C. A solution of (trimethylsilylmethyl)magnesium chloride (1 M, Et₂O solution, 1.0 mL) was then added at 0 °C, and the resulting mixture was maintained at that temperature for 8 hours. Water (10 mL) and ethyl acetate (10 mL) were added and the layers were separated. The aqueous layer was extracted twice with EtOAc and the combined organic extract were washed with brine (10 mL), dried by Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluted with petroleum ether/ethyl acetate = 200:1 to afford **6a** (dr = 1:1 as determined by the ¹H NMR analysis of the crude material, 50 mg, 83%, 90% *ee* for each diastereomer) as a colorless oil. The characterization data for the two diastereomers of **6a** are described above.

Following the representative optimized procedure for the synthesis of **6a** with **5b** (81 mg, 0.10 mmol, 90% *ee*) and 2,5-dimethylfuran (54 μ L, 0.50 mmol) for 5 hours and using petroleum ether/ethyl acetate = 40:1 for the purification afforded the product **6b** (51 mg, 81%, dr = 1:1, 90% <u>ee</u> and 87% *ee*) as a colorless oil. For **6b** (1:1 mixture of diastereomers): **HRMS** (ESI+) *m/z* calcd for C₄₂H₄₄NO₅⁺ [M+NH₄]⁺ 642.3214, found 642.3214; ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (broad s, 1H), 7.62 (d, *J* = 2.0 Hz, 1H), 7.61 (d, *J* = 2.0 Hz, 1H), 7.54 (broad s, 1H), 7.34–7.04 (m, 30H), 6.69 (d, *J* = 2.8 Hz, 1H), 6.62 (d, *J* = 2.8 Hz, 1H), 6.52 (d, *J* = 2.8 Hz, 1H), 4.99 (p, *J* = 5.6 Hz, 1H), 4.85–4.79 (m, 1H),

4.39-3.96 (m, 8H), 3.27 (dd, J = 10.8, 7.6 Hz, 1H), 3.06-2.99 (m, 2H), 2.88 (dd, J = 10.8, 6.4 Hz, 1H), 2.81 (dd, J = 10.4, 6.4 Hz, 1H), 2.63 (dd, J = 10.0, 7.6 Hz, 1H), 2.47 (dd, J = 10.4, 6.4 Hz, 1H), 2.41 (s, 3H), 2.41 (s, 3H), 2.34 (dd, J = 10.0, 7.2 Hz, 1H), 1.91 (s, 3H), 1.89 (s, 3H), 1.86 (s, 3H), 1.71 (s, 3H), 1.21 (s, 3H),1.05 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCI₃, 1:1 mixture of diastereomers) δ 167.8 (C), 167.3 (C), 148.6 (C), 148.4 (C), 146.1 (CH), 146.0 (CH), 145.4 (CH), 145.0 (C), 144.7 (CH), 144.5 (C), 138.9 (C), 138.4 (C), 138.3 (C), 138.3 (C), 138.2 (C), 138.1 (C), 137.8 (C), 137.7 (C), 134.4 (CH), 134.0 (C), 134.0 (CH), 133.7 (C), 133.2 (C), 132.7 (C), 131.7 (C), 131.7 (C), 131.6 (C), 131.6 (C), 129.5 (C), 129.2 (C), 128.8 (CH), 128.5 (2CH), 128.5 (CH), 128.3 (2CH), 128.3 (2CH), 128.3 (2CH), 128.1 (CH), 128.1 (CH), 128.1 (CH), 127.7 (CH), 127.7 (2CH), 127.6 (2CH), 127.6 (2CH), 127.5 (2CH), 127.5 (CH), 127.5 (CH), 126.1 (CH), 126.1 (CH), 126.1 (CH), 125.9 (CH), 125.8 (CH), 125.7 (CH), 116.0 (CH), 115.6 (CH), 89.4 (C), 89.4 (C), 87.4 (C), 87.4 (C), 73.0 (CH₂), 73.0 (CH₂), 72.9 (CH₂), 72.9 (CH₂), 71.5 (CH), 71.4 (CH), 68.9 (CH₂), 68.6 (CH₂), 68.2 (CH₂), 67.3 (CH₂), 21.2 (CH₃), 21.2 (CH₃), 20.6 (CH₃), 20.2 (CH₃), 16.5 (CH₃), 15.7 (CH₃), 15.6 (CH₃), 15.4 (CH₃); **HPLC**: Chiralpak IE, heptane/ethanol = 95:5, 1 mL/min, 220 nm; t_{maior} $(dia1) = 12.25 \text{ min}, t_{minor} (dia 1) = 13.60 \text{ min}; t_{major} (dia 2) = 15.71 \text{ min}, t_{minor} (dia 2) = 17.98$ min.

Following the representative optimized procedure for the synthesis of **6a** with **5b** (75 mg, 0.093 mmol, 90% ee) and 1,3-diphenylisobenzofuran (127 mg, 0.47 mmol) for 12 hours and using petroleum ether/ethyl acetate = 40:1 for the purification afforded the product 6c (51 mg, 69%, dr = 1:1, 90% ee and 85% ee) as a colorless oil. For 6c (1:1 mixture of diastereomers): **HRMS** (ESI+) m/z calcd for C₅₆H₅₀NO₅⁺ [M+NH₄]⁺ 816.3684, found 816.3684; ¹H NMR (400 MHz, CDCl₃) δ 8.12–8.06 (m, 1H), 8.02–7.95 (m, 1H), 7.76–7.63 (m, 8H), 7.63–7.42 (m, 8H), 7.40–7.02 (m, 40H), 7.00–6.93 (m, 3H), 6.69 (s, 1H), 4.84 (p, J = 5.2 Hz, 1H), 4.66–4.56 (m, 1H), 4.42–3.95 (m, 8H), 3.14–3.01 (m, 2H), 2.87 (dd, J = 10.4, 4.8 Hz, 1H), 2.79 (dd, J = 10.4, 6.8 Hz, 1H), 2.56–2.44 (m, 1H), 2.44 (s, 3H), 2.40 (s, 3H), 2.37-2.30 (m, 1H), 1.92-1.78 (m, 2H), 1.67 (s, 3H), 1.40 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.5 (C), 165.6 (C), 150.4 (C), 149.9 (C), 149.0 (C), 148.8 (C), 146.0 (C), 146.0 (C), 143.3 (C), 142.6 (C), 138.5 (C), 138.4 (C), 138.4 (C), 138.3 (C), 138.3 (C), 138.2 (C), 137.6 (C), 137.4 (C), 135.7 (C), 135.5 (C), 135.5 (C), 135.5 (C), 134.4 (CH), 134.3 (C), 134.2 (CH), 133.5 (C), 132.4 (C), 132.4 (C), 132.3 (C), 132.2 (C), 131.8 (C), 131.7 (C), 131.4 (C), 130.8 (C), 129.9 (CH), 128.9 (2CH), 128.8 (2CH), 128.7 (CH), 128.4 (2CH), 128.4 (CH), 128.3 (2CH), 128.3 (2CH), 128.2 (2CH), 128.2 (2CH), 127.6 (CH), 127.6 (2CH), 127.5 (2CH), 127.5 (CH), 127.5 (2CH), 127.5 (CH), 127.4 (2CH), 127.4 (CH), 127.4 (2CH), 127.2 (2CH), 126.9 (CH), 126.8 (2CH), 126.7 (2CH), 126.6 (CH), 126.5 (2CH), 126.4 (CH), 126.3 (CH), 126.2 (2CH), 126.2 (CH), 126.2 (CH), 126.2 (2CH), 126.0 (2CH), 125.8 (CH), 121.8 (CH), 121.0 (CH), 120.4 (CH), 120.1 (CH), 117.9 (CH), 117.6 (CH), 90.7 (C), 90.5 (C), 88.8 (C), 88.7 (C), 72.9 (CH₂), 72.9 (CH₂), 72.8 (CH₂), 72.7 (CH₂), 70.9 (CH), 70.7 (CH), 68.6 (CH₂), 68.4 (CH₂), 68.0 (CH₂), 66.6 (CH₂), 21.1 (CH₃), 21.0 (CH₃), 20.5 (CH₃), 20.2 (CH₃), 2

aromatic <u>C</u>H resonances could not be detected (overlap with other signals); **HPLC**: Chiralpak IE, heptane/ethanol = 80:20, 1 mL/min, 220 nm, t_{major} (dia1) = 5.51 min, t_{minor} (dia1) = 5.95 min, t_{major} (dia2) = 6.47 min, t_{minor} (dia2) = 6.97 min.

Following the representative optimized procedure for the synthesis of **6a** with **5b** (81 mg, 0.10 mmol, 90% ee) and 1-(phenylsulfonyl)-1H-pyrrole (104 mg, 0.50 mmol) for 3 hours and using petroleum ether/ethyl acetate = 10:1 for the purification afforded the product 6d (58 mg, 78%, dr = 1:1, 90% ee and 89% ee) as a light purple oil. For 6d (1:1 mixture of diastereomers): HRMS (ESI+) m/z calcd for C46H45N2O6S⁺ [M+NH4]⁺ 753.2993, found 753.2994; ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.52 (m, 8H), 7.50–7.02 (m, 36H), 6.42 (dd, J = 6.4, 2.0 Hz, 1H), 6.25 (dd, J = 6.4, 2.0 Hz, 1H), 6.22 (dd, J = 6.4, 2.0 Hz, 1H), 6.12 (dd, J = 6.4, 2.0 Hz, 1H), 5.54 (s, 1H), 5.49 (s, 1H), 5.10 (s, 1H), 4.96 (p, J = 5.2 Hz, 1H), 4.92 (s, 1H), 5.78 (p, J = 5.2 Hz, 1H), 4.25 (dd, J = 22.4, 12.4 Hz, 2H), 4.20–4.04 (m, 6H), 3.17 (dd, J = 10.4, 4.4 Hz, 1H), 3.09 (dd, J = 10.4, 4.4 Hz, 1H), 2.96 (dd, J = 10.4, 4.8 Hz, 1H), 2.79 (dd, J = 10.4, 6.8 Hz, 1H), 2.72–2.54 (m, 4H), 2.42 (s, 6H), 1.90 (s, 3H), 1.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.5 (C), 167.3 (C), 142.0 (C), 141.8 (C), 141.1 (C), 140.8 (C), 140.6 (CH), 140.0 (C), 139.8 (CH), 139.6 (C), 139.2 (CH), 139.0 (CH), 138.7 (C), 138.6 (C), 138.5 (C), 138.1 (C), 138.0 (C), 138.0 (C), 138.0 (C), 137.9 (C), 134.9 (CH), 134.3 (CH), 133.2 (C), 133.1 (C), 132.8 (CH), 132.8 (CH), 132.5 (C), 132.4 (C), 131.7 (C), 131.6 (C), 131.1 (C), 131.0 (C), 130.3 (C), 123.1 (C), 129.2 (2CH), 129.1 (2CH), 129.1 (CH), 128.6 (CH), 128.4 (CH), 128.4 (2CH), 128.4 (2CH), 128.3 (CH), 128.3 (2CH), 128.3 (2CH), 128.1 (2CH), 128.1 (2CH), 128.0 (CH), 127.7 (CH), 127.7 (CH), 127.7 (2CH), 127.6 (CH), 127.6 (2CH), 127.5 (2CH), 127.4 (2CH), 126.6 (CH), 126.5 (CH), 126.2 (CH), 126.2 (CH), 126.1 (CH), 125.9 (CH), 118.5 (CH), 118.4 (CH), 73.0 (CH₂), 72.9 (CH₂), 72.9 (CH₂), 71.7 (CH₂), 71.2 (CH), 71.2 (CH), 68.7 (CH₂), 68.2 (CH₂), 68.0 (CH₂), 68.0 (CH), 67.7 (CH₂), 67.7 (CH), 66.6 (CH), 66.6 (CH), 21.2 (CH₃), 21.2 (CH₃), 20.3 (CH₃), 20.2 (CH₃). **HPLC**: Chiralpak ID, heptane/ethanol = 60:40, 1 mL/min, 254 nm, t_{major} dia1 = 10.03 min, t_{minor} dia1 = 12.4 min; t_{major} dia2 = 14.21 min, t_{minor} dia 2 = 8.81 min.

Following the representative optimized procedure for the synthesis of **6a** with **5b** (77 mg, 0.096 mmol, 90% ee) and benzyl azide (64 mg, 0.48 mmol) for 2 hours and using petroleum ether/ethyl acetate = 10:1 to 5:1 for the purification afforded in this order the two regioisomers 6e minor (10 mg, 16%, 90% ee) and 6e major (36 mg, 57%, 89% ee) as colorless oils. For **6e** minor: **HRMS** (ESI+) m/z calcd for C₄₃H₄₀N₃O₄⁺ [M+H]⁺ 662.3013, found 662.3013; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.83 (d, J = 8.6 Hz, 1H), 7.69 (s, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.42–7.19 (m, 14 H), 7.15–7.09 (m, 4H), 5.89 (d, J = 15.6 Hz, 1H), 5.78 (d, J = 15.6 Hz, 1H), 4.81 (p, J = 5.4 Hz, 1H), 4.16 (broad s, 2H), 4.09 (broad s, 2 H), 2.99 (dd, J = 10.6, 4.7 Hz, 1H), 2.88 (dd, J = 10.6, 5.5 Hz, 1H), 2.80 (dd, J = 10.3, 5.4 Hz, 1H), 2.63 (dd, J = 10.3, 5.4 Hz, 1H), 2.50 (s, 3H), 1.83 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) § 166.5 (C), 144.2 (C), 138.5 (C), 138.2 (C), 138.1 (C), 138.1 (C), 135.1 (C), 135.1 (CH), 133.0 (C), 132.5 (C), 131.7 (C), 131.1 (C), 130.2 (C), 129.3 (CH), 129.0 (2CH), 128.7 (C), 128.4 (CH), 128.3 (2CH), 128.3 (CH), 128.2 (2CH), 127.6 (2CH), 127.4 (CH), 127.4 (CH), 127.4 (2CH), 127.4 (2CH), 126.3 (CH), 126.2 (CH), 124.6 (CH), 104.4 (CH), 72.9 (CH₂), 72.8 (CH₂), 71.2 (CH), 68.2 (CH₂), 67.8 (CH₂), 52.1 (CH₂), 21.1 (CH₃), 20.3 (CH₃); HPLC Chiralpak IA, heptane/ethanol = 80:20, 1 mL/min, 254 nm, t_{maior} = 7.56 min, t_{minor} = 18.13 min; Specific rotation $[\alpha]_D^{25} = -51.3$ (c = 1.0, CHCl₃). For 6e major: HRMS (ESI+) *m*/z calcd for C₄₃H₄₀N₃O₄⁺ [M+H]⁺ 662.3013, found 662.3013; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.74 (s, 1H), 7.27–6.97 (m, 17H), 6.52 (s, 1H), 6.50 (s, 1H), 5.57 (d, J = 16.1 Hz, 1H), 5.04 (d, J = 16.1 Hz, 1H), 4.78–4.74 (m, 1H), 4.12 (d, J = 12 Hz, 1H), 4.11 (d, J = 12 Hz, 1H), 3.92 (broad s, 2H), 2.85 (dd, J = 10.5, 4.3 Hz, 1H), 2.54 (dd, J = 10.3, 5.1 Hz, 1H), 2.49 (dd, J = 10.5, 6.2 Hz, 1H), 2.37 (s, 3H), 2.37 (dd, J = 10.5, 10.5)6.2 Hz, 1H), 1.09 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.6 (C), 145.3 (C), 139.9 (C), 138.6 (C), 137.8 (C), 136.2 (C), 135.0 (CH), 132.7 (C), 131.3 (C), 131.2 (C), 130.6 (C), 129.9 (C), 129.4 (CH), 128.9 (C), 128.9 (CH), 128.2 (2CH), 128.2 (2CH), 128.0 (2CH), 127.7 (CH), 127.6 (2CH), 127.6 (CH), 127.5 (CH), 127.4 (2CH), 126.6 (2CH), 126.5 (CH), 124.9 (CH), 124.4 (CH), 118.4 (C), 117.0 (CH), 72.8 (CH₂), 72.7 (CH₂), 71.5 (CH), 67.9 (CH₂), 67.7 (CH₂), 52.5 (CH₂), 21.1 (CH₃), 19.6 (CH₃); **HPLC**: Chiralpak ID, heptane/ethanol = 80:20, 1 mL/min, 220 nm, $t_{major} = 17.36$ min, $t_{minor} = 15.52$ min; Specific rotation $[\alpha]_D^{25} = -21.6$ (c = 1.0, CHCl₃).

To a THF solution (3 mL) of the major regioisomer of **6e** (89% *ee*, 30 mg, 0.045 mmol) was added a solution of LiOH (22 mg in 1 mL). The reaction was stirred vigorously and heated at 60 °C for 4 days. To the cooled reaction mixture was added 1N HCl (10 mL) and the aqueous layer was extracted twice with EtOAc. The combined organic phases were washed with brine and dried over anhydrous Na₂SO₄, and solvents were evaporated in vacuum. The resulting crude material was purified by flash chromatography to give the pure carboxylic acid (**19**, 16 mg, 87%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.84 (s, 1H), 7.35 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.26–7.20 (m, 1H), 7.15 (s, 1H), 7.12 (d, *J* = 6.0 Hz, 1H), 7.26 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.01–6.91 (m, 2H), 6.49 (d, *J* = 7.6 Hz, 2H), 5.58 (d, *J* = 16.0 Hz, 1 H), 5.21 (d, *J* = 16.0 Hz, 1 H), 4.96 (broad s, 1H), 2.48 (s, 3H), 1.21 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.5 (C), 145.3 (C), 140.2 (C), 138.7

(C), 136.2 (C), 135.6 (CH), 132.3 (C), 131.6 (C), 131.3 (C), 130.9 (C), 129.8 (C), 129.7 (CH), 129.4 (CH), 128.2 (2CH), 127.8 (CH), 126.7 (CH), 126.5 (2CH), 124.8 (CH), 124.5 (CH), 118.3 (C), 117.2 (CH), 52.6 (CH₂), 21.2 (CH₃), 19.7 (CH₃). Recrystallization of this material from chloroform/hexane 3:1 (very slow evaporation in air) afforded a mixture of crystalline solids, including some colorless prisms suitable for single-crystal X-ray diffraction analyses, which revealed the existence of, at least, two polymorphs of **20**, an aerobic oxidation product (Figure S3, Table S2), confirming the regioselectivity in **6e**. Some resolution of the enantiomers seemingly occurred during crystallization. CCDC 1997613 contains the supplementary crystallographic information for one polymorph of **20**. It can be obtained free of charge from the Cambridge Crystallographic Data Centre.

Figure S3. ORTEP representation of **20** obtained by single-crystal X-ray diffraction analysis. The ellipsoids are drawn at the 50% probability level and H atoms are represented as fixed-size spheres of 0.15 Å radius

Table S2. Crystal data and structure refine	ement for CCDC 1997613
---	------------------------

Empirical formula	$C_{26}H_{19}N_3O_3$
Formula weight	421.44
Temperature/K	293
Crystal system	monoclinic
Space group	P21/c
a/Å	11.34720(10)
b/Å	12.24780(10)
c/Å	15.79970(10)
α/°	90
β/°	106.2480(10)
γ/°	90

Volume/Å ³	2108.11(3)
Z	4
ρ _{calc} g/cm ³	1.328
µ/mm ⁻¹	0.717
F(000)	880.0
Crystal size/mm ³	0.38 × 0.16 × 0.1
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	8.116 to 141.856
Index ranges	-13 ≤ h ≤ 13, -15 ≤ k ≤ 14, -19 ≤ l ≤ 19
Reflections collected	59899
Independent reflections	4060 [R _{int} = 0.0271, R _{sigma} = 0.0085]
Data/restraints/parameters	4060/0/291
Goodness-of-fit on F ²	1.031
Final R indexes [I>=2σ (I)]	R ₁ = 0.0382, wR ₂ = 0.1053
Final R indexes [all data]	R ₁ = 0.0405, wR ₂ = 0.1079
Largest diff. peak/hole / e Å-3	0.16/-0.15

Following the representative optimized procedure for the synthesis of **6a** with **5b** (77 mg, 0.096 mmol, 90% ee) and 4-bromobenzyl azide (102 mg, 0.48 mmol) for 2 hours and using petroleum ether/ethyl acetate = 10:1 to 5:1 for the purification afforded, in this order, the two regioisomers 6f major (42 mg, 59%, 89% ee) and 6f minor (10 mg, 14%, 90% ee) as colorless oils. The regioselectivity in **6f** was attributed as in **6e** on the basis of the analogy of the chemical transformations and the NMR spectra of the products. For 6f major: HRMS (ESI+) m/z calcd for C43H39BrN3O4⁺ [M+H]⁺ 742.2108, found 742.2104; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.74 (s, 1H), 7.30–7.08 (m, 13H), 7.02–6.97 (m, 3H), 6.39 (s, 1H), 6.37 (s, 1H), 5.46 (d, J = 16.2 Hz, 1H), 5.00 (d, J = 16.2 Hz, 1H), 4.77 (p, J = 5.5 Hz, 1H), 4.15 (d, J = 12.1 Hz, 1H), 4.08 (d, J = 12.0 Hz, 1H), 3.93 (s, 2H), 2.89 (dd, J = 10.5, 4.2 Hz, 1H), 2.57 (dd, J = 10.3, 5.0 Hz, 1H), 2.51 (dd, J = 10.5, 6.3 Hz, 1H),2.45–2.41 (m, 4H), 1.16 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.5 (C), 144.1 (C), 140.0 (C), 138.7 (C), 137.7 (C), 137.7 (C), 135.2 (C), 135.0 (CH), 132.7 (C), 131.3 (C), 131.2 (C), 131.1 (2CH), 130.6 (C), 129.4 (C), 129.4 (CH), 129.0 (CH), 128.3 (2CH), 128.2 (2CH), 128.2 (2CH), 127.6 (2CH), 127.5 (CH), 127.4 (CH), 127.3 (2CH), 126.7 (CH), 125.0 (CH), 124.4 (CH), 121.6 (C), 118.1 (C), 117.1 (CH), 72.9 (CH₂), 72.7 (CH₂), 71.5 (CH), 68.0 (CH₂), 67.7 (CH₂), 51.9 (CH₂), 21.1 (CH₃), 19.7 (CH₃); **HPLC** Chiralpak IA, heptane/ethanol = 80:20, 1 mL/min, 220 nm, t_{major} = 8.61 min, t_{minor} = 16.65 min; **Specific rotation** $[\alpha]_D^{25}$ = 99.3 $(c = 1.0, CHCl_3)$. For **6f** minor: **HRMS** (ESI+) m/z calcd for C₄₃H₃₉BrN₃O₄⁺ [M+H]⁺ 742.2108, found 742.2107; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.66 (s, 1H), 7.54 (d, J = 8.7 Hz, 1H), 7.49–7.38 (m, 4H), 7.34–7.25 (m, 5H), 7.24–7.06 (m, 8H), 5.82 (d, J = 15.8 Hz, 1H), 5.69 (d, J = 15.8 Hz, 1H), 4.81 (p, J = 5.4 Hz, 1H), 4.17 (s, 2H), 4.11

(s, 2H), 3.03 (dd, J = 10.6, 5.5 Hz, 1H), 2.92 (dd, J = 10.6, 5.5 Hz, 1H), 2.83 (dd, J = 10.3, 5.4 Hz, 1H), 2.68 (dd, J = 10.3, 5.4 Hz, 1H), 2.50 (m, 3H), 1.82 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 166.6 (C), 144.3 (C), 138.6 (C), 138.4 (C), 138.2 (C), 138.2 (C), 135.2 (CH), 134.3 (C), 133.2 (C), 132.6 (C), 132.3 (2CH), 131.8 (C), 131.1 (C), 130.6 (C), 129.6 (CH), 129.5 (CH), 129.4 (2CH), 128.9 (C), 128.4 (CH), 128.4 (2CH), 128.4 (2CH), 128.3 (CH), 128.3 (CH), 127.6 (CH), 127.5 (2CH), 126.5 (2CH), 124.9 (CH), 122.6 (C), 104.3 (CH), 73.00 (CH₂), 73.00 (CH₂), 71.4 (CH), 68.3 (CH₂), 67.9 (CH₂), 51.5 (CH₂), 21.3 (CH₃), 20.5 (CH₃); HPLC: Chiralpak IB, heptane/ethanol = 80:20, 1 mL/min, 230 nm, t_{major} = 6.88 min, t_{minor} = 8.10 min; **Specific rotation** [α]_D²⁵ = 53.4 (c = 1.0, CHCI₃).

Following the representative optimized procedure for the synthesis of **6a** with **5b** (100 mg, 0.124 mmol, 90% ee) and trimethylsilyldiazomethane (2.0M in Et₂O, 0.19 mL, 0.38 mmol) for 3 hours and using petroleum ether/ethyl acetate = 3:1 for the purification afforded, in this order, the two regionsomers **6g** (19 mg, 27%, 90% ee) and **6g** regio (19 mg, 27%, 90% ee) as colorless oils. For **6g**: **HRMS** (ESI+) m/z calcd for $C_{37}H_{35}N_2O_4^+$ [M+H]⁺ 571.2591, found 571.2591; ¹H NMR (400 MHz, CDCl₃) δ 9.71 (brs, 1H), 7.86 (d, J = 8.5 Hz, 1H), 7.77 (s, 1H), 7.74 (s, 1H), 7.72 (s, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.39–7.23 (m, 7H), 7.36 (s, 1H), 7.19– 7.04 (m, 5H), 4.78 (p, J = 5.3 Hz, 1H), 4.14 (dd, J = 16.8, 12.4 Hz, 2H), 4.06 (dd, J = 16.8, 12.4 Hz, 2H), 2.77 (dd, J = 10.4, 5.1 Hz, 2H), 2.64 (dd, J = 10.3, 5.6 Hz, 1H), 2.56 (dd, J = 10.4, 5.7 Hz, 1H), 2.48 (s, 3H), 1.79 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.0 (C), 138.3 (C), 138.2 (C), 138.1 (C), 137.9 (C), 135.3 (C), 134.6 (CH), 134.0 (C), 133.1 (C), 132.2 (C), 131.1 (C), 128.9 (CH), 128.4 (CH), 128.3 (2CH), 128.2 (2CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 127.5 (CH), 127.4 (2CH), 127.4 (2CH), 127.2 (C), 126.3 (CH), 125.7 (CH), 123.6 (CH), 103.8 (CH), 72.8 (CH₂), 72.8 (CH₂), 71.3 (CH), 67.9 (CH₂), 67.8 (CH₂), 21.1 (CH₃), 20.00 (CH₃); HPLC Chiralpak IG, heptane/ethanol = 80:20, 1 mL/min, 230 nm, t_{maior} = 11.21 min, $t_{minor} = 9.61$ min; Specific rotation $[\alpha]_D^{25} = -32.3$ (c = 1.0, CHCl₃). For 6g regio: HRMS (ESI+) *m/z* calcd for C₃₇H₃₅N₂O₄⁺ [M+H]⁺ 571.2591, found 571.2592; ¹H NMR (400 MHz, CDCl₃) δ 9.47 (s, 1H), 8.15 (s, 2H), 7.88 (d, J = 8.1 Hz, 1H), 7.71 (s, 1H), 7.35 (s, 1H), 7.27 (d, J = 8.9 Hz, 1H), 7.26-7.16 (m, 8H), 7.07 (d, J = 7.7 Hz, 2H), 7.02 (d, J = 7.7 Hz, 2H),4.75 (p, J = 5.4 Hz, 1H), 4.09 (s, 2H), 4.00 (d, J = 12.2 Hz, 1H), 3.96 (d, J = 12.2 Hz, 1H), 2.79 (dd, J = 10.4, 4.7 Hz, 1H), 2.61–2.51 (m, 2H), 2.43 (s, 3H), 2.42 (dd, J = 10.4, 4.7 Hz, 1H), 1.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2 (C), 139.1 (C), 138.6 (C), 138.2 (C), 138.1 (C), 137.9 (C), 135.7 (CH), 135.0 (CH), 133.1 (C), 131.7 (C), 130.9 (C), 129.5 (CH), 129.4 (C), 129.4 (CH), 128.4 (2CH), 128.4 (2CH), 127.6 (2CH), 127.6 (CH), 127.6 (CH), 127.6 (2CH), 126.2 (CH), 124.7 (CH), 123.8 (C), 123.4 (CH), 118.9 (CH), 116.5 (C), 73.0 (CH₂), 73.0 (CH₂), 71.5 (CH), 68.1 (CH₂), 67.9 (CH₂), 21.3 (CH₃), 19.9 (CH₃); HPLC Chiralpak IH, heptane/ethanol = 80:20, 1 mL/min, 230 nm, t_{maior} = 8.15 min, t_{minor} = 5.98 min; **Specific rotation** $[\alpha]_{D}^{25} = -8.4$ (*c* = 1.0, CHCl₃).

Following the representative optimized procedure for the synthesis of **6a** with **5b** (82 mg, 0.10 mmol, 90% ee) and 1,1-dimethoxyethene (50 µL, 0.53 mmol) for 3 hours and using petroleum ether/ethyl acetate = 20:1 to 10:1 for the purification afforded, in this order. 6h (25 mg, 40%, 90% ee) and 6h regio (16 mg, 26%, 90% ee) as colorless oils. For 6h: HRMS (ESI+) *m/z* calcd for C₄₀H₄₄O₆N⁺ [M+NH₄]⁺ 634.3163, found 634.3165; ¹H NMR (400 MHz, $CDCI_3$) δ 7.81 (d, J = 8.1 Hz, 1H), 7.68 (s, 1H), 7.66 (s, 1H), 7.39–7.17 (m, 12H), 7.12 (m, 2H), 4.98 (p, J = 5.7 Hz, 1H), 4.32 (s, 2H), 4.14 (d, J = 12.1 Hz, 1H), 4.11 (d, J = 12.1 Hz, 1H), 3.48 (s, 3H), 3.42 (s, 3H), 3.29 (d, J = 14.6 Hz, 1H), 3.19 (d, J = 14.6 Hz, 1H), 3.04 (dd, J = 10.4, 5.9 Hz, 1H), 2.97 (m, 1H), 2.93 (m, 1H), 2.58 (dd, J = 10.4, 6.0 Hz, 1H), 2.45 (s, 3H), 1.92 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.7 (C), 142.9 (C), 138.4 (C), 138.3 (C), 138.2 (C), 137.7 (C), 136.9 (C), 134.4 (C), 134.3 (CH), 133.7 (C), 133.2 (C), 133.2 (C), 132.4 (C), 129.2 (CH), 128.7 (CH), 128.4 (2CH), 128.3 (2CH), 127.6 (2CH), 127.6 (2CH), 127.5 (CH), 127.5 (CH), 126.1 (CH), 125.5 (CH), 125.0 (CH), 119.0 (CH), 105.4 (C), 73.0 (CH₂), 72.9 (CH₂), 71.4 (CH), 68.3 (CH₂), 68.2 (CH₂), 51.4 (CH₃), 51.3 (CH₃), 42.5 (CH₂), 21.2 (CH₃), 20.3 (CH₃); **HPLC**: (S,S)-Whelk-O1, heptane/ethanol = 95:5, 1 mL/min, 254 nm, $t_{major} = 10.87 \text{ min}, t_{minor} = 11.98 \text{ min};$ Specific rotation $[\alpha]_{D}^{25} = 3.8 (c = 1.0, CHCl_{3})$. For 6h regio: **HRMS** (ESI+) *m/z* calcd for C₄₀H₄₄O₆N⁺ [M+NH₄]⁺ 634.3163, found 634.3165; ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.73 (m, 2H), 7.49 (s, 1H), 7.40–7.12 (m, 14H), 4.95 (p, J = 6.0 Hz, 1H), 4.32 (s, 2H), 4.15 (d, J = 12.1 Hz, 1H), 4.10 (d, J = 12.2 Hz, 1H), 3.41 (d, J = 15.2 Hz, 1H), 3.30 (d, J = 15.2 Hz, 1H), 3.07 (dd, J = 5.1, 1.9 Hz, 1H), 3.05 (dd, J = 5.1, 2.2 Hz, 1H), 3.00 (s, 3H), 2.99 (s, 3H), 2.80 (dd, J = 10.2, 6.3 Hz, 1H), 2.62 (dd, J = 10.5, 6.1 Hz, 1H), 2.42 (s, 3H), 1.97 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.2 (C), 142.7 (C), 138.8 (C), 138.4 (C), 138.4 (C), 138.1 (C), 137.6 (C), 135.3 (C), 134.7 (C), 134.5 (CH), 132.8 (C), 132.3 (C), 131.6 (C), 129.0 (CH), 128.4 (2CH), 128.3 (2CH), 128.2 (CH), 127.6 (CH), 127.6 (2CH), 127.6 (2CH), 127.5 (CH), 126.8 (CH), 125.6 (CH), 125.2 (CH), 121.1 (CH), 106.3 (C), 73.0 (CH₂), 73.0 (CH₂), 71.4 (CH), 68.5 (CH₂), 67.9 (CH₂), 51.1 (CH₃), 51.0 (CH₃), 42.5 (CH₂), 21.2 (CH₃), 20.5 (CH₃); HPLC (S,S)-Whelk-O1, heptane/ethanol = 95:5, 1 mL/min, 254 nm, $t_{major} = 13.65 \text{ min}$, $t_{minor} = 15.08 \text{ min}$; Specific rotation $[\alpha]_D^{25} = -59.5$ (c = 1.0, CHCl₃).

Following the representative optimized procedure for the synthesis of **6a** with **5b** (81 mg, 0.10 mmol, 90% ee) and perylene (76 mg, 0.30 mmol), using toluene (2.0 mL) in place of diethyl ether to solubilize all substrates prior the addition of the Grignard reagent, for 3 hours and using petroleum ether/ethyl acetate = 40:1 for the purification afforded the product 6i (20 mg, 25%, 90% ee) as a yellow oil. HRMS (ESI+) m/z calcd for C₅₆H₄₆O₄N⁺ [M+NH₄]⁺ 796.3421, found 796.3421; ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 9.12 (d, J = 9.2 Hz, 1H), 8.76 (dd, J = 11.2, 7.6 Hz, 2H), 8.26–8.17 (m, 3H), 8.10 (d, J = 7.6 Hz, 1H), 8.01 (s, 1H), 7.91–7.84 (m, 2H), 7.83–7.76 (m, 1H), 7.60–7.52 (m, 2H), 7.46–7.35 (m, 3H), 7.21– 7.12 (m, 3H), 7.04–6.87 (m, 5H), 6.68–6.61 (m, 2H), 4.75 (p, J = 5.6 Hz, 1H), 3.84 (d, J = 12.4 Hz, 1H), 3.79 (d, J = 12.4 Hz, 1H), 3.63 (broad s, 2H), 2.81 (dd, J = 10.8, 4.4 Hz, 1H), 2.62 (s, 3H), 2.48 (dd, J = 10.4, 6.4 Hz, 1H), 2.36–2.28 (m, 2H), 1.55 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4 (C), 139.9 (C), 138.1 (C), 138.1 (C), 137.9 (C), 137.9 (C), 136.0 (C), 135.9 (CH), 133.1 (C), 132.7 (C), 132.5 (C), 131.3 (C), 131.3 (C), 131.2 (C), 131.2 (C), 131.2 (C), 131.1 (C), 131.1 (C), 131.1 (C), 129.9 (CH), 128.5 (CH), 128.2 (2CH), 128.1 (CH), 128.0 (2CH), 127.4 (CH), 127.4 (C), 127.3 (2CH), 127.2 (CH), 127.2 (CH), 127.1 (2CH), 126.9 (CH), 126.8 (CH), 126.6 (CH), 126.4 (CH), 126.4 (CH), 126.3 (C), 126.3 (CH), 125.8 (CH), 125.8 (CH), 125.5 (C), 124.3 (C), 122.9 (CH), 122.5 (CH), 120.8 (CH), 120.4 (CH), 72.7 (CH₂), 72.7 (CH₂), 71.6 (CH), 68.4 (CH₂), 67.6 (CH₂), 21.4 (CH₃), 20.2 (CH₃); **HPLC**: Chiralpak IF, heptane/ethanol = 80:20, 1 mL/min, 230 nm, t_{major} = 8.99 min, t_{minor} = 11.12 min; Specific rotation $[\alpha]_D^{25} = 69.4$ (c = 1.0, CHCl₃).

Following the representative optimized procedure for the synthesis of **6a** with **5b** (80 mg, 0.10 mmol, 90% *ee*) and anthracene (89 mg, 0.50 mmol) for 6 hours and using petroleum ether/ethyl acetate = 40:1 for the purification afforded the product **6j** (36 mg, 51%, 90% *ee*) as a colorless oil. **HRMS** (ESI+) *m/z* calcd for $C_{50}H_{46}O_4N^+$ [M+NH₄]⁺ 724.3421, found 724.3422; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (broad s, 1H), 7.62–7.57 (m, 2H), 7.39–7.34 (m, 3H), 7.31–7.19 (m, 7H), 7.19–7.02 (m, 8H), 6.99–6.85 (m, 4H), 5.46 (s, 1H), 4.88 (s,

1H), 4.62–4.53 (m, 1H), 4.00 (d, J = 12.2 Hz, 1H), 3.98 (d, J = 12.2 Hz, 1H), 3.96 (d, J = 12.0 Hz, 1H), 3.84 (d, J = 12.0 Hz, 1H), 2.78 (dd, J = 10.6, 4.0 Hz, 1H), 2.53 (s, 3H), 2.01 (dd, J = 10.6, 6.9 Hz, 1H), 1.79 (dd, J = 10.1, 5.3 Hz, 1H), 1.74 (dd, J = 10.1, 7.8 Hz, 1H), 1.63 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.5 (C), 145.0 (C), 144.7 (C), 144.5 (C), 144.4 (C), 141.7 (C), 138.8 (C), 138.8 (C), 138.4 (C), 138.4 (C), 137.8 (C), 134.7 (C), 134.6 (CH), 132.7 (C), 132.6 (C), 131.4 (C), 131.2 (C), 129.2 (CH), 128.3 (2CH), 128.3 (2CH), 127.6 (CH), 127.5 (CH), 127.5 (2CH), 127.5 (2CH), 127.2 (CH), 126.1 (CH), 125.8 (CH), 125.7 (CH), 125.6 (CH), 125.6 (CH), 125.5 (CH), 124.6 (CH), 123.9 (CH), 123.7 (CH), 123.6 (CH), 121.0 (CH), 72.8 (CH₂), 72.6 (CH₂), 70.7 (CH), 68.7 (CH₂), 66.8 (CH₂), 54.2 (CH), 51.1 (CH), 21.3 (CH₃), 20.4 (CH₃); **HPLC** Chiralpak IF, heptane/ethanol = 80:20, 1 mL/min, 254 nm, t_{major} = 5.50 min, t_{minor} = 7.49 min; **Specific rotation** [α]_D²⁵ = 21.5 (c = 1.0, CHCl₃).

5c, 97% *ee*

6k, 59%, 97% ee

A round bottom flask containing the aryne precursor 5c (64 mg, 0.1 mmol, 97.5% ee) was charged with 3 mL of anhydrous toluene. The toluene was evaporated by rotary evaporation and the step was repeated twice to remove all of moisture. Then the flask was charged with 0.5 mL of Et₂O and anthracene (89 mg, 0.5 mmol) under an argon atmosphere. The suspension was cooled down to 0 °C and trimethylsilylmagnesium chloride (1 M in Et₂O, 1.0 mmol) was added slowly at this temperature. After stirring overnight at 0 °C, the reaction mixture was guenched with water. The mixture was extracted three times with EtOAc and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (pentane/EtOAc = 20:1) to afford 6k (32 mg, 59%) as a white solid; **Mp** 271–273 °C (CDCl₃); HRMS (ESI+) *m/z* calcd for C₃₄H₂₆O₂Br⁺ [M+H]⁺ 547.1096, found 547.1094; ¹**H NMR** (300 MHz, CDCl₃) δ 8.11 (d, J = 8.7 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.60 (ddd, J = 8.5, 7.0, 1.2 Hz, 1H), 7.40–7.36 (m, 2H), 7.25 (ddd, J = 9.5, 7.2, 1.3 Hz, 1H), 7.07 (dd, J = 8.7, 0.8 Hz, 1H), 7.03–6.88 (m, 4H), 6.78 (ddd, 8.4, 6.8, 1.2 Hz, 1H), 6.49 (d, 7.3 Hz, 1H), 5.77 (s, 1H), 4.55 (s, 1H), 3.10 (s, 3H), 2.75 (s, 3H), 1.89 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 168.0 (C), 145.3 (C), 145.1 (C), 145.1 (C), 145.0 (C), 142.9 (C), 142.5 (C), 139.1 (C), 135.1 (C), 133.3 (C), 132.9 (C), 132.3 (C), 131.4 (C), 128.8 (C), 128.3 (CH), 128.1 (CH), 128.1 (CH), 127.7 (CH), 127.1 (CH), 125.9 (CH), 125.1 (2CH), 125.1 (2CH), 124.9 (C), 123.9 (2CH), 123.6 (CH), 123.5 (CH), 52.0 (CH), 51.8 (CH₃), 51.8 (CH), 21.7 (CH₃), 20.0 (CH₃); HPLC (S,S)-Whelk-O1 column, heptane/isopropanol = 95:5, 1 mL/min, 220 nm, retention time: tminor = 9.97 min, tmaior = 11.67 min, 97.5% ee; Specific rotation $[\alpha]_{D}^{25} = -22.9$ (c = 1.0, CHCl₃). Recrystallization of **6k** (97.5% ee) from d-chloroform (slow evaporation in air) afforded crystalline needles suitable for single-crystal X-ray diffraction analysis, which confirmed both the structure and the absolute configuration in 6k (Figure S4, Table S3). CCDC 2019279 contains the supplementary crystallographic information for this compound. It can be obtained free of charge from the Cambridge Crystallographic Data Centre.

Figure S4. ORTEP representation of **6k** obtained by single-crystal X-ray diffraction analysis. The ellipsoids are drawn at the 50% probability level and H atoms are represented as fixed-size spheres of 0.15 Å radius. These measurements allowed the unambiguous determination of the absolute configuration in **6k** to be (*aS*) as depicted.

Table S3. Cryst	al data and s	structure refinemer	nt for CCDC 2019279
-----------------	---------------	---------------------	---------------------

Empirical formula	$C_{34}H_{25}BrO_2$
Formula weight	545.45
Temperature/K	295
Crystal system	orthorhombic
Space group	P212121
a/Å	9.19570(10)
b/Å	15.9140(2)
c/Å	17.6662(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2585.28(6)
Z	4
ρ _{calc} g/cm ³	1.401
µ/mm ⁻¹	2.395
F(000)	1120.0
Crystal size/mm ³	0.14 × 0.03 × 0.01

Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	7.476 to 142.026
Index ranges	-10 ≤ h ≤ 11, -19 ≤ k ≤ 19, -21 ≤ l ≤ 21
Reflections collected	28374
Independent reflections	4945 [R _{int} = 0.0456, R _{sigma} = 0.0307]
Data/restraints/parameters	4945/0/338
Goodness-of-fit on F ²	1.043
Final R indexes [I>=2σ (I)]	R ₁ = 0.0379, wR ₂ = 0.0971
Final R indexes [all data]	R ₁ = 0.0438, wR ₂ = 0.1014
Largest diff. peak/hole / e Å ⁻³	0.35/-0.36
Flack parameter	-0.02(2)

5d, 94% ee

6I, 68%, 94% *ee*

A round bottom flask containing the aryne precursor **5d** (92 mg, 0.13 mmol, 94% ee) was charged with 3 mL of anhydrous toluene. The toluene was evaporated by rotary evaporation and the step was repeated twice to remove all moisture. Then the flask was charged with 0.5 mL of Et₂O and anthracene (112 mg, 0.63 mmol) under an argon atmosphere. The suspension was cooled down to 0 °C and trimethylsilylmagnesium chloride (1 M in Et₂O, 1.3 mmol) was added slowly at this temperature. After stirring overnight at 0 °C, the mixture was guenched with water. The mixture was extracted three times with EtOAc and the combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (pentane/EtOAc = 100:1) to afford the 6I (54 mg, 68%) as a colorless oil; HRMS (ESI+) m/z calcd for C₃₉H₄₃NOSiBr⁺ [M+NH₄]⁺ 650.2279, found 650.2280; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.6 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.6 Hz, 1H), 7.49 (ddd, J = 8.8, 7.0, 1.0 Hz, 1H), 7.41 (dd, J = 7.8 Hz, 1H), 7.20 (ddd, J = 8.9, 7.1, 1.1 Hz, 1H), 7.05 (dd, J = 7.2 Hz, 1H), 7.02–6.92 (m, 3H), 6.9 (d, J = 8.6 Hz, 1H), 6.81 (ddd, 8.2, 6.9, 1.2 Hz, 1H), 6.53 (d, 7.2 Hz, 1H), 5.80 (s, 1H), 4.60 (s, 1H), 4.24 (dd, J = 14.0, 2.6 Hz, 2H), 2.78 (s, 3H), 1.91 (s, 3H), 0.89 (s, 9H), -0.09 (s, 3H), -0.12 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.2 (C), 145.1 (C), 145.1 (C), 145.1 (C), 143.3 (C), 143.1 (C), 137.3 (C), 133.5 (C), 133.3 (C), 133.0 (C), 132.2 (C), 132.0 (C), 131.9 (C), 128.2 (CH), 128.1 (CH), 126.3 (CH), 126.0 (CH), 125.8 (CH), 125.5 (C), 125.5 (CH), 125.3 (CH), 125.2 (2CH), 124.8 (CH), 124.2 (CH), 123.8 (CH), 123.7 (CH), 123.5 (CH), 63.2 (CH₂), 51.9 (CH), 51.7 (CH), 26.1 (3CH₃), 21.5 (CH₃), 20.0 (CH₃), 18.5 (C), -5.3 (CH₃), -5.3 (CH₃); HPLC Lux-Cellulose-2 column, heptane/isopropanol = 99.5:0.5, 1 mL/min, 254 nm, retention time: t_{minor} = 5.07 min, t_{major} = 5.57 min, 95.5% ee; **Specific rotation** $[\alpha]_{D^{25}} = -20.2$ (c = 1.0, CHCl₃).

5c, 97% *ee*

8, 43%, 96% *ee*

Prior to the synthesis of **8**, we prepared isobenzofuran by a retro-Diels–Alder cycloaddition of 1,4-dihydro-1,4-epoxynaphthalene (itself obtained from the Diels–Alder cycloaddition between benzyne and furan) promoted by 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine as described by Peña, Moresco and co-workers,⁴ except we performed the reaction in toluene instead of dichloromethane. After concentration in vacuum at 20 degrees, the crude material was purified by standard silica gel chromatography eluted with 2:8 ethyl acetate/cyclohexane without any special precaution to afford pure isobenzofuran, as described by Peters and Herges.⁵ We confirm that solid isobenzofuran can be stored without detectable degradation at -18 °C for several weeks, previously reported as up to 8 months at -15 °C by Peters and Herges.

A round bottom flask containing the aryne precursor 5c (46 mg, 0.072 mmol, 97.5% ee) was charged with 3 mL of anhydrous toluene. The toluene was evaporated by rotary evaporation and this step was repeated twice to remove all moisture. Then the flask was charged with 0.3 mL of Et₂O and freshly prepared isobenzofuran (84 mg, 0.72 mmol) diluted in anhydrous toluene (1 mL) under an argon atmosphere. The suspension was cooled down to 0 °C and trimethylsilylmagnesium chloride (1 M in Et₂O, 0.72 mmol) was added slowly at this temperature. After stirring 15 h at 0 °C, the reaction mixture was guenched with water. The aqueous layer was extracted three times with EtOAc and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (pentane/EtOAc = 20:1) to afford the two diastereomers of the intermediate cycloadduct (colorless oil, 30 mg). This material was directly diluted in anhydrous dichloromethane (2 mL), and Et₃SiH (42 mg, 0.36 mmol) and TFA (41 mg, 0.36 mmol) were subsequently added to the solution, resulting in an immediate yellow coloration of the solution. The mixture was stirred at 25 °C until starting material is no longer detectable by TLC analysis (1 hour). The reaction was guenched with a saturated NaHCO₃ agueous solution at this temperature and extracted with dichloromethane two times. After concentration under reduced pressure, flash column chromatography on silica gel (pentane/EtOAC = 20:1) afforded the desired anthracene atropisomer 8 (15 mg, 43% after two steps) as a colorless oil. HRMS (ESI+) m/z calcd for $C_{28}H_{22}O_2Br^+$ [M+H]⁺ 471.0782, found 471.0783; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 8.20 (d, J = 8.2 Hz, 1H), 8.07 (d, J = 8.8 Hz, 1H), 8.01–7.98 (m, 2H), 7.55 (ddd, J = 8.7, 6.8, 1.7 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.44 (s, 1H), 7.36 (ddd, J = 8.8, 6.9, 1.2 Hz, 1H), 7.29 (ddd, J = 9.0, 7.0, 1.2 Hz, 1H), 7.28–7.22 (m, 2H), 3.47 (s, 3H), 3.12 (s, 3H), 2.16 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.4 (C), 140.4 (C), 135.4 (C), 134.3 (C), 133.5 (C), 133.2 (C), 132.8 (C), 131.5 (C), 131.5 (C), 130.8 (C), 130.5 (C), 128.5 (C), 128.4 (CH), 128.4 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 127.7 (CH), 127.4 (C), 127.3 (CH), 126.3 (CH), 125.7 (CH), 125.5 (CH), 125.5 (CH), 123.5 (CH), 52.1 (CH₃), 22.8 (CH₃), 20.7 (CH₃); HPLC (S,S)-Whelk-O1 column, heptane/ethanol = 95:5, 1 mL/min, 254 nm, retention time: t_{maior} = 8.66 min, $t_{minor} = 9.74$ min, 96.5% ee; **Specific rotation** $[\alpha]_D^{25} = -34.7$ (c = 1.0, CHCl₃).

⁽⁴⁾ Eisenhut, F.; Kühne, T.; García, F.; Fernańdez, S.; Guitiań, E.; Perez, D.; Trinquier, G.; Cuniberti, G.; Joachim, C.; Peña, D.; Moresco, F. Dodecacene Generated on Surface: Reopening of the Energy Gap. ACS Nano 2020, 14, 1011–1017.

⁽⁵⁾ Peters, M. K.; Herges, R. Preparation and isolation of isobenzofuran. *Beilstein J. Org. Chem.* **2017**, *13*, 2659–2662.

Computational studies

The density functional theory (DFT) calculations reported in this section were performed with the Gaussian16 suite.⁶ All geometries were fully optimized using the B3LYP hybrid density functional⁷ with either the 6-311+G(d,p) or 6-311++G(d,p) or 6-31G(d) or 6-31+G(d,p) basis set in the gas phase or using the IEFPCM solvation model for acetonitrile or diethylether or chloroform.⁸ Dispersion effects were accounted for using Grimme's D3 dispersion model.⁹ The second derivatives were analytically calculated in order to determine if a minimum (zero negative eigenvalue) or a transition state (one negative eigenvalue) existed for the resulting geometry. The connection between the transition states and the corresponding minima was performed manually by steepest descend optimization. All energies are relative free Gibbs energies expressed in kJ/mol as computed at 298 K. The Cartesian coordinates, number of negative eigenvalues, absolute free Gibbs energies expressed in Hartrees (1 Ha = 2625.5 kJ.mol⁻¹) of all stationary points are reported at the end of this section.

Aryne atropisomers 2a (R = Me) and 2c: geometries and configurational stabilities

Exploration of the potential energy surface for both aryne atropisomers **2a** (R = Me) and **2c** was first performed at the B3LYP/6-31+G(d) level of theory in the gas phase. Four possible transitions states corresponding to the enantiomerization could be located in each case due to rotations around both the biaryl stereogenic axes and the ester $C(sp^2)-C(sp^2)$ bonds as illustrated in Figure S5. At this level of theory, the influence of the conformation of the ester group was found negligible, and as expected, the less energy demanding transition states were identified with the $C(sp^2)$ atom of the ester group overhanging the naphthyl unit in **TS-enant-2a-conf1** and the methyl group in **TS-enant-2c-conf1**.

⁽⁶⁾ Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

^{(7) (}a) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev.* **1988**, *A38*, 3098–3100. (b) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, *98*, 5648–5652. (c) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev.* **1988**, *B37*, 785–789.

⁽⁸⁾ Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. *J. Chem. Phys.* **2010**, *132*, 114110.

⁽⁹⁾ Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

Figure S5. The four possible transitions states for the enantiomerization of aryne atropisomer **2a** (top) and **2c** (bottom). Relative free Gibbs energies calculated at 298 K using B3LYP/6-31+G(d) in the gas phase expressed in kJ/mol.

For both aryne atropisomers **2a** and **2c**, the geometries and relative free Gibbs energies of the kinetically favored enantiomerization transition states identified above were recomputed at the B3LYP-D3/6-311++G(d,p) level of theory including a solvation model for diethylether (Figure S6). The barriers to enantiomerization of the corresponding virtual biaryl derivatives having two C(sp²)–H bonds in place of the aryne triple bond were also computed for comparison. The optimized geometries of aryne atropisomers **2a** and **2c** are depicted in Figure S7.

Figure S6. Computed enantiomerization energy profiles for the aryne atropisomer **2a** (top) and **2c** (bottom) and comparison with those of the corresponding virtual biaryl derivatives having two $C(sp^2)$ –H bonds in place of the aryne triple bond. Relative free Gibbs energies calculated at 298 K using B3LYP-D3/6-311++G(d,p) in diethylether (iefpcm) expressed in kJ/mol.

Figure S7. Optimized geometries of aryne atropisomers **2a** (R = Me, left) and **2c** (right) obtained by DFT calculations [B3LYP-D3/6-311++G(d,p) in diethylether (iefpcm)].

7,8-[5]helicynes: geometry and configurational stability

For comparison, the barriers to enantiomerization 7,8-[5]helicyne, [5]helicene, ¹⁰ 1,14-dimethyl-7,8-[5]helicyne and 1,14-dimethyl-[5]helicene¹¹ were also computed (Figure S8).

Figure S8. Computed enantiomerization energy profiles for 7,8-[5]helicyne, [5]helicene, 1,14-dimethyl-7,8-[5]helicyne and 1,14-dimethyl-[5]helicene. Relative free Gibbs energies calculated at 298 K using B3LYP/6-311++G(d,p) in diethylether (iefpcm) expressed in kJ/mol.

⁽¹⁰⁾ Goedicke, C.; Stegemeyer, H. Resolution and racemization of pentahelicene. *Tetrahedron Lett.* **1970**, *11*, 937–940.

⁽¹¹⁾ Ravat, P.; Hinkelmann, R.; Steinebrunner, D.; Prescimone, A.; Bodoky, I.; Juríček, M. Configurational Stability of [5]Helicenes. *Org. Lett.* **2017**, *19*, 3707–3710.

1,2-Elimination vs thia-Fries rearrangement

The experimental investigations reported in the present study revealed a propensity of the Kobayashi-type precursors (e.g. **4a**) of the aryne atropisomers to undergo a thia-Fries rearrangement instead of the expected 1,2-elimination. A simplistic modeling of both transformations using DFT methods with a H atom or a 2,6-dimethylphenyl substituent vicinal to the sulfonate leaving group provided some clues on the physical reasons at the origin of this tendency. As can be seen from Figure S9, the introduction of a 2,6-dimethylphenyl substituent next to sulfonate group resulted in an increase of the barrier to the 1,2-elimination [with $\Delta(\Delta G^{\ddagger}) = +2.8 \text{ kJ/mol}$] and a decreased of the barrier to the thia-Fries rearrangement [with $\Delta(\Delta G^{\ddagger}) = -8.6 \text{ kJ/mol}$], both effects favoring kinetically the thia-Fries rearrangement over the 1,2-elimination. The principal physical effect at the origin of these variations is seemingly the van der Waals repulsion (steric effect) from the hindered 2,6-dimethylphenyl substituent that induces modifications in the conformational preferences of the reactive species.

Figure S9. Model energy profiles of the 1,2-elimination and the thia-Fries rearrangement of the two virtual (2-triflate)aryl potassium reactive species **A1** and **A1-Ar**. Free Gibbs energies were calculated at 298 K using B3LYP-D3/6-311+G(d,p) in acetonitrile and are expressed in kJ/mol.

Cartesian coordinates, number of negative eigenvalues and absolute free Gibbs energies at 298 K in Hartrees for all stationary points

A1						TS(A1-B	5)				
Center Number	Atomic Number	Atomic Type	Coorc X	Coordinates (Angstroms) X Y Z		Center Number	Atomic Number	Atomic Type	Coord X	linates (Ang Y	stroms) Z
1	6	0	1.312823	-0.813837	-0.288052	1	6		1.787269	-0.473322	-0.293852
2	6	Θ	1.658572	-2.157274	-0.362259	2	6	Θ	2.147668	-1.795939	-0.325865
3	6	Θ	2.999614	-2.467415	-0.130915	3	6	Θ	3.533710	-1.940188	-0.160923
4	6	Θ	3.891772	-1.434893	0.174747	4	6	Θ	4.344228	-0.806840	0.007375
5	6	Θ	3.439568	-0.110656	0.244370	5	6	Θ	3.794340	0.481344	0.014756
6	6	Θ	2.096792	0.276249	0.005227	6	6	Θ	2.395316	0.668665	-0.151782
7	1	Θ	3.335539	-3.497036	-0.182779	7	1	Θ	3.967871	-2.933564	-0.164930
8	1	Θ	4.936759	-1.667328	0.361048	8	1	Θ	5.414576	-0.936977	0.133894
9	1	Θ	4.177143	0.652777	0.494027	9	1	Θ	4.457520	1.332886	0.149049
10	8	Θ	-0.131314	-0.593716	-0.626762	10	8	Θ	-0.082240	-0.408531	-0.621713
11	16	Θ	-1.035524	0.244432	0.370674	11	16	Θ	-1.036278	-0.336259	0.559669
12	8	Θ	-0.817037	-0.108673	1.765029	12	8	Θ	-0.995388	-1.501154	1.445096
13	8	Θ	-1.129592	1.649893	-0.013544	13	8	Θ	-1.050564	0.988190	1.202890
14	6	Θ	-2.672773	-0.542648	-0.153599	14	6	Θ	-2.688220	-0.445068	-0.348689
15	9	Θ	-2.872905	-0.373666	-1.459025	15	9	Θ	-2.811081	0.566976	-1.214079
16	9	Θ	-3.656093	0.052369	0.524644	16	9	Θ	-3.689103	-0.376720	0.537557
17	9	Θ	-2.664851	-1.842881	0.131811	17	9	Θ	-2.782176	-1.599767	-1.015219
18	1	Θ	0.926092	-2.922806	-0.591994	18	1	Θ	1.472836	-2.629860	-0.457004
19	19	Θ	1.379096	3.101257	-0.248572	19	19	Θ	0.523607	2.972280	-0.107702
0 negativ Sum of el R	e eigenvalue ectronic and	e d thermal Free	e Energies=	-1792	. 646047	1 negativ Sum of el	e eigenvalue ectronic and	e I thermal Free	e Energies=	-1792	.643187
						·····					
Center	Atomic	Atomic	Coord	linates (Ang	stroms) 7	Center	Atomic	Atomic	Coord	linates (Ang	stroms) 7
		туре	^		ـــــ			туре	^		۷۲
1	6	Θ	2.485334	0.016887	-0.371184	1	6	Θ	1.496429	-0.074339	-0.115076
2	6	Θ	2.469668	-1.348152	-0.158644	2	6	Θ	2.321901	0.405205	0.896013
3	6	Θ	3.776211	-1.786599	0.150319	3	6	0	3.641051	-0.046455	0.880723
4	6	Θ	4.874772	-0.909926	0.216832	4	6	0	4.039835	-0.932064	-0.127301
5	6	Θ	4.756571	0.476167	-0.019498	5	6	0	3.125246	-1.351840	-1.101190
6	6	Θ	3.442609	0.811649	-0.319121	6	6	0	1.769435	-0.931515	-1.143352
7	1	Θ	3.932548	-2.842551	0.345693	7	1	0	1.964267	1.094716	1.652670
8	1	0	5.852897	-1.311965	0.460298	8	1	0	4.340293	0.288251	1.638725
9	1	Ō	5.602405	1.148815	0.035391	9	1	õ	5.065629	-1.290646	-0.148911
10	8	Ō	-0.735125	0.377965	-1.080252	10	1	õ	3.494968	-2.040155	-1.861932
11	16	Ō	-1.157463	-0.491408	0.045649	11	8	õ	0.106129	0.546452	-0.067389
12	8	ē	-0.871646	-1.926028	-0.126661	12	16	õ	-1.070833	-0.055479	0.808147
13	8	õ	-0.836097	0.073435	1.375107	13		õ	-0.596035	-0.868996	1.913537
14	6	Ō	-3.038736	-0.392562	-0.026442	14	8	õ	-2.013852	1.034911	1.022716
15	9	0	-3.447937	0.879591	0.112549	15	6	Θ	-1.936267	-1.235056	-0.400163

16	9	Θ	-3.593473	-1.120908	0.955566	16	9	Θ	-2.035086	-0.666922	-1.599980
17	9	Θ	-3.497628	-0.854016	-1.200723	17	9	Θ	-3.162241	-1.478834	0.072641
18	1	0	1.612158	-2.005469	-0.203677	18	9	0	-1.270936	-2.379846	-0.495858
19	19	0	0.1/4480	2.806524	0.086646	19	19		-0.328062	3.30859/	-0.646893
0 negativ	e eigenvalue					0 negativ	e eigenvalue	5			
Sum of el	ectronic and	thermal Fre	e Energies=	-1792	.654901	Sum of el	ectronic and	d thermal Fre	e Energies=	-1792	.638667
			U						U		
TS(A2-C	C)					С					
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Υ	Z	Number	Number	Туре	X	Y	Z
1	6	 0	1.443059	0.527433	0.149605	1	6	 0	1.612438	-1.054057	0.209545
2	6	0	2.386467	1.538040	0.007478	2	6	õ	2.153159	-2.370367	0.038859
3	6	Θ	3.710006	1.126924	-0.189895	3	6	Θ	1.353664	-3.473925	-0.182209
4	6	Θ	4.016276	-0.235516	-0.226246	4	6	Θ	-0.047811	-3.366319	-0.256956
5	6	0	2.999475	-1.193659	-0.070309	5	6	Θ	-0.634739	-2.119987	-0.112365
6	6	Θ	1.656289	-0.833093	0.120743	6	6	Θ	0.176090	-0.995378	0.099530
7	1	0	2.118751	2.588351	0.044230	7	1	Θ	3.231929	-2.467243	0.100014
8	1	Θ	4.490856	1.869904	-0.309737	8	1	Θ	1.817300	-4.448472	-0.298426
9	1	Θ	5.045444	-0.549763	-0.375768	9	1	Θ	-0.664145	-4.239940	-0.426129
10	1	Θ	3.284373	-2.245146	-0.106324	10	1	Θ	-1.711182	-2.038024	-0.166925
11	8	Θ	0.089159	0.925212	0.332847	11	8	Θ	2.332252	-0.025909	0.442967
12	16	Θ	-0.934672	-0.311432	0.791214	12	16	Θ	-0.491850	0.629070	0.317852
13	8	Θ	-0.682819	-0.905888	2.101274	13	8	Θ	-0.518902	1.056710	1.724826
14	8	Θ	-2.205600	0.429417	0.654162	14	8	Θ	0.038175	1.584268	-0.674632
15	6	0	-1.186131	-1.678765	-0.552305	15	6	Θ	-2.339848	0.504560	-0.163370
16	9	Θ	-0.741393	-1.245077	-1.728546	16	9	Θ	-2.495248	0.013807	-1.395537
17	9	Θ	-2.504178	-1.903530	-0.652301	17	9	Θ	-2.825693	1.747149	-0.126888
18	9	Θ	-0.598269	-2.811981	-0.213448	18	9	Θ	-3.023298	-0.250416	0.702124
19	19	Θ	-1.744667	3.045619	-0.458098	19	19	Θ	2.728628	2.413999	-0.350261
1 negativ	e eigenvalue					0 negativ	e eigenvalue				
Sum of el	ectronic and	thermal Fre	e Energies=	-1792.0	531083	Sum of el	ectronic and	d thermal Fre	e Energies=	-1792.	731740
A1-Ar						TS(A1-A	r-B-Ar)				
				dinatac (Arr						dinator (Arro	
Number	Atomic Number	Atomic Type	Loord X	uinates (Ang: Y	z Z	Number	Atomic Number	Atomic Type	Loord X	ainates (Ang: Y	STROMS) Z
1	6	0	-0.747640	1.253956	0.131230	1	6	0	0.542738	1.695730	-0.019745
2	6	0	0.513651	1.838731	0.003441	2	6	0	-0.824275	1.851706	-0.020750
3	6	Θ	0.502518	3.213144	-0.264213	3	6	0	-1.132399	3.216020	0.160905
4	6	0	-0.712572	3.887414	-0.401929	4	6	0	-0.123631	4.177121	0.308122
5	6	Θ	-1.922911	3.194640	-0.278013	5	6	0	1.229319	3.816655	0.277132
6	6	0	-1.997247	1.808935	0.004804	6	6	0	1.589773	2.457185	0.094627
7	1	Θ	1.445096	3.739764	-0.367165	7	1	0	-2.176613	3.508443	0.179990
8	1	0	-0.708568	4.954204	-0.609729	8	1	0	-0.404642	5.217250	0.442827
9	1	Θ	-2.842302	3.766539	-0.405370	9	1	Θ	1.985570	4.589940	0.389153
10	8	Θ	-0.668882	-0.198632	0.514476	10	8	Θ	0.919717	-0.141774	-0.388118

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-						-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	16	Θ	-1.128336	-1.304618	-0.518783	11	16	Θ	1.199866	-1.131211	0.729097
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	8	Θ	-2.456166	-1.817784	-0.192818	12	8	Θ	2.643553	-1.363931	0,907388
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2	ő	0	0.010277	0.050464	1 005640	1 2	ő	0	2.0.00000	0.000000	1 020670
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	ŏ	0	-0.8103//	-0.958464	-1.895649	13	8	0	0.402068	-0.928628	1.938670
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	6	Θ	0.095392	-2.640541	0.024366	14	6	0	0.548027	-2.726267	-0.040822
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	9	Θ	1 329645	-7 793443	-0 320341	15	9	Θ	-0 768644	-2 649697	-0 238703
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	<u>o</u>	õ		2 700052	0 500707	16	õ	õ	0 901774	2 755061	0 770767
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	5	0	-0.232342	-3.700555	-0.300702	10	5	0	0.001/24	-3.755004	0.775707
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17	9	0	0.030681	-2.816317	1.343426	17	9	Θ	1.150520	-2.956713	-1.214198
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18	19	Θ	-4.425170	0.266119	0.551634	18	19	0	3.960291	0.809632	-0.677739
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	6	Θ	1 797539	1 070/00	0 134554	10	6	٥	-1 870638	0 808032	-0 19/975
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	ç	0	1.752555	1.075405	1 410210	10	Č	0	2 104200	0.000002	1 472600
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	6	U	2.260446	0./09288	1.410218	20	б	0	-2.104398	0.268003	-1.4/3600
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21	6	Θ	2.519293	0.735324	-1.021484	21	6	Θ	-2.626220	0.388722	0.915870
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	22	6	Θ	3,464299	0.005856	1.513822	22	6	Θ	-3,108303	-0.692347	-1.625969
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		c c	õ	2 710025		0 991042		ć	0	2 610170	0 570226	0 726901
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25	0	U	5./10955	0.029297	-0.001943	25	0	0	-3.0101/0	-0.5/9520	0.720001
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	6	Θ	4.192341	-0.3328/2	0.3/589/	24	6	Θ	-3.861342	-1.1159/3	-0.534338
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25	1	Θ	3.831269	-0.278126	2.494829	25	1	0	-3.295879	-1.113051	-2.608383
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	26	1	Õ	4 280396	-0 243932	-1 769485	26	1	0	-4 200190	-0 915614	1 578578
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	ů o	4.200990	0.245552	1.703403	20	1	0	4.200150		1.570570
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	T	0	5.123835	-0.880/60	0.469423	27	1	0	-4.634362	-1.865459	-0.665/39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	6	Θ	1.472949	1.053992	2.651397	28	6	0	-1.283178	0.705202	-2.661559
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29	1	Θ	1 228510	2 119246	7 684877	29	1	Θ	-1 281369	1 793821	-2 766478
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	1	ő	0 524605		2.001022	20	1	0	0 242109	0 202127	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	1	0	0.524605	0.309133	2.0/1/45	50	1	0	-0.242198	0.393137	-2.541922
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	1	0	2.031630	0.799888	3.554040	31	1	Θ	-1.669003	0.271528	-3.585835
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	32	6	0	2.006108	1.093974	-2.396631	32	6	Θ	-2.362188	0.946326	2.294163
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	1	Ô	0 989367	0 710177	-7 539171	22	1	0	-1 308773	0 8301/8	2 556502
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	1	0	1 072207	0.710172	-2.333121	24	1	0	-1.5002/5	0.030140	2.330302
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34		1-1	1 9//38/	/ /////	-/.54/0/3	34	T	Θ	-2.598840	2.012463	2.348346
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-	U	1.572507	2.177505	21912025						
Center Atomic Atomic Coordinates (Angstroms) Coordinates (Angstroms) Number Number Type X Y Z Center Atomic Atomic Coordinates (Angstroms) 1 6 0 1.718608 1.351623 -0.171044 1 6 0 0.200080 1.481163 -0.317156 2 6 0 2.302790 0.106410 -0.166870 2 6 0 -1.171450 1.61141 -0.083511 3 6 0 3.461101 2.701498 -0.8458380 4 6 0 -1.71450 1.611941 -0.083511 5 6 0 3.461101 2.701498 -0.845878 3 6 0 -1.714503 3.984083 -0.5777004 6 6 0 2.131864 2.488533 -0.475812 5 6 0 0.588113 3.73363 -0.577704 8 1 0 5.264109 1.551965 -1.123025 <t< th=""><th>35 O negative Sum of ele</th><th>1 e eigenvalue ectronic and</th><th>0 thermal Free</th><th>2.643728 Energies=</th><th>-2102</th><th>-3.173388</th><th>35 1 negativ Sum of el</th><th>1 e eigenvalue ectronic and</th><th>0 thermal Free</th><th>-2.963340 e Energies=</th><th>0.428161</th><th>3.043690 </th></t<>	35 O negative Sum of ele	1 e eigenvalue ectronic and	0 thermal Free	2.643728 Energies=	-2102	-3.173388	35 1 negativ Sum of el	1 e eigenvalue ectronic and	0 thermal Free	-2.963340 e Energies=	0.428161	3.043690
NumberNumberTypeXYZNumberNumberTypeXYZ1601.7186081.351623-0.1710441600.2000801.481163-0.3171562602.3027900.166410-0.166870260-1.1714501.611941-0.0835113603.6620220.271314-0.485838360-1.6524882.926058-0.1078614603.6620220.271314-0.485838360-0.7730333.984083-0.3846315603.4611012.701498-0.8544345600.554153.733633-0.5770046602.1318642.488533-0.4785146601.1471372.433419-0.5737757104.294589-0.610605-0.485878710-2.7091583.106140-0.3612119103.8973523.654270-1.1286149101.250424.595955-0.7681241080-0.9153520.7282650.47889210800.618943-0.23312-0.32741111160-1.025950-0.183370-1.85314013801.426760-1.9928240.7398641280-1.025950-0.183370-1.85314013801.426760-	35 0 negative Sum of ele	1 e eigenvalue ectronic and	0 0 thermal Free	2.643728	-2102	-3.173388 	35 1 negativ Sum of el	1 e eigenvalue ectronic and	0 thermal Free	-2.963340 e Energies=	0.428161 -2102	3.043690
Number Type X Y Z Number Number Type X Y Z 1 6 0 1.718608 1.351623 -0.171044 1 6 0 0.200080 1.481163 -0.317156 2 6 0 2.302790 0.106410 -0.106870 2 6 0 -1.171450 1.611941 -0.083511 3 6 0 3.662022 0.271314 -0.485838 3 6 0 -1.652488 2.926058 -0.107861 4 6 0 2.131864 2.488533 -0.475303 3.984083 -0.348631 5 6 0 3.1864 2.488533 -0.478514 6 6 0 1.147137 2.434491 -0.573775 7 1 0 4.294589 -0.610605 -0.485878 7 1 0 -1.255111 5.001640 -0.361211 9 1 0 3.264109 1.551955	35 0 negative Sum of ele	e eigenvalue ectronic and	thermal Free	2.643728	-2102	.306466	35 1 negativ Sum of el A2-Ar	1 e eigenvalue ectronic and	0 thermal Free	-2.963340 e Energies=	0.428161	3.043690
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35 0 negative Sum of ele B-Ar Center	e eigenvalue ectronic and Atomic	thermal Free Atomic	Energies=	0.667328 -2102 dinates (Ang	-3.173388 .306466 stroms)	35 1 negativ Sum of el A2-Ar Center	1 e eigenvalue ectronic and Atomic	0 thermal Free Atomic	-2.963340 e Energies= Coord	0.428161 -2102 dinates (Ang	3.043690 .302558 .stroms)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35 0 negative Sum of ele B-Ar Center Number	e eigenvalue ectronic and Atomic Number	0 0 thermal Free Atomic Type	2.643728 Energies= Coord	0.667328 -2102 dinates (Ang Y	-3.173388 .306466 stroms) Z	35 1 negativ Sum of el A2-Ar Center Number	1 e eigenvalue ectronic and Atomic Number	0 thermal Free Atomic Type	-2.963340 e Energies= Coord X	0.428161 -2102 dinates (Ang: Y	3.043690 .302558 .stroms) Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35 0 negative Sum of ele B-Ar Center Number	e eigenvalue ectronic and Atomic Number	thermal Free Atomic Type	Energies=	0.667328 -2102 dinates (Ang Y	-3.173388 .306466 stroms) Z	35 1 negativ Sum of el A2-Ar Center Number	1 e eigenvalue ectronic and Atomic Number	0 thermal Free Atomic Type	-2.963340 e Energies= Coord X	0.428161 -2102 dinates (Ang Y	3.043690 .302558 stroms) Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35 0 negative Sum of ele B-Ar Center Number	1 e eigenvalue ectronic and Atomic Number 6	0 0 thermal Free Atomic Type 0	2.643728 Energies= Coord X 1.718608	0.667328 -2102 dinates (Ang Y 1.351623	-3.173388 .306466 stroms) Z -0.171044	35 1 negativ Sum of el A2-Ar Center Number 1	1 e eigenvalue ectronic and Atomic Number 6	0 thermal Free Atomic Type 0	-2.963340 e Energies= Coord X 0.200080	0.428161 -2102 dinates (Ang: Y 1.481163	3.043690 .302558 stroms) Z -0.317156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35 0 negative Sum of ele B-Ar Center Number 1 2	e eigenvalue ectronic and Atomic Number 6	0 0 thermal Free Atomic Type 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790	0.667328 -2102 dinates (Ang Y 1.351623 0.106410	-3.173388 .306466 stroms) Z -0.171044 -0.106870	35 1 negativ Sum of el A2-Ar Center Number 1 2	1 e eigenvalue ectronic and Atomic Number 6 6	0 thermal Free Atomic Type 0 0	-2.963340 e Energies= Coord X 0.200080 -1 171450	0.428161 -2102 dinates (Ang Y 1.481163 1.611941	3.043690 .302558 stroms) Z -0.317156 -0.083511
4 6 0 -0.773033 3.984083 -0.348631 5 6 0 3.461101 2.701498 -0.854434 5 6 0 0.585415 3.733633 -0.577004 6 6 0 2.131864 2.488533 -0.4785144 6 6 0 1.147137 2.433419 -0.573775 7 1 0 4.294589 -0.610605 -0.485878 7 1 0 -2.709158 3.106119 0.658211 8 1 0 5.264109 1.551965 -1.123025 8 1 0 -1.155111 5.001640 -0.361211 9 1 0 3.897352 3.654270 -1.128614 9 1 0 1.225042 4.595955 -0.768124 10 8 0 -0.915352 0.728265 0.475892 10 8 0 1.681453 -0.553595 0.690271 12 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864	35 0 negative Sum of ele B-Ar Center Number	1 e eigenvalue ectronic and Atomic Number 6 6	0 thermal Free Atomic Type 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 2.6423728	0.667328 -2102 dinates (Ang Y 1.351623 0.106410	-3.173388 .306466 stroms) Z -0.171044 -0.106870	35 1 negativ Sum of el A2-Ar Center Number 1 2	1 e eigenvalue ectronic and Atomic Number 6 6	0 thermal Free Atomic Type 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450	0.428161 -2102 dinates (Ang. Y 1.481163 1.611941	3.043690 .302558 .stroms) Z -0.317156 -0.083511
5 6 0 3.461101 2.701498 -0.854434 5 6 0 0.585415 3.733633 -0.577004 6 6 0 2.131864 2.488533 -0.478514 6 6 0 1.147137 2.433419 -0.573775 7 1 0 4.294589 -0.610605 -0.485878 7 1 0 -2.709158 3.106119 0.636211 9 1 0 5.264109 1.551965 -1.123025 8 1 0 -1.155111 5.001640 -0.636121 9 1 0 3.897352 3.654270 -1.128614 9 1 0 1.225042 4.595955 -0.768124 10 8 0 -0.915352 0.728265 0.475892 10 8 0 0.618943 0.023512 -0.327411 11 16 0 -1.700543 0.549852 -0.771446 11 16 0 1.481453 -0.553595 0.690271 12 8 0 -1.426760 1.992824 0.739864 13	35 0 negative Sum of ele B-Ar Center Number 1 2 3	e eigenvalue ectronic and Atomic Number 6 6	0 0 thermal Free Atomic Type 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022	0.667328 -2102 dinates (Ang Y 1.351623 0.106410 0.271314	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838	35 1 negativ Sum of el A2-Ar Center Number 1 2 3	1 e eigenvalue ectronic and Atomic Number 6 6 6	0 thermal Free Atomic Type 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488	0.428161 -2102 dinates (Ang. Y 1.481163 1.611941 2.926058	3.043690 .302558 stroms) Z -0.317156 -0.083511 -0.107861
6 6 0 2.131864 2.488533 -0.478514 6 6 0 1.147137 2.433419 -0.573775 7 1 0 4.294589 -0.610605 -0.485878 7 1 0 -2.709158 3.106119 0.058321 8 1 0 5.264109 1.551965 -1.123025 8 1 0 -1.155111 5.001640 -0.361211 9 1 0 3.897352 3.654270 -1.128614 9 1 0 1.225042 4.595955 -0.768124 10 8 0 -0.915352 0.728265 0.475892 10 8 0 0.618943 0.023512 -0.327411 11 16 0 -1.681453 -0.53595 0.690271 12 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864 14 6 0 -3.071326 -0.624172 -0.227813 14 6 0 3.348344 -0.406267 -0.227570 <tr< td=""><td>35 0 negative Sum of ele B-Ar Center Number 1 2 3 4</td><td>1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6</td><td>0 thermal Free Atomic Type 0 0 0 0 0</td><td>2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452</td><td>-2102 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657</td><td>-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830</td><td>35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4</td><td>1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6</td><td>0 thermal Free Atomic Type 0 0 0 0</td><td>-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033</td><td>0.428161 -2102 dinates (Ang Y 1.481163 1.611941 2.926058 3.984083</td><td>3.043690 .302558 .302558 </td></tr<>	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6	0 thermal Free Atomic Type 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452	-2102 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6	0 thermal Free Atomic Type 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033	0.428161 -2102 dinates (Ang Y 1.481163 1.611941 2.926058 3.984083	3.043690 .302558 .302558
7 1 0 4.294589 -0.610605 -0.485878 7 1 0 -2.709158 3.106119 0.0361211 9 1 0 5.264109 1.551965 -1.123025 8 1 0 -1.155111 5.001640 -0.361211 9 1 0 3.897352 3.654270 -1.128614 9 1 0 1.225042 4.595955 -0.768124 10 8 0 -0.915352 0.728265 0.475892 10 8 0 0.618943 0.023512 -0.327411 11 16 0 -1.700543 0.549852 -0.771446 11 16 0 1.681453 -0.553595 0.690271 12 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864 14 6 0 -3.071326 -0.624172 -0.227813 14 6 0 3.348344 -0.406267 -0.227570 15 9 0 -2.558685 -1.790975 0.194269 1	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6	0 0 thermal Free Atomic Type 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101	0.667328 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657 2.701498	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.854434	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6	0 thermal Free Atomic Type 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415	0.428161 -2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633	3.043690 .302558 .302558
7 1 0 4.294389 -0.610605 -0.483878 7 1 0 -2.709158 3.1061649 0.658321 8 1 0 5.264109 1.551965 -1.123025 8 1 0 -1.155111 5.001649 -0.361211 9 1 0 3.897352 3.654270 -1.128614 9 1 0 1.25042 4.595955 -0.768124 10 8 0 -0.915352 0.728265 0.475892 10 8 0 0.618943 0.023512 -0.327411 11 16 0 -1.700543 0.549852 -0.771446 11 16 0 1.681453 -0.553595 0.690271 12 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864 14 6 0 -3.071326 -0.624172 -0.227813 14 6 0 3.162033 -0.442677 -0.227570 15 9 0 -3.912184 -0.879857 -1.244135 1	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6	e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6	thermal Free Atomic Type 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864	0.667328 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657 2.701498 2.488533	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.854434 -0.4854434 -0.4854434	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6	0 thermal Free Atomic Type 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1 147137	0.428161 -2102 dinates (Ang. Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419	3.043690 .302558 .302558
8 1 0 5.264109 1.551965 -1.123025 8 1 0 -1.155111 5.001640 -0.361211 9 1 0 3.897352 3.654270 -1.128614 9 1 0 1.225042 4.595955 -0.768124 10 8 0 -0.915352 0.728265 0.475892 10 8 0 0.618943 0.023512 -0.327411 11 16 0 -1.70543 0.549852 -0.771446 11 16 0 1.681453 -0.553595 0.690271 12 8 0 -2.42590 1.773915 -1.181687 12 8 0 1.426760 -1.99284 0.739864 13 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864 14 6 0 -3.071326 -0.624172 -0.227813 14 6 0 3.152033 -0.42974 -1.543013 15 9 0 -3.783615 -0.879857 -1.244135 16<	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 6 6	0 0 thermal Free Atomic Type 0 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.204562	-2102 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657 2.701498 2.488533 0.10601	-3.173388 .306466 .306466 	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 6 6 6 6	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 2.700150	0.428161 -2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419	3.043690 .302558 .302558
9 1 0 3.897352 3.654270 -1.128614 9 1 0 1.225042 4.595955 -0.768124 10 8 0 -0.915352 0.728265 0.475892 10 8 0 0.618943 0.023512 -0.327411 11 16 0 -1.700543 0.549852 -0.771446 11 16 0 1.681453 -0.553595 0.690271 12 8 0 -2.425490 1.773915 -1.181687 12 8 0 1.794700 0.209399 1.920242 13 8 0 -1.025950 -0.624172 -0.227813 14 6 0 3.348344 -0.406267 -0.227570 15 9 0 -2.558685 -1.790975 0.194269 15 9 0 3.152033 -0.442974 -1.543013 16 9 0 -3.788615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.131590 17 9 0 -3.78615 -0.091028 0.779301 1	35 O negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1	0 0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589	-2102 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657 2.701498 2.488533 -0.610605	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.845830 -0.854434 -0.478514 -0.485878	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 6 6 1	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158	0.428161 -2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119	3.043690 .302558 .302558
10 8 0 -0.915352 0.728265 0.475892 10 8 0 0.618943 0.023512 -0.327411 11 16 0 -1.700543 0.549852 -0.771446 11 16 0 1.681453 -0.553595 0.690271 12 8 0 -2.425490 1.773915 -1.181687 12 8 0 1.794700 0.209399 1.920242 13 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864 14 6 0 -3.071326 -0.624172 -0.227813 14 6 0 3.348344 -0.406267 -0.227570 15 9 0 -2.558685 -1.790975 0.194269 15 9 0 3.152033 -0.442574 -1.543013 16 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.98305 0.706479 0.109618 17 9 0 -1.055887 3.380713 1.277504 <t< td=""><td>35 O negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8</td><td>a eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1</td><td>thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109</td><td>-2102 -2102 dinates (Ang Y -1.351623 0.106410 0.271314 1.511657 2.701498 2.488533 -0.610605 1.551965</td><td>-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.85434 -0.478514 -0.485878 -1.123025</td><td>35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8</td><td>1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1</td><td>0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111</td><td>0.428161 -2102 dinates (Ang. Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640</td><td>3.043690 .302558 .302558 </td></t<>	35 O negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8	a eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1	thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109	-2102 -2102 dinates (Ang Y -1.351623 0.106410 0.271314 1.511657 2.701498 2.488533 -0.610605 1.551965	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.85434 -0.478514 -0.485878 -1.123025	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111	0.428161 -2102 dinates (Ang. Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640	3.043690 .302558 .302558
11 16 0 -1.700543 0.549852 -0.771446 11 16 0 1.681453 -0.553595 0.690271 12 8 0 -2.425490 1.773915 -1.181687 12 8 0 1.794700 0.209399 1.920242 13 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864 14 6 0 -3.071326 -0.624172 -0.227813 14 6 0 3.48344 -0.406267 -0.227570 15 9 0 -2.558685 -1.790975 0.194269 15 9 0 3.152033 -0.442974 -1.543013 16 9 0 -3.912184 -0.879857 -1.244135 16 9 0 4.095922 -1.455301 0.131590 17 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.109618 18 19 0 -1.055887 3.380713 1.277504	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9	a eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 1 1 1	0 0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352	-2102 -210 -210	-3.173388 .306466 .306466 	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 1 1 1	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042	0.428161 -2102 dinates (Ang Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640 4.595955	3.043690 .302558 .302558
11 16 0 -1.70543 0.549852 -0.771446 11 16 0 1.681453 -0.553595 0.690271 12 8 0 -2.425490 1.773915 -1.181687 12 8 0 1.794700 0.209399 1.920242 13 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864 14 6 0 -3.071326 -0.624172 -0.227813 14 6 0 3.48344 -0.406267 -0.227570 15 9 0 -2.558685 -1.790975 0.194269 15 9 0 3.152033 -0.442974 -1.543013 16 9 0 -3.783615 -0.879857 -1.244135 16 9 0 4.095922 -1.45301 0.131590 17 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.109618 18 19 0 -1.055887 3.380713 1.277504 <	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10	a eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1 1 8	Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352 -0.915352	0.667328 -2102 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657 2.701498 2.488533 -0.610605 1.551965 3.654270 0.728265	-3.173388 .306466 .306466 	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 1 1 1 1 8	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943	0.428161 -2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640 4.595555 0.023512	3.043690 .302558 .302558
12 8 0 -2.425490 1.773915 -1.181687 12 8 0 1.794700 0.209399 1.920242 13 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864 14 6 0 -3.07126 -0.624172 -0.227813 14 6 0 3.348344 -0.406267 -0.227570 15 9 0 -2.558685 -1.790975 0.194269 15 9 0 3.152033 -0.442974 -1.543013 16 9 0 -3.912184 -0.879857 -1.244135 16 9 0 4.095922 -1.45301 0.131590 17 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.109618 18 19 0 -1.055887 3.380713 1.277504 18 19 0 -0.581567 -2.919812 -1.006560	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10	Atomic Number 6 6 6 6 6 6 6 1 1 1 1	thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352 -0.915352 -0.915352	0.667328 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657 2.701498 2.488533 -0.610605 1.551965 3.654270 0.728265 0.728265	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.854434 -0.478514 -0.478514 -0.485878 -1.123025 -1.128614 0.475892 0.771446	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1 1 1 8 1 5	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943	0.428161 -2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640 4.595955 0.023512	3.043690 .302558 .302558
13 8 0 -1.025950 -0.183370 -1.853140 13 8 0 1.426760 -1.992824 0.739864 14 6 0 -3.071326 -0.624172 -0.227813 14 6 0 3.348344 -0.406267 -0.227570 15 9 0 -2.558685 -1.790975 0.194269 15 9 0 3.152033 -0.442974 -1.543013 16 9 0 -3.912184 -0.879857 -1.244135 16 9 0 4.095922 -1.455301 0.131590 17 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.109618 18 19 0 -1.055887 3.380713 1.277504 18 19 0 -0.581567 -2.919812 -1.006560	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11	a eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1 1 1 8 1 6	thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352 -0.915352 -1.700543	-2102 -210 -210	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.854434 -0.478514 -0.485878 -1.123025 -1.128614 0.475892 -0.771446	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 1 1 1 1 8 16	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943 1.681453	0.428161 -2102 dinates (Ang. Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640 4.595955 0.023512 -0.553595	3.043690 .302558 .302558
14 6 0 -3.071326 -0.624172 -0.227813 14 6 0 3.348344 -0.406267 -0.227570 15 9 0 -2.558685 -1.790975 0.194269 15 9 0 3.152033 -0.442974 -1.543013 16 9 0 -3.912184 -0.879857 -1.244135 16 9 0 4.095922 -1.455301 0.131590 17 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.109618 18 19 0 -1.055887 3.380713 1.277504 18 19 0 -0.581567 -2.919812 -1.006560	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12	a eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 6 1 1 1 1 8 16 8	Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 2.643728 2.643728 Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352 -0.915352 -1.700543 -2.425490	-2102 -210 -210	-3.173388 .306466 .306466 	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 6 1 1 1 1 8 16 8	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943 1.681453 1.794700	0.428161 2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640 4.5955955 0.023512 -0.553595 0.209399	3.043690 .302558 .302558
15 9 0 -2.558685 -1.790975 0.194269 15 9 0 3.152033 -0.442974 -1.543013 16 9 0 -3.912184 -0.879857 -1.244135 16 9 0 4.095922 -1.455301 0.131590 17 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.109618 18 19 0 -1.055887 3.380713 1.277504 18 19 0 -0.581567 -2.919812 -1.006560	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13	a eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352 -0.915352 -0.915352 -1.700543 -2.425490 -1.025950	0.667328 -2102 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657 2.701498 2.488533 -0.610605 1.551965 3.654270 0.728265 0.549852 1.773915 -0.183370	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.854434 -0.478514 -0.485878 -1.123025 -1.128614 0.475892 -0.771446 -1.181687 -1.853140	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8 8	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943 1.681453 1.794700 1.426760	0.428161 -2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640 4.595955 0.023512 -0.553595 0.209399 -1.992824	3.043690 .302558 Z -0.317156 -0.083511 -0.107861 -0.348631 -0.577004 -0.573775 0.058321 -0.361211 -0.768124 -0.327411 0.690271 1.920242 0.739864
15 5 6 3.152033 -0.442934 -1.543013 16 9 0 -3.912184 -0.879857 -1.244135 16 9 0 4.095922 -1.445301 0.131590 17 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.109618 18 19 0 -1.055887 3.380713 1.277504 18 19 0 -0.581567 -2.919812 -1.006560	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14	a eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1 1 1 8 1 8 16 8 8 6 6	thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352 -0.915352 -1.700543 -2.425490 -1.025950 -3.071326	-2102 -2102 -2102 -2102 -2102 	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.85434 -0.478514 -0.485878 -1.123025 -1.128614 0.475892 -0.771446 -1.181687 -1.853140 -0.227813	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 1 1 1 1 8 1 1 8 16 8 8 8 6	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943 1.681453 1.794700 1.426760 3.48344	0.428161 -2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640 4.595955 0.023512 -0.553595 0.209399 -1.992824 -0.406267	3.043690 .302558 .302558
16 9 0 -3.912184 -0.8/985/ -1.244135 16 9 0 4.095922 -1.455301 0.131590 17 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.109618 18 19 0 -1.055887 3.380713 1.277504 18 19 0 -0.581567 -2.919812 -1.006560	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	a eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8 8 6 6	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 2.643728 2.643728 2.6070 2.0070	-2102 -210 -210	-3.173388 .306466 .306466 	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8 6 6	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943 1.681453 1.794700 1.426760 3.348344 2.15232	0.428161 -2102 dinates (Ang. Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.0016419 5.0016419 5.0023512 -0.553595 0.203399 -1.992824 -0.406264	3.043690 .302558 .302558
17 9 0 -3.783615 -0.091028 0.779301 17 9 0 3.983059 0.706479 0.109618 18 19 0 -1.055887 3.380713 1.277504 18 19 0 -0.581567 -2.919812 -1.006560	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8 6 9	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 2.643728 2.643728 2.6076 2.0076 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352 -0.915352 -0.915352 -1.700543 -2.425490 -1.025950 -3.071326 -2.558685	0.667328 -2102 -2102 dinates (Ang Y 1.351623 0.106410 0.271314 1.511657 2.701498 2.488533 -0.610605 1.551965 3.654270 0.728265 0.549852 1.773915 -0.183370 -0.624172 -1.790975	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.854434 -0.478514 -0.485878 -1.123025 -1.128614 0.475892 -0.771446 -1.181687 -1.853140 -0.227813 0.194269	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8 8 6 9	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943 1.681453 1.794700 1.426760 3.348344 3.152033	0.428161 -2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.0015495 0.023512 -0.553595 0.209399 -1.992824 -0.406267 -0.442974	3.043690 .302558 Z -0.317156 -0.083511 -0.107861 -0.348631 -0.577004 -0.573775 0.058321 -0.361211 -0.361211 -0.361211 -0.361211 -0.361211 -0.327411 0.690271 1.920242 0.739864 -0.227570 -1.543013
18 19 0 -1.055887 3.380713 1.277504 18 19 0 -0.581567 -2.919812 -1.006560	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8 8 6 9 9 9	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 Energies= Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352 -0.915352 -0.915352 -1.700543 -2.425490 -1.025950 -3.071326 -2.558685 -3.912184	-2102 -2102 -2102 -2102 	-3.173388 -3.173388 -3.306466 	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8 8 6 9 9 9	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943 1.681453 1.794700 1.426760 3.348344 3.152033 4.095922	0.428161 -2102 dinates (Ang: Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640 4.595955 0.023512 -0.553595 0.203999 1.992824 -0.406267 -0.442974 -1.455301	3.043690 .302558 .302558
	35 0 negative Sum of ele B-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8 6 9 9 9	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0	2.643728 2.643728 2.643728 Coord X 1.718608 2.302790 3.662022 4.215452 3.461101 2.131864 4.294589 5.264109 3.897352 -0.915352 -1.700543 -2.425490 -1.025950 -3.071326 -2.558685 -3.912184 -3.783615	-2102 -2102 -2102 -2102 -2102 	-3.173388 .306466 stroms) Z -0.171044 -0.106870 -0.485838 -0.845830 -0.854434 -0.478514 -0.485878 -1.123025 -1.128614 0.475892 -0.771446 -1.181687 -1.853140 -0.227813 0.194269 -1.244135 0.779301	35 1 negativ Sum of el A2-Ar Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 e eigenvalue ectronic and Atomic Number 6 6 6 6 6 6 6 1 1 1 1 8 16 8 8 8 6 9 9 9 9	0 thermal Free Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.963340 e Energies= Coord X 0.200080 -1.171450 -1.652488 -0.773033 0.585415 1.147137 -2.709158 -1.155111 1.225042 0.618943 1.681453 1.794700 1.426760 3.348344 3.152033 4.095922 3.983059	0.428161 -2102 dinates (Ang. Y 1.481163 1.611941 2.926058 3.984083 3.733633 2.433419 3.106119 5.001640 4.595955 0.023512 -0.553595 0.203399 -1.992824 -0.40267 -0.442974 -1.455301 0.706479	3.043690 .302558 .302558

19	6	Θ	1.714941	-1.195746	0.297479	19	6	Θ	-2.092255	0.456705	0.134769
20	6	Θ	1.356231	-1.400785	1.643549	20	6	Θ	-2.740627	-0.126059	-0.972979
21	6	Θ	1.524705	-2.206963	-0.663270	21	6	Θ	-2.314710	-0.035922	1.434770
22	6	Θ	0.824500	-2.637703	2.018530	22	6	Θ	-3.607275	-1.205956	-0.762377
23	6	Θ	0.985595	-3.430363	-0.252135	23	6	Θ	-3.176894	-1.124754	1.609105
24	6	Θ	0.641602	-3.649069	1.078885	24	6	Θ	-3.820605	-1.708344	0.520558
25	1	Θ	0.549809	-2.805608	3.054623	25	1	Θ	-4.112878	-1.656198	-1.610473
26	1	Θ	0.827065	-4.213181	-0.986409	26	1	Θ	-3.347517	-1.512617	2.607894
27	1	Θ	0.225511	-4.603616	1.382411	27	1	Θ	-4.488351	-2.549591	0.670205
28	6	Θ	1.521512	-0.303466	2.665072	28	6	Θ	-2.500458	0.398492	-2.369230
29	1	Θ	2.539138	0.097028	2.664678	29	1	Θ	-2.824498	1.438903	-2.460264
30	1	Θ	0.848366	0.527596	2.437515	30	1	Θ	-1.435707	0.379677	-2.619678
31	1	Θ	1.294169	-0.664911	3.669438	31	1	Θ	-3.038923	-0.195387	-3.109714
32	6	Θ	1.842886	-1.971935	-2.120433	32	6	Θ	-1.652278	0.610476	2.627735
33	1	Θ	1.313500	-1.086950	-2.481667	33	1	Θ	-0.565435	0.629819	2.523808
34	1	Θ	2.911160	-1.809206	-2.284257	34	1	Θ	-1.976899	1.649850	2.734666
35	1	Θ	1.535557	-2.826725	-2.725693	35	1	Θ	-1.899814	0.079235	3.548495
0 negativ Sum of el	e eigenvalue ectronic and	thermal Free	e Energies=	-2102.	310336	0 negativ Sum of el	e eigenvalue ectronic and	thermal Free	e Energies=	-2102	. 299564
TS(A2-A	Ar-C-Ar)					C-Ar					
Center	Atomic	Atomic	Coord	linates (Ang	stroms)	Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Type	x	Y	7	Number	Number	Type	X	Y	7
											<u>_</u>
1	6	0	0.211902	1,105040	0.164644	1	6	Θ	-0.308621	0.186789	0.147510
2	6	Ō	-1.105622	1.548519	0.058015	2	6	õ	-1.395080	1.041427	-0.261687
3	6	Θ	-1.261967	2.939634	-0.037322	3	6	Θ	-1.146890	2.307170	-0.763537
4	6	Θ	-0.148099	3.779604	-0.012833	4	6	Θ	0.153333	2.821483	-0.910894
5	6	Θ	1.145675	3.241984	0.103733	5	6	Θ	1.235161	2.035673	-0.551707
6	6	Θ	1.362502	1.859852	0.192605	6	6	Θ	1.000412	0.748164	-0.050923
7	1	Θ	-2.261462	3.352193	-0.124361	7	1	Θ	-1.992592	2.923328	-1.053751
8	1	Θ	-0.289860	4.854538	-0.082062	8	1	Θ	0.311509	3.817505	-1.304471
9	1	Θ	1.986432	3.934868	0.120220	9	1	Θ	2.235442	2.428843	-0.665231
10	8	Θ	0.410457	-0.298027	0.244179	10	8	Θ	-0.483205	-0.974878	0.645856
11	16	Θ	1.964134	-0.734068	0.689046	11	16	Θ	2.309926	-0.336132	0.446506
12	8	Θ	2.361882	-0.362316	2.045274	12	8	Θ	2.486112	-0.400136	1.905284
13	8	Θ	1.830037	-2.183842	0.434066	13	8	Θ	2.290085	-1.611039	-0.297085
14	6	Θ	3.353049	-0.295589	-0.583123	14	6	Θ	3.923854	0.481570	-0.176316
15	9	Θ	2.808066	-0.007784	-1.762357	15	9	Θ	3.884338	0.709227	-1.491775
16	9	Θ	4.127568	-1.380740	-0.724464	16	9	Θ	4.910599	-0.378885	0.084915
17	9	Θ	4.109449	0.700202	-0.157482	17	9	Θ	4.173634	1.628783	0.462619
18	19	Θ	-0.861805	-2.778634	-0.534279	18	19	Θ	0.169644	-3.433890	0.189742
19	6	Θ	-2.261588	0.604499	0.045267	19	6	Θ	-2.790395	0.527922	-0.125419
20	6	Θ	-2.901804	0.291966	-1.171702	20	6	Θ	-3.316932	-0.326397	-1.112990
21	6	Θ	-2.678599	-0.002868	1.248227	21	6	Θ	-3.567010	0.891867	0.990300
22	6	Θ	-3.960626	-0.624370	-1.166796	22	6	Θ	-4.627088	-0.796822	-0.978108
23	6	Θ	-3.741394	-0.912601	1.217528	23	6	Θ	-4.874715	0.404506	1.097325
24	6	Θ	-4.380685	-1.223310	0.018855	24	6	Θ	-5.404643	-0.433577	0.119534
25	1	Θ	-4.452573	-0.873319	-2.101181	25	1	Θ	-5.038664	-1.452735	-1.738514
26	1	Θ	-4.067043	-1.380981	2.140402	26	1	Θ	-5.477702	0.681606	1.956025

27	1	0	-5 200866	-1 937663	0 008//3	27	1	Ð	-6 /19265	-0 805397	0 213899
27	1	0	- 3.200000	-1.552005	7 470146	27	L C	0	-0.415205		2 202426
20	0	0	-2.430313	1 000767	-2.470140	20	0	0	-2.475015	-0.727200	-2.303420
29	1	0	-2.600978	1.989363	-2.4/8/98	29	1	0	-2.181961	0.14/0//	-2.890034
30	1	Θ	-1.3640/0	0./52/35	-2.6160/5	30	1	0	-1.55/5/8	-1.220620	-1.982522
31	1	Θ	-2.967323	0.476140	-3.320364	31	1	Θ	-3.024612	-1.409313	-2.958254
32	6	Θ	-1.977940	0.305198	2.549621	32	6	Θ	-2.997292	1.787616	2.065580
33	1	Θ	-0.951692	-0.073702	2.536948	33	1	Θ	-2.049303	1.394135	2.443736
34	1	Θ	-1.915942	1.382947	2.721149	34	1	Θ	-2.789380	2.789898	1.679958
35	1	Θ	-2.498581	-0.150893	3.393388	35	1	Θ	-3.689514	1.883359	2.904241
1 negativ Sum of el	e eigenvalue ectronic and	e I thermal Free	e Energies=	-2102	.294761	0 negative Sum of ele	e eigenvalue ectronic and	thermal Free	e Energies=	-2102	.389939
2a						TS-enant	-2a-conf1				
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	Y	V	7	Number	Number	Type	Y	V	7
Number	Number	туре	^	I	Z	Number	Number	туре	^	I	Z
1	· · · · · · · · · · · · · · · · · · ·	^	2 (21002	0 206247	2 041101	1	· · · · · · · · · · · · · · · · · · ·	^	4 205010	1 1/0/11	0 217000
	b	0	-3.021002	U.30624/	2.041101		b C	0	-4.295810	1.100411	-0.31/909
2	6	0	-3.921826	-0.2/1/3/	0.8/3230	2	6	0	-4.291584	-0.19991/	-0.420439
3	6	Θ	-2.898613	-0.726332	-0.003230	3	6	0	-3.113981	-0.967482	-0.212890
4	6	Θ	-1.517120	-0.471634	0.347722	4	6	Θ	-1.849053	-0.293449	0.074155
5	6	Θ	-1.253123	0.197138	1.575082	5	6	Θ	-1.937307	1.111821	0.226922
6	6	Θ	-2.272794	0.616634	2.396537	6	6	Θ	-3.102297	1.822268	0.035587
7	1	Θ	-4.285479	-1.600502	-1.482180	7	1	Θ	-4.172545	-2.862938	-0.540968
8	1	0	-4.416933	0.723408	2.695307	8	1	0	-5.207895	1.732249	-0.475001
9	1	0	-4 955113	-0 460012	0 601959	9	1	0	-5 207607	-0 733056	-0 651310
10	Ē	0	_3 751388	-1 177037	-1 215/23	10	5	0	-3 22/00/	-7 396504	-0.296/95
10	6	0	0 170710	0 0012/0		11	6	0	0 500661	1 071060	0.230+33
11	0	0	-0.420313	-0.001345	1 965261	11	0	0			0.211341
12	1	0	-0.225465	0.3/4903	1.005501	12	1	0	-1.092907	1.039317	0.5/9012
13	l	0	-2.039824	1.124681	3.325363	13	1	U	-3.0954/8	2.896179	0.184307
14	6	Θ	-0.940962	-1.547904	-1.601121	14	6	Θ	-1.005131	-2.363077	0.154910
15	6	Θ	-2.133452	-1.776141	-1.908570	15	6	Θ	-2.038161	-3.041397	-0.056945
16	6	Θ	1.003082	-0.598297	-0.249852	16	6	0	0.879446	-0.734417	0.209028
17	6	Θ	1.874771	-1.670608	0.031621	17	6	Θ	1.793415	-1.840639	0.187239
18	6	Θ	1.509221	0.715731	-0.209543	18	6	Θ	1.488749	0.545384	0.086728
19	6	Θ	3,212187	-1.399686	0.326278	19	6	Θ	3,151915	-1.644388	-0.065229
20	ĥ	õ	2,849061	0,951951	0.111863	20	Ğ	õ	2,847387	0,690967	-0.213071
20	5	ē.	2 772624	-0 000502	0 370202	20	č č	٥ ٥	3 706070	-0 305171	-0 318003
21	1	0	2 07/077	-0.055505	0.5/0505	21	1	6	2 2000/0		_0 074000
22	1	0	2.0/43//	-2.2320/9	0.343203	22	1	0		-2.514442	
23	1 C	U	3.198893	T'A\P\P	0.151113	23	Ţ	U	3.243624	1.69411/	-0.3263/8
24	6	Θ	1.3/9058	-3.096957	0.03/928	24	6	Θ	1.388554	-3.2/5234	0.429199
25	1	Θ	0.493390	-3.206673	0.669129	25	1	Θ	0.749268	-3.386498	1.309013
26	1	Θ	1.092828	-3.420406	-0.967039	26	1	Θ	0.862317	-3.707370	-0.427057
27	1	Θ	2.151053	-3.774886	0.404998	27	1	Θ	2.278249	-3.885703	0.597647
28	6	Θ	5.180584	0.148914	0.671741	28	6	Θ	5.158685	-0.225937	-0.676888
29	1	Θ	5.349662	1.175298	1.003071	29	1	Θ	5.536992	0.748500	-0.360431
30	1	0	5.545459	-0.527850	1.448322	30	1	ē	5.774057	-1.002098	-0.216536
31	1	õ	5 793117	-0 017375	-0 220642	31	1	õ	5 296740	-0 296873	-1 761181
27	-	0	0 675700	1 931150	-0 170673	37	5	0	0 077710	1 883507	0 /5/831
22	0	0	0.0/0/00	1.321120	-0.4/00/3	22	0	0	0. 727/10	/סכנסט.ג סרוררר ר	0.4J4031 1 E00033
33	ŏ	0	0.033100	2.990883	0.100209	33	ŏ	0	0.723698	2.233128	1.398023
34	8	0	-0.248627	1./36971	-1.4215/9	34	8	0	0.812/92	2.698825	-0.603538

35	6	Θ	-1.174585	2.819364	-1.651355	35	6	Θ	0.422816	4.063336	-0.322723
36	1	Θ	-0.644231	3.711573	-1.986086	36	1	Θ	1.154051	4.536726	0.333250
37	1	Θ	-1.850086	2.459882	-2.423590	37	1	Θ	0.391134	4.558586	-1.289600
38	1	Θ	-1.722794	3.040662	-0.734421	38	1	Θ	-0.559150	4.085096	0.151675
0 negativ	e eigenvalue					1 negativ	e eigenvalue				
Sum of el	ectronic and	thermal Free	e Energies=	-922.14	46215	Sum of el	ectronic and	thermal Free	e Energies=	-922.	105848
2a-H2						TS-enan	t-2a-H2				
Center	Atomic	Atomic	Coord	dinates (Ang	 stroms)	Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Ŷ	Z	Number	Number	Туре	Х	Ŷ	Z
1	6		3.528826	0.212603	-2.240678	1	6	0	-4.248632	1.106800	0.127219
2	6	Θ	3.869716	-0.284071	-1.005212	2	6	Θ	-4.206840	-0.250776	-0.071076
3	6	Θ	2.872025	-0.624338	-0.052789	3	6	Θ	-2.991245	-0.978472	0.044057
4	6	Θ	1.492127	-0.439637	-0.393014	4	6	Θ	-1.746843	-0.277239	0.236200
5	6	Θ	1.176243	0.066701	-1.683447	5	6	Θ	-1.865841	1.099041	0.557887
6	6	Θ	2.167112	0.386346	-2.582342	6	6	Θ	-3.065705	1.772395	0.508106
7	1	Θ	4.257479	-1.278561	1.474796	7	1	Θ	-3.978667	-2.902735	-0.056040
8	1	Θ	4.300564	0.469483	-2.957519	8	1	Θ	-5.184819	1.648345	0.056298
9	1	Θ	4.912225	-0.425200	-0.738930	9	1	Θ	-5.117862	-0.805285	-0.270458
10	6	Θ	3.210622	-1.142094	1.224466	10	6	Θ	-3.030206	-2.394955	0.081128
11	6	Θ	0.490431	-0.764532	0.574664	11	6	Θ	-0.508641	-1.042065	0.221876
12	1	Θ	0.137526	0.200861	-1.959025	12	1	Θ	-1.021664	1.629337	0.956443
13	1	Θ	1.904351	0.772367	-3.560797	13	1	Θ	-3.101183	2.817610	0.794132
14	6	Θ	0.867151	-1.277111	1.797084	14	6	Θ	-0.658313	-2.408236	0.454738
15	6	Θ	2.227122	-1.467157	2.126918	15	6	Θ	-1.889036	-3.087291	0.387335
16	6	Θ	-0.958511	-0.558374	0.270817	16	6	0	0.914586	-0.594560	0.006086
17	6	0	-1 768906	-1 678188	-0 007700	17	6	õ	1 856264	-1 556297	-0 475120

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

6

6

6

6

1

1

6

1

1

1

6

1

1

1

6

8 8

6

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1.489311

3.228837

2.859639

3.755197

3.907547

3.229589

1.504501

1.597376

0.496960

2.206823

5.220073

5.565443

5.410481

5.828435

0.854754

0.940631

0.299679

-0.274262

0.493218

0.676493

0.818515

-1.363661

-0.228493

-2.135544

1.796910

-2.754966

-3.710823

-2.693553

-2.780898

-0.094222

0.934195

-0.372940

-0.745905

2.017073

2.962443

2.097376

3.371743

4.146581

0.319378

-0.273149

0.545633

0.330448

0.830132

-0.624503

-1.347036

-0.823911

-1.753946

-2.184942

0.651356

0.521235

1.693507

0.020217

0.132352

0.888400

-1.091788

-1.451581

-1.447624

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

6

6

6

6

1

1

6

1

1

1

6

1

1

1

6

8

8

6

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1.534452

-3.118169

-2.884721

-3.701215

-3.732135

-3.286350

-1.193370

-0.274984

-0.935559

-1.908148

-5.169073

-5.388573

-5.500630

-5.773351

-0.764445

-1.004527

0.206591

1.064399

0.489031

0.724834

-1.486999

-0.218228

-2.357495

1.886553

-3.075877

-3.124954

-3.401503

-3.789737

-0.054213

0.948698

-0.778291

-0.213993

1.991774

3.026221

1.880931

3.027420

3.887594

0.882434

0.194389

-0.313205

-0.137135

-0.376561

-0.525163

-0.205066

-0.007486

-0.597939

1.003778

-0.420280

-0.684652

-1.056343

-1.433026

0.214645

0.398017

-0.191992

1.315325

1.486961

1.831609

S45

37	1	Θ	1.796037	2.728890	2.233764	37	1	Θ	-0.678006	3.233639	-2.451461
38	1	Θ	1.556295	3.270749	0.544107	38	1	Θ	-1.068606	3.638369	-0.753847
39	1	Θ	0.103539	-1.517037	2.528450	39	1	Θ	0.217816	-3.000477	0.668341
40	1	Θ	2.488692	-1.863403	3.101689	40	1	Θ	-1.910951	-4.160325	0.538516
0 negativ Sum of el	e eigenvalue ectronic and	e I thermal Free	e Energies=	-923.4(52216	1 negativ Sum of el	e eigenvalue ectronic and	thermal Free	e Energies=	-923	404479
2c						TS-enan	t-2c-conf1				
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Ŷ	Z	Number	Number	Туре	Х	Ŷ	Z
1	6	Θ	-2.564153	-1.156064	-1.368920	1	6	0	-2.459423	-2.102978	-0.337099
2	6	Θ	-1.401122	-1.140116	-2.119488	2	6	Θ	-1.147598	-2.568396	-0.353874
3	6	Θ	-0.268644	-0.770689	-1.771495	3	6	Θ	-0.180189	-1.806197	-0.194929
4	6	0	0.138434	-0.258031	-0.553059	4	6	Θ	0.022703	-0.467984	0.083169
5	6	0	-0.953862	-0.237340	0.358037	5	6	0	-1.299574	0.121706	0.114444
6	6	Θ	-2.238052	-0.666031	-0.076997	6	6	0	-2.449371	-0.708872	-0.072174
7	35	0	-3.702776	-0.559435	1.183054	7	35	0	-4.224965	0.082502	0.051742
8	6	0	-3.925228	-1.595261	-1.818375	8	6	0	-3.682817	-2.946100	-0.542467
9	1	0	-4.298715	-2.413079	-1.196176	9	1	0	-4.326775	-2.930555	0.341632
10	1	0	-4.647089	-0.777747	-1.738814	10	1	0	-4.282906	-2.576550	-1.378653
11	1	0	-3.887475	-1.930762	-2.854175	11	1	0	-3.390830	-3.975710	-0.746348
12	6	Θ	-0.741772	0.251464	1.771367	12	6	0	-1.478075	1.603534	0.297695
13	1	Θ	-1.111086	-0.4//928	2.495320	13	1	0	-2.51/1/5	1.899953	0.203928
14	1	0	0.312/01	0.428938	1.9/3//4	14	1	0	-1.12284/	1.926823	1.2/4688
15	1	Θ	-1.28516/	1.184527	1.94/488	15	1	0	-0.925814	2.14131/	-0.4/2840
16	6	Θ	1.513/69	0.2123/8	-0.232051	16	6	0	1.4221/9	0.05/439	0.12505/
1/	6	Θ	2.554457	-0./59261	-0.0/0446	1/	6	0	2.45//68	-0.968/60	0.1661/8
18	6	Θ	1.808067	1.559243	-0.05/115	18	6	0	1.8/592/	1.3/049/	-0.056/36
19	6	Θ	2.313727	-2.156866	-0.181878	19	6	0	2.236731	-2.261706	0.717532
20	6	Θ	3.884657	-0.322781	0.231291	20	6	0	3.778885	-0.691784	-0.308381
21	6	Θ	3.123975	1.974181	0.277028	21	6	0	3.203003	1.630556	-0.498809
22	6	0	3.335295	-3.065019	-0.031300	22	6	0	3.206638	-3.240832	0.688101
23	1	0	1.311155	-2.507920	-0.386890	23	1	0	1.319728	-2.473200	1.248790
24	6	Θ	4.9166/6	-1.285894	0.3/6446	24	6	0	4.749220	-1./26245	-0.35/238
25	6	Θ	4.13/138	1.062888	0.398315	25	6	0	4.111/69	0.62934/	-0.688663
26	1	Θ	3.30//64	3.030938	0.422936	26	1	0	3.4/950/	2.658544	-0.69/366
27	6	Θ	4.651295	-2.62/901	0.244998	27	6	0	4.4668/2	-2.986//3	0.110496
28	1	0	3.130724	-4.125622	-0.122138	28	1	0 O	3.003913	-4.204757	1.140213
29	1	U	5.921193	-0.942301	0.599092	29	1	U	5./31490	-1.492319	-0./53240
30	1	U	5.143699	1.390597	0.633601	30	1	U	5.101412	⊎.845253	-1.0/4/11
31	1	U	5.44/058	-3.355032	0.359225	31	1	U	5.21/459	-3./6//34	0.0/6046
32	6	U	0./92828	2.654508	-0.1499/6	32	6	U	1.1983/4	2.642915	0.345569
33	8	U	0.831/36	3.6559/0	U.535492	33	ŏ	U	0.951960	2.924//8	1.496513
34	х С	6	-0.146896	2.433625	-1.0/8198	34	х с	U	1.040468	3.494465	-0.001022
35	6	U	-1.211328	3.404811	-1.103144	35	6	U	0.534863	4.808641	-0.34/322
36	1	Θ	-0.812074	4.385338	-1.424732	36	1	Θ	1.205542	5.303243	0.355841

37 38	1 1	0 0	-1.872951 -1.738256	3.036792 3.467432	-1.943235 -0.209952	37 38	1 1	0 0	0.494127 -0.459763	5.349326 4.726807	-1.289315 0.093125
0 negative	e eigenvalue					1 negativ	e eigenvalue				
Sum of ele	ectronic and	thermal Free	e Energies=	-3495.7	703469	Sum of el	ectronic and	thermal Free	e Energies=	-3495	.662749
2с-Н2						TS-enan	t-2c-H2				
Center Number	Atomic Number	Atomic Type	Coorc X	linates (Angs Y	stroms) Z	Center Number	Atomic Number	Atomic Type	Coord X	linates (Angs Y	stroms) Z
1 2 3	6 6 6 6	0 0 0 0	-2.615390 -1.598731 -0.288082 0.051855	-0.142959 0.292074 0.416330	-1.502224 -2.357010 -1.913752	1 2 3	6 6 6 6	0 0 0	-2.468117 -1.244227 -0.075460 -0.018156	-2.083310 -2.661339 -1.926269	-0.328498 -0.666899 -0.638644
5 6 7 8	6 6 35 6	0 0 0	-0.934187 -2.242495 -3.627278 -4.029710	-0.329576 -0.443657 -1.040315 -0.270951	0.304535 -0.184918 1.033669 -2.004240	5678	6 6 35 6	0 0 0	-1.285693 -2.440250 -4.147597 -3.716116	0.106403 -0.698816 0.156135 -2.917992	-0.217916 -0.140781 0.224205 -0.245224
9 10 11	1 1 1	0 0 0	-4.393834 -4.711225 -4.090964	-1.297056 0.365334 0.014717	-1.903262 -1.432933 -3.055182	9 10 11	1 1 1	0 0 0	-4.169251 -4.469361 -3.489179	-2.846392 -2.581362 -3.965643	0.747327 -0.962805 -0.446959
12 13 14 15	6 1 1 1	0 0 0	-0.394182 -0.832411 0.462192 -1.174800	-0.631228 -1.668132 -0.462308 0.004974	1.992298 1.940522 2.413758	12 13 14 15	6 1 1 1	0 0 0	-1.482347 -2.394813 -1.572352 -0.670804	1.588092 1.759823 2.136658 2.011152	-0.403956 -0.974007 0.534208 -0.989081
16 17 18 19	6 6 6 6	0 0 0	1.481930 2.323627 2.033774 1.825627	0.261461 -0.897446 1.499852 -2.193534	-0.181795 -0.170385 0.114733 -0.477736	16 17 18 19	6 6 6	0 0 0	1.364231 2.468166 1.766969 2.324085	0.011623 -0.921321 1.358919 -2.136174	-0.120301 0.088463 -0.229689 0.821163
20 21 22 23	6 6 1	0 0 0 0	3.709479 3.418388 2.648572 0.782299	-0.762496 1.627715 -3.294620 -2.307924	0.162486 0.406312 -0.440846 -0.742548	20 21 22 23	6 6 6 1	0 0 0 0	3.797155 3.087844 3.379392 1.371546	-0.577416 1.686677 -2.996246 -2.368031	-0.322368 -0.641279 1.017693 1.276338
24 25 26 27	6 6 1 6	0 0 0	4.531945 4.230372 3.812807 4.014837	-1.918649 0.527187 2.615814 -3.158406	0.190059 0.444410 0.607659 -0.101943	24 25 26 27	6 6 1 6	0 0 0 0	4.852533 4.056853 3.314905 4.650464	-1.516989 0.733091 2.729007 -2.711940	-0.172668 -0.787621 -0.824003 0.471452
28 29 30 31	1 1 1 1	0 0 0 0	2.249423 5.580398 5.282501 4.652771	-4.274925 -1.805810 0.629625 -4.034530	-0.674916 0.444539 0.686682 -0.077496	28 29 30 31	1 1 1 1	0 0 0 0	3.234061 5.837823 5.045652 5.467963	-3.892784 -1.245858 0.993714 -3.411511	1.609385 -0.536510 -1.147264 0.602531
32 33 34 35	6 8 8 6	0 0 0 0	1.247554 1.695456 0.009266 -0.842573	2.771445 3.839427 2.620020 3.784272	0.122548 -0.242627 0.612584 0.590774	32 33 34 35	6 8 8 6	0 0 0 0	1.037355 0.568736 1.078717 0.545188	2.524485 2.523549 3.620038 4.832865	0.344786 1.462819 -0.437258 0.138525
36 37 38	1 1 1	0 0 0	-0.966655 -1.793923 -0.417053	4.140208 3.450692 4.579149	-0.432846 0.998010 1.204612	36 37 38	1 1 1	0 0 0	1.085740 0.685158 -0.514103	5.089092 5.598670 4.707924	1.050530 -0.620424 0.366552

39 40	1 1	0 0	0.483790 -1.844010	0.753701 0.533591	-2.596038 -3.385327	39 40	1 1	0 0	0.831853 -1.206578	-2.434825 -3.710490	-0.921448 -0.937831
0 negativ Sum of el	e eigenvalue ectronic and	thermal Free	Energies=	- 3497.(920079	1 negative Sum of ele	e eigenvalue ectronic and	thermal Free	Energies=	- 3496 . 9	960536
7,8-[5]he	elicyne					TS-enan	t-7,8-[5]hel	icyne			
Center Number	Atomic Number	Atomic Type	Coord X	linates (Angs Y	stroms) Z	Center Number	Atomic Number	Atomic Type	Coor X	dinates (Angs Y	stroms) Z
1	6	0	3.535054	0.956741	0.687000	1	6	0	-3.400761	1.161883	0.742804
2	6	Θ	2.814993	2.112885	0.686716	2	6	Θ	-2.755326	2.233857	0.222120
3	6	Θ	1.438029	2.095653	0.339950	3	6	Θ	-1.448498	2.083810	-0.322308
4	6	Θ	0.730255	0.870209	0.065880	4	6	Θ	-0.742024	0.810117	-0.391897
5	6	Θ	1.579970	-0.287618	-0.189777	5	6	Θ	-1.660495	-0.338262	-0.218562
6	6	0	2.959045	-0.250921	0.191398	6	6	Θ	-2.891066	-0.149093	0.501955
7	6	Θ	0.594579	3.207799	0.156362	7	6	Θ	-0.614202	3.164986	-0.606775
8	6	0	-0.730252	0.870205	-0.065962	8	6	Θ	0.742012	0.810118	-0.391913
9	6	Ū	-1.438022	2.095623	-0.34015/	9	6	0	1.448484	2.083813	-0.322340
10	6	0	-0.5945/4	3.20//8/	-0.1566/1	10	6	0	0.6141/9	3.16498/	-0.606/88
11	0	0		2.112010		11	0	0		2.233804	0.222005
12		0	-3.269958	3.059848	-0.949665	12		0	3.165/48	3.233642	0.28/426
13	6	0		0.950075	-0.00/131	13	6	0	3.400/00 2.901072	1.101092	0.742740
14	6	0	-2.959059	-0.250950	-0.191392	14	6	0	2.0910/2	-0.149005	-0.218600
15	0	0	1 578886	0.207554	0.100000	15	1	0	_1 3/575/	1 272002	1 763/59
17	1	0	3 269973	3 059941	0 949334	17	1	0	-3 165754	3 233634	0 287489
18	1	õ	-4 578866	0 955576	-0 980987	18	1	õ	4 345268	1 272103	1 263380
19	6	õ	3.779389	-1.387071	-0.023990	19	6	õ	-3.701441	-1.257804	0.841147
20	6	0	1.145686	-1.420039	-0.926846	20	6	0	-1.514202	-1.617123	-0.802182
21	6	Ō	1.978103	-2.491423	-1.167914	21	6	Ō	-2.351061	-2.680642	-0.514233
22	6	Θ	3.299697	-2.497392	-0.679135	22	6	Θ	-3.421678	-2.523758	0.375777
23	1	Θ	4.812296	-1.346765	0.305166	23	1	Θ	-4.591471	-1.075533	1.433820
24	1	Θ	0.143776	-1.438148	-1.329934	24	1	Θ	-0.788825	-1.763448	-1.575243
25	1	Θ	1.613101	-3.331245	-1.748285	25	1	Θ	-2.185111	-3.632348	-1.006185
26	1	Θ	3.941831	-3.353034	-0.853453	26	1	Θ	-4.058643	-3.362446	0.631288
27	6	Θ	-1.145700	-1.419929	0.927015	27	6	Θ	1.514199	-1.617121	-0.802223
28	6	Θ	-3.779388	-1.387062	0.024111	28	6	Θ	3.701457	-1.257792	0.841079
29	6	Θ	-3.299708	-2.497308	0.679395	29	6	Θ	3.421696	-2.523746	0.375710
30	6	Θ	-1.978123	-2.491283	1.168196	30	6	Θ	2.351070	-2.680635	-0.514287
31	1	Θ	-0.143794	-1.437994	1.330118	31	1	Θ	0.788815	-1.763452	-1.575278
32	1	Θ	-4.812289	-1.346795	-0.305069	32	1	Θ	4.591494	-1.075516	1.433740
33	1	0	-3.941846	-3.352928	0.853802	33	1	Θ	4.058670	-3.362431	0.631211
34	1	Θ	-1.613133	-3.331036	1.748673	34	1	Θ	2.185120	-3.632339	-1.006241
0 negative eigenvalue Sum of electronic and thermal Free Energies= -845.451302						1 negativ Sum of el	e eigenvalue ectronic and	thermal Free	Energies=	-845.41	15860
L											

[5]helice	ne					TS-enan	t-[5]helicen	ie			
Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z	Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z
1		•••••		0 914115	0 697947				-3 470477	1 109077	0 696717
2	6	0	2 747764	2 044877	0.007042	2	6	0	-7 776747	7 161891	0.000212
3	6	0	1 364878	2.044077	0.702043	3	6	0	-1 387178	2.101001	-0 265651
4	6	0	0 772522	0 781359	0.056278	4	6	0	-0 737656	0 729808	-0 334766
5	6	0	1 585182	-0 368990	-0 189503	5	6	0	-1 672420	-0 412925	-0 198279
6	6	0	2 961212	-0 307379	0 190478	6	6	0	-2 923834	-0 211543	0.190279
7	6	0	0 648446	3 240660	0 210648	7	6	0	-0 678683	3 212422	-0 509735
, 8	6	0	-0 772523	0 781354	-0 056311	, 8	6	0	0.737656	0 729808	-0 334266
9	6	0	-1 364886	2 017173	-0 335165	9	6	0	1 382179	2 007115	-0 265652
10	6	0	-0 648459	3 240651	-0 210747	10	6	0	0 678686	3 717477	-0 509736
11	6	0	-7.747775	2 01/8/8	-0.707090	11	6	0	2 726248	7 161891	0.2070/3
17	1	0	-3 187057	2.044040	-0.98651/	17	1	0	3 179117	3 16719/	0.207043
13	6	0	-3 5073/3	0 91/088	-0.6979/3	13	6	0	3 120127	1 109070	0.235352
14	6	0	- 3. 302343	0.014000	-0.057545	14	6	0	J.42042J	0 211544	0.000211
14	6	0	-2.501217	-0.367391	-0.190433	14	6	0	2.923034	-0.211344	-0 198779
10	1	0	-1.3031/9	-0.300333	1 002071	10	0	0	1.072420	1 220747	-0.1902/9
10	1	0	4.545100	0.939440	0 002071	10	1	0	-4.30/339	1.230/4/	1.109410
10	1	0	3.102034	2.997400	0.900439	1/	1	0	-3.129114	3.10/19/	0.259595
10		0	-4.543205	0.939416		18	L C	0	4.38/360	1.238/44	1.109410
19	6	0	3.002010	-1.425566	-0.027257	19	6	0	-3./30200	-1.307791	0.790072
20	6	0	1.166430	-1.510941	-0.918140	20	6	0	-1.521991		-0./6/513
21	6	0	2.01/226	-2.569075	-1.160098	21	6	0	-2.3/82/3	-2.752434	-0.502572
22	Б 1	0	3.341032	-2.546/15	-0.6/9/80	22	6	0	-3.4/6812	-2.58021/	0.3489/0
23	1	0	4.835982	-1.366509	0.298827	23	1	0	-4.665/99	-1.111/64	1.358124
24	1	0	0.161550	-1.549250	-1.313253	24	1	0	-0.//5056	-1.859595	-1.515515
25	1	0	1.664261	-3.419530	-1./32482	25	1	0	-2.204584	-3.708255	-0.983915
26		0	3.998969	-3.3902/1	-0.855025	26	l	0	-4.130844	-3.410845	0.58/689
27	6	0	-1.166412	-1.510935	0.918149	27	6	0	1.521990	-1.69/659	-0.767512
28	6	0	-3.802813	-1.425591	0.02/32/	28	6	0	3./58268	-1.30//93	0.796872
29	6	U	-3.341022	-2.546/05	0.6/9861	29	6	0	3.4/6811	-2.580220	0.3489/1
30	6	Θ	-2.01/204	-2.569063	1.16014/	30	6	0	2.3/82/0	-2./52434	-0.5025/1
31	1	U	-0.161523	-1.549240	1.313239	31	1	0	0.//5055	-1.859596	-1.515514
32	1	Θ	-4.835992	-1.366524	-0.298/38	32	1	0	4.665/99	-1.111/66	1.358124
33	1	U	-3.998964	-3.390249	0.855151	33	1	0	4.130841	-3.41084/	0.58/691
34	1	Θ	-1.664228	-3.419512	1./32532	34	1	0	2.204580	-3./08256	-0.983913
35	1	0	-1.1/1644	4.1/18/3	-0.39896/	35	1	U	1.23831/	4.138408	-0.5/9412
36	1	Θ	1.171625	4.171890	0.398841	36	1		-1.238314	4.138409	-0.579412
negative eigenvalue um of electronic and thermal Free Energies= -846.763764					763764	1 negative eigenvalue Sum of electronic and thermal Free Energies= -846.726760					26760
,14-dimethyl-7,8-[5]helicyne						TS-1,14-	dimethyl-[5]helicyne			
Center Number	Atomic Number	Atomic Type	Coord [.] X	inates (Angs Y	troms) Z) Center Atomic Atomic Coordinates (Angstron Z Number Number Type X Y			stroms) Z		
1		 0		1 056654	0 688287	1	6		3 026707	1 412907	-1 130304

2	6	0	-2.823873	2.237529	0.635618	2	6	Θ	2.610267	2.413793	-0.311985	
3	6	Θ	-1.450037	2.242231	0.279546	3	6	Θ	1.434343	2.226973	0.479467	
4	6	Θ	-0.729656	1.019174	0.010624	4	6	Θ	0.731071	0.949683	0.513570	
5	6	Θ	-1.560158	-0.140362	-0.305404	5	6	Θ	1.591370	-0.183676	0.101839	
6	6	Θ	-2.912704	-0.143083	0.178697	6	6	Θ	2.536823	0.076257	-0.943025	
7	6	Θ	-0.603504	3.353072	0.123944	7	6	Θ	0.617235	3.263611	0.922869	
8	6	Θ	0.729628	1.019186	-0.010602	8	6	Θ	-0.731200	0.949616	0.513587	
9	6	Θ	1.449987	2.242252	-0.279543	9	6	Θ	-1.434593	2.226851	0.479515	
10	6	Θ	0.603438	3.353081	-0.123939	10	6	Θ	-0.617538	3.263539	0.922886	
11	6	Θ	2.823817	2.237570	-0.635638	11	6	Θ	-2.610564	2.413557	-0.311892	
12	1	Θ	3.299822	3.175622	-0.893157	12	1	Θ	-3.052181	3.401385	-0.351227	
13	6	Θ	3.499577	1.056703	-0.688322	13	6	Θ	-3.026959	1.412636	-1.130192	
14	6	Θ	2.912687	-0.143042	-0.178723	14	6	Θ	-2.536943	0.076033	-0.942941	
15	6	Θ	1.560154	-0.140338	0.305412	15	6	Θ	-1.591399	-0.183804	0.101858	
16	1	Θ	-4.528710	1.023246	1.028591	16	1	Θ	3.805217	1.581556	-1.866020	
17	1	Θ	-3.299897	3.175576	0.893124	17	1	Θ	3.051782	3.401665	-0.351351	
18	1	Θ	4.528661	1.023309	-1.028649	18	1	Θ	-3.805522	1.581220	-1.865866	
19	6	Θ	-3.713450	-1.300467	0.055533	19	6	Θ	3.134200	-0.997804	-1.635446	
20	6	Θ	-1.165381	-1.221825	-1.159203	20	6	Θ	1.678219	-1.465333	0.709363	
21	6	Θ	-2.005107	-2.322911	-1.275365	21	6	Θ	2.278819	-2.508963	0.005380	
22	6	Θ	-3.246924	-2.400340	-0.627429	22	6	Θ	2.929691	-2.297968	-1.214819	
23	1	Θ	-4.715768	-1.287590	0.469802	23	1	Θ	3.800133	-0.779501	-2.463294	
24	1	0	-1.702909	-3.135195	-1.928471	24	1	Θ	2.314204	-3.491997	0.464550	
25	1	Θ	-3.859230	-3.288888	-0.730856	25	1	Θ	3.370669	-3.129821	-1.751980	
26	6	0	1.165420	-1.221804	1.159231	26	6	Θ	-1.678000	-1.465494	0.709342	
27	6	Θ	3.713452	-1.300417	-0.055584	27	6	Θ	-3.134208	-0.998105	-1.635348	
28	6	0	3.246958	-2.400296	0.627388	28	6	Θ	-2.929478	-2.298249	-1.214770	
29	6	Θ	2.005161	-2.322880	1.275365	29	6	Θ	-2.278486	-2.509197	0.005379	
30	1	0	4.715758	-1.287525	-0.469880	30	1	0	-3.800211	-0.779886	-2.463161	
31	1	Θ	3.8592//	-3.288838	0./30/96	31	1	Θ	-3.3/0383	-3.13014/	-1./51922	
32	1	0	1.702997	-3.135164	1.928485	32	1	0	-2.313707	-3.492249	0.464524	
33	6	U	-0.04//19	-1.195842	2.064/45	33	6	0	-1.506044	-1.641854	2.201120	
34	1	Θ	-0.913503	-1.696/43	1.62/126	34	1	0	-1.043///	-2.5909/6	2.4/0228	
35	1	0	-0.349612	-0.1/9023	2.316123	35	1	0	-0.966268	-0.826485	2.6/13/6	
36	l	0	0.195041	-1./15454	2.994611	36	1	0	-2.512010	-1.643565	2.636287	
37	6	0	0.04/804	-1.195856	-2.064655	3/	6	0	1.506444	-1.641/41	2.2011/8	
38	1	0	0.9135/9	-1.696/23	-1.6269/8	38	1	0	0.966//4	-0.826389	2.6/1541	
39	1	0	0.349684	-0.1/9034	-2.316040	39	1	0	1.044161		2.4/0312	
40	T	U	-0.194893	-1./1549/	-2.994521	40	1	0	2.512462	-1.643561	2.636214	
0 =======						1 nogotiv						
0 negative	e ergenvalue	thormal From	- Enorgioc-	0.74 (07170	I negativ	e ergenvalue	thormal Eroo	Enorgioce	0.2.2	0 6 9 7 5 7	
Sum of etc	ectionic and	LITEL MAL FIEL	e chergies-	-924.0	052170	Sum of et	ectronic and	LITEL MAL FIEL	Ellergres-	- 925.3	900237	
1,14-dim	ethyl-7,8-[5]helicene				TS-1,14-	dimethyl-[5	5]helicene				
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	Center	Atomic	Atomic	Coord	linates (Ang	stroms)	
Number	Number	Туре	X	Ŷ	Z	Number	Number	Туре	X	Ŷ	Z	
1	6	 0	-3.461735	1.017911	0.722499	1	6	 0	3.089766	1.334465	-1.098553	
2	6	Ō	-2.749033	2.173744	0.679302	2	6	õ	2.618766	2.335821	-0.314457	
3	6	0	-1.372959	2.169795	0.288709	3	6	Θ	1.375714	2.168918	0.388934	
4	6	Ō	-0.721672	0.936268	0.002169	4	6	õ	0.730522	0.897707	0.438968	

5	6	Θ	-1.568845	-0.213374	-0.304676	5	6	Θ	1.605877	-0.244425	0.085594
6	6	Θ	-2.916514	-0.192149	0.185014	6	6	Θ	2.588384	-0.001073	-0.927712
7	6	Θ	-0.655543	3.391122	0.193974	7	6	Θ	0.682816	3.347746	0.762687
8	6	Θ	0.721672	0.936269	-0.002169	8	6	Θ	-0.730285	0.897880	0.438909
9	6	Θ	1.372959	2.169795	-0.288709	9	6	Θ	-1.375175	2.169229	0.388693
10	6	õ	0.655543	3.391122	-0.193974	10	6	õ	-0.682081	3.347906	0.762558
11	6	Θ	2.749033	2.173744	-0.679301	11	6	Θ	-2.618024	2.336379	-0.315011
12	1	õ	3.199275	3.116603	-0.970974	12	1	õ	-3.063068	3.324921	-0.341486
13	6	Θ	3,461735	1.017911	-0.722499	13	6	Θ	-3.089062	1.335087	-1.099169
14	6	Θ	2.916514	-0.192149	-0.185014	14	6	Θ	-2.588092	-0.000577	-0.928053
15	6	Θ	1.568845	-0.213374	0.304676	15	6	Θ	-1.605878	-0.244055	0.085498
16	1	õ	-4.485936	1.009426	1.079596	16	1	õ	3.912747	1.496763	-1.786026
17	1	Θ	-3.199275	3.116603	0.970974	17	1	Θ	3.064061	3.324254	-0.340751
18	1	õ	4.485936	1.009426	-1.079596	18	1	õ	-3.911809	1.497545	-1.786884
19	6	Θ	-3.744767	-1.326967	0.050442	19	6	Θ	3.200532	-1.082662	-1.594176
20	6	õ	-1.194243	-1.299248	-1.159674	20	6	õ	1.675684	-1.520571	0.708598
21	6	Θ	-2.059403	-2.380281	-1.287987	21	6	Θ	2.286873	-2.575616	0.030757
22	6	õ	-3.304785	-2.430996	-0.645814	22	6	õ	2.971965	-2.379284	-1.173101
23	1	Θ	-4.745718	-1.295953	0.467470	23	1	Θ	3.894532	-0.874119	-2.401427
24	1	õ	-1.771977	-3.197127	-1.942154	24	1	õ	2.309913	-3.552853	0.503178
25	1	Θ	-3.938858	-3.303196	-0.758446	25	1	Θ	3,421973	-3.218209	-1.691721
26	6	õ	1.194243	-1.299248	1.159674	26	6	õ	-1.676280	-1.520012	0.708809
27	6	Θ	3.744767	-1.326967	-0.050442	27	6	Θ	-3.200480	-1.082107	-1.594392
28	6	õ	3.304785	-2.430996	0.645814	28	6	õ	-2.972469	-2.378710	-1.172950
29	6	Θ	2.059403	-2.380281	1.287987	29	6	Θ	-2.287704	-2.575007	0.031101
30	1	õ	4.745718	-1.295953	-0.467470	30	1	õ	-3.894241	-0.873512	-2.401834
31	1	Θ	3,938858	-3.303196	0.758446	31	1	Θ	-3.422681	-3.217595	-1.691459
32	1	õ	1.771977	-3.197127	1.942154	32	1	õ	-2.311202	-3.552119	0.503755
33	6	Θ	-0.030450	-1.300312	2.049629	33	6	Θ	-1.498521	-1.670483	2.203141
34	1	õ	-0.883359	-1.806749	1.593220	34	1	õ	-1.037134	-2.614960	2.489403
35	1	Θ	-0.350123	-0.290310	2.307229	35	1	Θ	-0.958799	-0.846341	2.657521
36	1	Θ	0.205367	-1.827065	2.977306	36	1	Θ	-2.503986	-1.663345	2.639716
37	6	Θ	0.030450	-1.300312	-2.049629	37	6	Θ	1.497519	-1.671423	2.202843
38	1	0	0.883359	-1.806749	-1.593220	38	1	Θ	0.958576	-0.846863	2.657401
39	1	0	0.350123	-0.290310	-2.307229	39	1	Θ	1.035090	-2.615505	2.488713
40	1	õ	-0.205367	-1.827066	-2.977306	40	1	õ	2.502910	-1.665478	2.639599
41	1	õ	-1.181817	4.321298	0.379172	41	1	õ	-1.236729	4.273447	0.872475
42	1	õ	1.181817	4.321298	-0.379172	42	1	õ	1.237656	4.273158	0.872723
0 negative	eigenvalue					1 negative e	igenvalue				
Sum of elec	tronic and th	nermal Free	e Energies=	-925.	345188	Sum of elect	ronic and t	hermal Free	Energies=	-925	275662
			-						-		
1						1					

Copies of NMR spectra and HPLC chromatograms, CD spectroscopy

-0.500 -

-- 2.58 -- 2.32

$\begin{array}{c} -8.49\\ -8.49\\ -7.73\\ -7.73\\ -7.73\\ -5.02\\ -2.47\\ -2.33\\ -2.47\\ -1.90\\ -1$

S81

S90

8.66 8.18 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 7.799 7.799 7.757 7.799 7.757 7

Chromatograms from analytical HPLC on chiral stationary phases of all enantio-enriched products: racemic material (top) and enantio-enriched material (bottom)

Note: for the chromatograms of the racemic materials, only the two signals of interest are noted with their retention times. All other signals can be attributed to the presence of unidentified inseparable impurities and/or the other diastereomer/regioisomer.

(S,S) Whelk-O1, heptane/isopropanol = 95:5, 1 mL/min

Chiralpak IE, heptane/ethanol = 90:10, 1 mL/min

Semi-preparative separation of the enantiomers in rac-3c

Chiralpak IG, heptane/ethanol = 90:10, 1 mL/min

• Sample preparation: About 480 mg of racemic **3c** were dissolved in 9.2 mL of dichloromethane/ethanol (1:2).

• Chromatographic conditions: Chiralpak IG (250 x 10 mm), hexane/ethanol (9:1) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm.

• Injections (stacked): 184 times 50 µL, every 3 minutes.

100.00

8499

Sum

This afforded 205 mg of the first eluted enantiomer with >99.5% ee, and 212 mg of the second eluted enantiomer with >99.5% ee (see chromatograms of the enantiopure materials below)

DAD1 D, Sig=254,4 Ref=off

800 600

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
4.28	5746	50.14	0.45		
5.12	5714	49.86	0.73	1.63	4.18
Sum	11460	100.00			

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
4.28	43	1.26	0.45		
5.11	3388	98.74	0.73	1.63	4.42
Sum	3431	100.00			

DAD1 D, Sig=254,4 Ref=off

Lux-Amylose-1, heptane/isopropanol = 99.9:0.1, 1 mL/min

Signal: DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
3.85	3279	47.93	0.31		
4.41	3562	52.07	0.50	1.62	1.47
Sum	6841	100.00			

Signal: DAD1 E, Sig=254,4 Ref	=off
-------------------------------	------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
4.01	203	3.17	0.36		
4.52	6197	96.83	0.53	1.48	0.99
Sum	6400	100.00			

1st eluted diastereomer

Chiralpak IE, heptane/ethanol = 80:20, 1 mL/min

2nd eluted diastereomer (contains ca. 10% of the 1st eluted diastereomer)

Chiralpak IE, heptane/ethanol = 95:5, 1 mL/min

Chiralpak IE, heptane/ethanol = 80:20, 1 mL/min

Chiralpak IE, heptane/ethanol = 80:20, 1 mL/min

Chiralpak ID, heptane/ethanol = 60:40, 1 mL/min

Chiralpak ID, heptane/ethanol = 60:40, 1 mL/min

The experimentally determined ratio of enantiomers accounts for an enantiomeric excess of 93% in this case, which is certainly over-estimated considering the 90% ee recorded for the substrate. The reported ee for **6e** minor has thus been arbitrarily set to 90%. This discrepancy can be attributed to the experimental error inherent to the analytical method (up to 3%).

Chiralpak ID, heptane/ethanol = 80:20, 1 mL/min

Chiralpak IA, heptane/ethanol = 80:20, 1 mL/min

The experimentally determined ratio of enantiomers accounts for an enantiomeric excess of 92% in this case, which is certainly over-estimated considering the 90% ee recorded for the substrate. The reported *ee* for **6f** major has thus been arbitrarily set to 90%. This discrepancy can be attributed to the experimental error inherent to the analytical method (up to 3%).

The experimentally determined ratio of enantiomers accounts for an enantiomeric excess of 92% in this case, which is certainly over-estimated considering the 90% *ee* recorded for the substrate. The reported *ee* for **6f** minor has thus been arbitrarily set to 90%. This discrepancy can be attributed to the experimental error inherent to the analytical method (up to 3%).

Chiralpak IG, heptane/ethanol = 80:20, 1 mL/min, 220 nm,

The experimentally determined ratio of enantiomers accounts for an enantiomeric excess of 93% in this case, which is certainly over-estimated considering the 90% *ee* recorded for the substrate. The reported *ee* for **6g** has thus been arbitrarily set to 90%. This discrepancy can be attributed to the experimental error inherent to the analytical method (up to 3%).

Chiralpak IH, heptane/ethanol = 80:20, 1 mL/min

(S,S)-Whelk-O1, heptane/ethanol = 95:5, 1 mL/min

Chiralpak IF, heptane/ethanol = 80:20, 1 mL/min

The experimentally determined ratio of enantiomers accounts for an enantiomeric excess of 92% in this case, which is certainly over-estimated considering the 90% *ee* recorded for the substrate. The reported *ee* for **6i** has thus been arbitrarily set to 90%. This discrepancy can be attributed to the experimental error inherent to the analytical method (up to 3% *ee*).

HPLC Chiralpak IF, heptane/ethanol = 80:20, 1 mL/min

The experimentally determined ratio of enantiomers accounts for an enantiomeric excess of 91% in this case, which is certainly over-estimated considering the 90% ee recorded for the substrate. The reported *ee* for **6j** has thus been arbitrarily set to 90%. This discrepancy can be attributed to the experimental error inherent to the analytical method (up to 3% *ee*).

(S,S)-Whelk-O1, heptane/isopropanol = 95:5, 1 mL/min

Signal:	DAD1 B, Sig=220,4 Ref=off
---------	---------------------------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
10.29	25127	49.87	2.49		
11.82	25262	50.13	3.01	1.21	1.88
Sum	50388	100.00			

Signal: DAD1 B, Sig=220,4 Ref=off

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
9.97	179	1.13	2.38		
11.67	15670	98.87	2.96	1.24	1.65
Sum	15849	100.00			

Lux-Cellulose-2, heptane/isopropanol = 99.5:0.5, 1 mL/min

Signal: DAD1 C, Sig=254,4 Ref=off	
-----------------------------------	--

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
4.99	5340	50.25	0.69		
5.54	5287	49.75	0.88	1.27	1.28
Sum	10626	100.00			

Signal:	DAD1 C, Sig=254,4 Ref=off
---------	---------------------------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
5.07	247	2.18	0.72		
5.57	11046	97.82	0.89	1.24	1.17
Sum	11292	100.00			

The experimentally determined ratio of enantiomers accounts for an enantiomeric excess of 95.6% in this case, which is certainly over-estimated considering the 93.7% ee recorded for the substrate. The reported *ee* for **6I** has thus been arbitrarily set to 94%. This discrepancy can be attributed to the experimental error inherent to the analytical method (up to 3% *ee*).

(S,S)-Whelk-O1, heptane/ethanol = 95:5, 1 mL/min

DAD I C. SIU-234.4 REI-01	DAD1	C.	Sia=254.4	Ref=of
---------------------------	------	----	-----------	--------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
8.67	1385	49.50	1.94		
9.56	1413	50.50	2.24	1.15	2.36
Sum	2799	100.00			

DAD1	С,	Sig=254,4	Ref=off
------	----	-----------	---------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
8.66	3852	98.36	1.94		
9.73	64	1.64	2.30	1.19	1.56
Sum	3917	100.00			

VCD and ECD spectroscopic analyses of 3c

VCD spectra measurements

Infrared (IR) and vibrational circular dichroism (VCD) spectra were recorded on a Bruker PMA 50 accessory coupled to a Vertex70 Fourier transform infrared spectrometer. A photoelastic modulator (Hinds PEM 90) set at I/4 retardation was used to modulate the handedness of the circular polarized light at 50 kHz. Demodulation was performed by a lock-in amplifier (SR830 DSP). An optical low-pass filter (< 1800 cm⁻¹) before the photoelastic modulator was used to enhance the signal/noise ratio. A transmission cell equipped with CaF₂ windows and of 200 µm of optical pathlength was used. Solutions with a concentration of 0.1 mol L⁻¹ were prepared by dissolving the solid samples in CD₂Cl₂. The VCD spectra of the pure enantiomers (1st eluted)-1 and (2nd eluted)-1 were measured at room temperature and the baseline of the spectra were corrected using the standard procedure of the half-subtraction of the spectra of each enantiomer. For each individual spectrum, about 16000 scans were averaged at 4 cm⁻¹ resolution (corresponding to 4 hours measurement time). For IR absorption spectra, the cell filled with CD₂Cl₂ served as a reference. The spectra are presented without smoothing and further data processing.

ECD spectra measurements

UV-vis and electronic circular dichroism (ECD) spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at 20.0 °C. A quartz photoelastic modulator set at I/4 retardation was used to modulate the handedness of the circular polarized light at 50 kHz. A quartz cell of 1 mm of optical path length was used. Solutions with a concentration of 2.10⁻⁴ mol.L⁻¹ were prepared in acetonitrile (HPLC grade). The CD spectrometer was purged with nitrogen during the recording of spectra. The UV absorption and ECD spectra were recorded using acetonitrile as a reference and are presented without smoothing and further data processing.

Computational work

The calculations were done using the absolute configuration (aS) of molecule **3c** (Figure S10). We performed a systematic search of the conformations of the molecule, by rotation around the $C_{sp2}^{ar}-C_{sp2}$ bonds of the ester function and $C_{sp2}^{ar}-O$ bonds of the alcohol function. We found 5 conformations, 4 of them having a calculated Boltzmann population greater than 10% in dichloromethane and in acetonitrile (Table 1 and 2, figure 2). To establish this result, we used the Density Functional Theory (DFT), with the B3LYP functional with basis function 6-311+G(d,p) for H, C, O and Br atoms, and MWB46 with the associated pseudo potential for the I atom. Solvent effects were taken into account by using the implicit SMD solvation model. It is a polarizable dielectric continuum type model. Dichloromethane and acetonitrile where chosen in analogy with the experiments. All geometries found were characterized by a frequency calculation which confirmed that they were all local minima (no imaginary frequency).

Figure S10. A geometry of (aS)-3c obtained by DFT methods

The vibrational frequencies, IR absorption and VCD intensities were calculated using the same theoretical level as for geometries optimization: $SMD(CD_2CI_2)/B3LYP/6-311+G(d,p)-MWB46$. For the calculation of IR/VCD spectra, computed harmonic frequencies are generally larger than those experimentally observed. Thus, a scaling factor of 0.98 has been applied homogenously to all calculated frequencies in order to calibrate the spectra. IR absorption and VCD spectra were constructed from calculated dipole and rotational strengths assuming Lorentzian band shape with a half-width of 8 cm⁻¹.

Based on the SMD(CH₃CN)/B3LYP/6-311+G(d,p)-MWB46 optimized geometries, the ECD and UV spectra were calculated using time dependent density functional theory (TD-DFT) with CAM-B3LYP functional and 6-31++G(d,p) basis set. Calculations were performed for vertical 1A singlet excitation using 50 states. For a comparison between theoretical results and the experimental values, the calculated UV and ECD spectra have been modeled with a Gaussian function, using a half-width of 0.37 eV. Due to the approximations of the theoretical model used, an offset almost constant was observed between measured and calculated frequencies. Using UV spectra, all calculated frequencies were calibrated by a factor of 1.02.

Boltzmann populations calculated from enthalpies obtained at SMD(CD₂Cl₂)/B3LYP/6-311+G(d,p)-MWB46 and SMD(CH₃CN)/B3LYP/6-311+G(d,p)-MWB46 levels, are given in respectively Tables S4 and S5.

Conformations	H ^{298K} (in a.u)	ΔH^{298K} (in kcal.mol ⁻¹)	Distribution of Boltzmann
A ₁	-3582,973771	0,000	0,34
A ₂	-3582,973524	0,155	0,26
A ₃	-3582,973309	0,290	0,21
A4	-3582,973175	0,374	0,18
A ₅	-3582,962245	7,233	0,00

Table S4. Enthalpies and Boltzmann populations of conformations A_1 - A_5 calculated using $SMD(CD_2Cl_2)/B3LYP/6-311+G(d,p)-MWB46$ level

Table S5. Enthalpies and Boltzmann populations of conformations B_1 - B_5 calculated using SMD(CH₃CN)/B3LYP/6-311+G(d,p)-MWB46 level

Conformations	H ^{298K} (in a.u)	ΔH^{298K} (in kcal.mol ⁻¹)	Distribution of Boltzmann
B ₁	-3582,972191	0,000	0,34
B ₂	-3582,971874	0,199	0,24
B ₃	-3582,971797	0,247	0,22
B4	-3582,971639	0,346	0,19
B ₅	-3582,961807	6,516	0,00

 A_4/B_4

Figure S11. Geometries of calculated conformations of (a*S*)-**3c** using SMD(CD₂Cl₂)/B3LYP/6-311+G(d,p)-MWB46 and SMD(CH₃CN)/B3LYP/6-311+G(d,p)-MWB46 levels.

As/Bs

Figures S1 on page S15 shows the IR and VCD spectra measured for the two enantiomers (1st eluted)-**3c** and (2nd eluted)-**3c** and calculated for (a*S*)-**3c**. It can be observed that the IR and VCD spectra calculated for (a*S*)-**3c** gives the best correlation (signs and intensities of bands) with the spectra measured for the (1st eluted)-**3c** enantiomer.

Figures S2 on page S16 shows the UV and ECD spectra measured for the two enantiomers (1^{st} eluted) -**3c** and (2^{nd} eluted) -**3c** and calculated for (aS)-**3c**. As in IR/VCD, it can be observed, that the UV and ECD spectra calculated for the enantiomer (aS)-**3c** gives the best correlation (signs and intensities of bands) with the spectra measured for the (1^{st} eluted) -**3c** enantiomer.

Altogether, the calculated spectra reproduce well both the high and low-energy bands of the experimental CD spectra allowing the determination of the absolute configuration of $(1^{st} eluted)$ -**3c** as (a*S*)-**3c** with the greatest confidence.