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1 Methodology

1.1  Model system

The initial intralayer carbon-carbon covalent bond length was taken as 1.420 A (the equilibrium
value obtained using the REBO intralayer potential for single layer graphene) and the initial intralayer
boron-nitrogen covalent bond length was taken as 1.442 A (the equilibrium value obtained using
the Tersoff intralayer potential for single layer #-BN). The initial interlayer distance across the layered
stack was set equal to 3.4 A and 3.3 A for graphite and bulk A-BN, respectively. Periodic
boundary conditions were applied in all directions. It should be noted that the lattice structure is
rigorously periodic only at some specific twist angles, the values of which are listed in Table S1 in
section 3 below. While the cross-sectional area for each misfit angle, 0, is different, all systems
considered have a contact area exceeding 12 nm?, which was shown to provide converged results with
respect to unit-cell dimensions (see Section 2.4).! The intralayer interactions within each graphene
and /#-BN layer were modeled via the second generation REBO potential® and Tersoff potential,’
respectively. The interlayer interactions between the layers of graphite and bulk #-BN were described

via our dedicated interlayer potential (ILP),* which is implemented in the LAMMPS? suite of codes.®
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Figure S1. Schematic representation of the simulation setup (a) and steady-state temperature profile
(b), respectively. In panel (a), two identical AB-stacked graphite slabs (gray and orange, respectively)
are twisted with respect to each other to create a stacking fault of misfit angle 6. A thermal bias is
induced by applying Langevin thermostats to the two layers marked by dashed red (7hot) and green
(Teold) rectangles. The arrows indicate the direction of the vertical heat flux. Since periodic boundary
conditions are applied also in the vertical direction, two twisted interfaces are, shown across which
heat flows in opposite directions. The steady-state temperature profiles are illustrated in panel (b),
where N is the total number of layers in the model system and Rag, das and Ry, and dy mark the
interfacial Kapitza resistance” ® and interlayer distance for contacting graphene layers with AB-
stacking and misfit angle 6, respectively. The red lines in panel (b) mark the temperature variation
across the twisted interface, where the vertical axis corresponds to the position of the various layers
along the stack and the horizontal axis marks the temperature of the various layers.
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1.2 Simulation Protocol

All MD simulations were performed with the LAMMPS simulation package.’ The velocity-Verlet
algorithm with a time-step of 0.5 fs was used to propagate the equations of motion. A Nosé-Hoover
thermostat with a time constant of 0.25 ps was used for constant temperature simulations. To maintain
a specified hydrostatic pressure, the three translational vectors of the simulation cell were adjusted
independently by a Nosé-Hoover barostat with a time constant of 1.0 ps.” To relax the box, we first
equilibrated the systems in the NPT ensemble at a temperature of 7= 300 K and zero pressure for
250 ps (see Figure S2). After equilibration, Langevin thermostats with damping coefficients 1.0 ps™!
were applied to the bottom and middle layer of the graphene stack (see Figure S1) with target
temperatures Thot = 375 K (hot reservoir) and Tcold = 225 K (cold reservoir), respectively. Then the
system was allowed to reach steady-state over a subsequent simulation period of 750 ps (see Figure
S2), during which the dynamics of all non-thermostated layers followed the NVE ensemble. For the
larger model systems, the length of the NPT and Langevin stages was doubled (for the 32 and 48
layers systems) or tripled (for the 104 layers graphitic system) to ensure convergence of the obtained
steady-state. Once steady-state was obtained, the last 500 ps were used to calculate the thermal
conductivity of the twisted graphite and bulk #-BN. The statistical errors were estimated using ten

different data sets, each calculated over a time interval of 50 ps.
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Figure S2. Time evolution of the temperature of the thermostated layers for 16 layers twisted graphite
with misfit angle (a) 6 = 0°, (b) 8 = 5.09°, (c) 8 = 15.18°, and (d) 8 = 30.16°. Note that the thermal
fluctuations increase with increasing the misfit angle due to the growing interfacial thermal resistance
that enhances phonon back scattering at the twisted junction.
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1.3 Calculation of the interfacial thermal resistance
According to Fourier’s law, the cross-plane thermal conductivity (kcp) of a twisted graphitic interface
of misfit angle @ can be calculated as:
Q/A
Kcp = S1.1
CP ™ aT/Az (S1.1)

where Q is the heat flux, 4 is the cross-section area and AT /Az is the temperature gradient along
the direction of heat flux (perpendicular to the basal plane in our case). Figure S1(b) shows a
schematic temperature profile along the z-direction, where the vertical axis corresponds to the
position of the various layers along the stack and the horizontal axis marks the temperature of the
various layers. The actual temperature profiles extracted from the NEMD simulations for twisted
graphite with different number of layers can be found in Figure S3 . For Bernal-stacked graphite (i.e.,
6 =0°, red circles in Figure S3), only the linear region of the temperature profile was used to calculate
kcp and the points corresponding to the layers where the thermostats were applied were omitted
(marked with green triangle in Figure S3). The kcp of the system was calculated using Eq. (S1.1)
by averaging over the two linear regions of the temperature profiles. For the twisted case (6 # 0°), we
found a sudden temperature decrease ATy at the position of the twisted interface (see black squares
in Figure S3). kcp, in this case, was calculated using the temperature gradient calculated for the same
layer range as that for 6 = 0°. To characterize the thermal properties of the twisted interface, the
concept of interfacial thermal resistance (ITR), i.e., Kapitza resistance,” ® was introduced. Using the
definition of the Kapitza resistance,” R = AAT/Q, and noticing that AT, = (N/2 — 3)ATap + AT,
and Az = (N/2 — 3)dag + dg, where N is the number of layers and dag, ATag and dg, ATy
are the interlayer distance and temperature difference for adjacent AB-stacked and twisted graphene

layers, respectively, Eq. (S1.1) can be rewritten as follows [see Figure S1(b)]:

(5-3)Rag +Ro = (5 — 3) dap + do|/xce. (81.2)

where Rpp and Ry are the ITRs of adjacent AB-stacked and twisted graphene layers, respectively.
The first term on the left-hand side is just the sum of resistances of the various interfaces within the
two optimally stacked slabs. The number of layers is divided by two to account only for one part of
the system that is located between the two thermostats (see Figure S1) and we remove the three
interfaces corresponding to the thermostats and the twisted interface. The second term on the left-

hand side is the resistance of the twisted interface itself. On the right-hand side we have the overall
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resistance (not to be confused with the resistivity) expressed as the inverse of the overall junction
conductivity multiplied by the thickness. For the aligned contact (8 = 0°,Rg = R,p), the ITR can
be simply calculated as Rag = dag/Kag. Once Rpg(N) is known, Rg(N) can be calculated from
Eq. (S1.2) using the value of k¢cp(N). We note that the sharp temperature drop at the twisted interface

indicates that Ry should be much larger than R,p.
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Figure S3. Temperature profiles for graphitic stacks consisting of (a) 8 and (b) 16 layers. The red
circles and black squares represent the temperature profiles for the aligned (6 = 0°) and twisted
(6 = 30.16°) junctions, respectively. Green triangles represent data points that were omitted in the
Kcp calculation.
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2 Convergence Tests

2.1  Effect of NPT simulation time on the calculated thermal conductivity

According to our simulation protocol, the simulation box of the systems were relaxed using the NPT
esemble for at least 250 ps (see Section 1.2) prior to the non-equilibrium simulation stage. To check
the effect of the NPT equilibration time on the evaluated thermal conductivity, we performed
additional convergence tests for the 8-layer graphite stack with & = 0° by increasing the NPT
simulation time to 1 ns. The results are summarized in Figure S4a,d. We find that the box size is
already fully relaxed at 250 ps. More specifically, the averaged lattice constants for NPT simulation
times of 250 ps and 1 ns were 2.4604 £+ 0.0004 A and 2.4605 + 0.0003 A, respectively. The relative
difference between them is smaller than 0.01%. The corresponding calculated thermal conductivities
were 0.196 £ 0.024 Wm™'K! and 0.184 £ 0.023 Wm™'K"!, respectively (see Figure S5a). Furthermore,
the residual in-plane stresses obtained at a simulation time of 250 ps in both x (-0.025 £ 0.138 GPa)
and y (-0.012 + 0.128 GPa) directions also indicate that the system is satisfactorily relaxed. Similar
behavior was found for 8 =30.16° (see Figure S5b). Therefore, we conclude that the NPT simulation

time used in our protocol (250 ps) is sufficiently long to obtain converged results.
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Figure S4. The size of the simulation box (a)-(c) and in-plane stress (d)-(f) as a function of simulation
time calculated for the aligned (6 = 0°) 8-layer graphite stack using the NPT protocols at 300K (a, d)
or at 200 K (b, e) and the NVT protocol at 300 K (c, f). After 1 ns, the equilibration protocol is
terminated and Langevin thermostats are applied as explained in the main text. The left and right
vertical axes represent the values obtained along the x (red lines) and y (blue lines) directions (see

Figure S10a), respectively.
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Figure S5. Convergence tests of the thermal conductivity for 8-layers graphite. (a) Evaluation of the
effect of the equilibration time and protocol for 6 = 0°; (b) Evaluation of the effect of the size of the
simulation box and equilibration time for & = 0° (orange) and 6 = 30.16° (green), respectively. In
panel (a), the small difference between the cross-section area comes from the different simulation
protocols. In panel (b), all the systems for 8 = 0° are equilibrated under NPT conditions for 1 ns at
300 K and zero pressure. For 8 = 30.16°, the systems with smaller and larger cross-section areas are
equilibrated under NPT conditions at 300 K and zero pressure for 0.25 ns and 1 ns, respectively. The

method for estimating the error bars can be found in Section 1.2.

2.2 Effect of residual in-plane stress on the calculated thermal conductivity

Our original simulation protocol starts from an initial configuration, where all graphene layeres have
the equilibrium carbon-carbon covalent bond-length obtained from the REBO intralayer potential
(1.420 A) and an interlayer distance of 3.4 A. First, the system is equilibrated using an NPT
ensemble simulation at 300 K and zero pressure with the REBO potential augmented by the ILP. This
is followed by non-equilibrium NVE simulations with Langevin thermostats coupling the system to
implicit heat baths, during which the simulation box dimensions are kept fixed and the thermal
conductivity is evaluated. Since a previous study argued that the cross-plane thermal conductivity of
graphite may be sensitive to in-plane stress,'® we validated that any residual stress due to the
difference in equilibration and non-equillibrium simulation protocols has minor effect on the
calculated thermal conductivity. To this end, we performed additional simulations for the 8-layer
graphitic stacks with 8 = 0°, replacing the NPT ensemble equilibration step by an NVT equilibration
step (see Figure S4c,f). Consequently, the unit-cell was not relaxed during the equilibration step and
the residual in-plane stress was ~0.11 = 0.06 GPa in both the x and y directions. The average lattice
parameter obtained using the NPT and NVT equilibration protocols were 2.4605 + 0.0003 A, and

2.4602 A, respectively, with a relative difference of ~0.01%. The corresponding calculated thermal
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conductivities were 0.184 = 0.023 Wm'K™! and 0.186 + 0.023 Wm™'K™!, respectively (see Figure
S5a). The small variations (within the error bar) in lattice parameters and calculated thermal
conductivity values indicates that the residual stress due to the different protocols used during the

equillibration and non-equillibrium dynamics simulation stages has minor effect on our predictions.

2.3 Effect of NPT equillibration temperature

Our original simulation protocol starts from an initial configuration, where all graphene layeres have
the equilibrium carbon-carbon covalent bond-length obtained from the REBO intralayer potential
(1.420 A) and an interlayer distance of 3.4 A. First, the system is equilibrated using an NPT
ensemble simulation at 300 K and zero pressure with the REBO potential augmented by the ILP. This
is followed by non-equilibrium NVE simulations with Langevin thermostats coupling the system to
implicit heat baths, during which the thermal conductivity is evaluated. To evaluate the effect of the
equilibration step temperature, we repeated the calculations while setting the equilibration step
temperature to 200 K and keeping the average temperature during the non-equilibrium calculation at
300 K. The results are presented in Figure S4b,e. We found that the time-averaged lattice parameter
at steady-state during the thermal conductivity simulation stage was 2.4601 A and the residual in-
plane stress was 0.21 = 0.06 GPa (0.43 + 0.06 GPa) along x () direction. The small differences in
lattice parameters between the original (2.4605 + 0.0003 A) and control simulations (~0.016%) have

a minor effect on the calculated thermal conductivity (see Figure S5a).

2.4 Effect of supercell cross-section area on the calculated thermal conductivity

To evaluate the convergence of our results with respect to the simulated supercell dimensions, we
performed additional calculations for the 8-layer graphite stacks with & = 0° and € = 30.16° by
increasing the supercell sizes (see Figure S5b). Supercells of cross-section areas of 26.83 nm?, 60.40
nm?, and 120.77 nm? were used for the aligned (6 = 0°) interface and 18.98 nm? and 37.94 nm? sized
models were used for the twisted interface (6 = 30.16°). For the # = 0° interface, following a 1 ns
equilibration step under NPT conditions at 300 K and zero pressure, the corresponding calculated
thermal conductivities were 0.183 + 0.032 Wm™'K"', 0.184 + 0.023 Wm™'K"', and 0.184 + 0.010 Wm"
IK"!, respectively. Similarly, for the § = 30.16° twisted interface, we equilibrated the smaller and
larger systems under NPT conditions at 300 K and zero pressure for 0.25 ns and 1 ns, respectively.
The corresponding thermal conductivities were 0.035 + 0.002 Wm™'K"! and 0.034 = 0.003 Wm™'K"!,
respectively. These results clearly indicate that our calculated thermal conductivities are well

converged with respect to the model interface cross-section area.
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3 Comparision of the phonon spectrum and density of states calculated using

the ILP and the Lennard-Jones potential

A proper description of the phonon dispersion is very important for studying the thermal transport
properties. We already showed in the main text that the ILP gives more accurate values of the cross-
plane thermal conductivity for graphite than those predicted by the Lennard-Jones (LJ) potential. To
further understand this finding, we repeated the phonon spectrum calculations for AB-stacked
graphite obtained using the REBO interlayer potential and the ILP,* now using the AIREBO potential
(with LJ parameters, ¢ =2.84 meV and 0 = 3.4 A). The results are illustrated in Figure S6a. To identify
the effect of interlayer potential on the phonon dispersions, we also calculated the phonon spectrum
of monolayer graphene with the second generation REBO and AIREBO potential, respectively (see
Figure S6b). Comparing Figure S6a and Figure S6b, we find that the interlayer potential mainly
influences the phonon properties at the low energy regime. Therefore, the differences between the
phonon dispersion curves calculated using the two potentials at the high energy regime mainly results
from the intralayer potential terms. The comparison with the experimental phonon spectrum of
graphite!! shows that the phonon spectrum calculated by REBO+ILP agrees better with the
experimental data in the low phonon energy regime, which is relevant for the cross-plane thermal
conductivity calculation, than the spectrum obtained using AIREBO (see Figure Sé6c). The
corresponding phonon density of states (DOS), as plotted in Figure S6d, also demonstrates the
difference between the two force fields. This supports the reliability of the ILP for performing cross-

plane thermal conductivity calculations.
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Figure S6. Phonon spectrum of (a) bulk graphite and (b) monolayer graphene. Red solid lines and
blue dashed lines are dispersion curves calculated using the REBO+ILP (when applicable) and
AIREBO force fields, respectively. Experimental results of bulk graphite!! are presented by the open
black circles. Panel (c) shows a zoom-in on the low energy phonon modes around the I'-point (green
rectangles in panels (a)) for graphite. Panel (d) shows the phonon density of states for graphite
calculated using the REBO-+ILP and the AIREBO potential, respectively.
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4 Thermal conductivity of twisted bilayer graphene

4.1 Transient MD protocol

For comparison purposes we also calculated the interfacial thermal conductivity (ITC) and resistance
(ITR) of twisted bilayer graphene (tBLG) with the transient MD simulation approach!>'* since the
NEMD simulation protocol used in the main text becomes invalid in this case. In this protocol, the
system was first equilibrated within the NPT ensemble at 7= 200 K and zero pressure for 100 ps,
which was followed by a 100 ps NVT ensemble equilibration stage and a 100 ps of NVE ensemble
equilibration stage. After the system reached equilibrium, an ultrafast heat impulse was imposed on
the top layer of the t-BLG for 50 fs to increase the temperature of the top layer from 200 K to 400 K,
while that of bottom layer of tBLG remained unchanged. After the external heat source was removed,
thermal energy flowed from the top layer to the bottom layer due to the temperature difference and
the temperature of both layers approached 300 K when quasi-steady-state was reached. During the

thermal relaxation time interval (500 ps), the temperature and energy of the system sections were

recorded. The ITR could then be extracted using the following equation:'!4
dE, A
= 2 [ Toot(®) = Teop(®)]. (34.1)

where E; is the total energy of the top graphene layer, R is the ITR of the tBLG, 4 is the interfacial
cross-section area, and Tyo and Ty, are the instantaneous temperatures measured for the bottom
and top layers of the tBLG, respectively. Note that in Eq. (S4.1) we assume a linear dependence of
the heat flux on the temperature difference between the layers. The ITC of the tBLG is simply defined
as ITC = d/ITR, where d is the average interlayer distance. Note that, for tBLG, the ITC is equivalent
to the kcp in the main text since there exists only one interface.

The ITC and ITR of tBLG as functions of misfit angle calculated with the transient MD simulation
protocol are illustrated in Figure S7, demonstrating similar misfit-angle dependence as that for the
NEMD protocol with Langevin thermostats exercised to obtain the results presented in the main text.
This further validates the reliability of the simulation protocol adopted in the main text, which is more

suitable to treat thick slabs and allows to obtain a true steady-state.
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Figure S7. Misfit-angle dependence of (a) ITC and (b) ITR for a twisted bilayer graphene obtained
using the transient MD simulation approach.

4.2 Comparison between the transient MD and Langevin thermostat protocols

Comparing k.p calculated for the multi-layered graphitic systems using the Langevin thermostat
protocol (Figure 2a of the main text) and the ITC (=kcp in the bilayer case) calculated for bilayer
graphene using the transient MD approach (Figure S7), a ~10 fold difference in magnitude is
observed. We identify two main reasons for this discrepancy: (i) The dependence of kcp on the
number of layers (see Figure 2a in the main text); and (ii) the different simulation protocols
implemented for the two systems due to their different thickness. Regarding the latter issue we would
like to stress that in the bilayer system we cannot use the Langevin thermostat approach as coupling
the interface layer directly to the implicit heat bath without any buffer layers may result in an
unphysical behavior. To estimate the relative importance of the two contributions we extrapolated the
kcp data obtained using the Langevin thermostat approach (see Figure 4a in the main text) to the
bilayer limit using a power-law fitting function. The extrapolated xcp values obtained were 0.076
Wm'K" and 0.0061 Wm™'K! for the 0° and 30.16° rotated interfaces, respectively (see Figure S8).
Comparing to the values obtained for the bilayer system using the transient MD approach (0.028 Wm"
'K-'and 0.0033 Wm™'K"!, respectively), we find a difference of a factor of 2.7 and 1.8 for the 0° and
30.16° rotated interfaces, respectively. The remaining difference can be therefore attributed to the

difference between the two simulation approaches.

S12



6=0° 6 =30.16°

(a) 1 (b)
- o0}
§ 0.1 §
= ; ~ 001
o [ E = MD,d=0° o : = MD,6=30.16°
~ : Power law fit 3 - " Power law fit
2 4 8 16 40 104 2 4 8 16 40
Number of layers Number of layers

Figure S8. Interpolation of the cross-plane thermal conductivity (k.p) with the number of layers (N)
for (a) 0° and (b) 30.16° rotated graphitic interfaces. Black squares and red lines represent the MD
simulations and power-law fit, respectively. The power-law fit reads as x.p = aN?, where a and
[ are fitting parameters. In panels (a) and (b), the optimal fitting parameters are « = 0.04973, f =
0.61111 and a = 0.00253, f = 1.26412, respectively. The MD results for N > 2 and N =2

were obtained with the Langevin thermostat approach and transient MD approach, respectively.

To explain the stronger thickness dependence of kcp observed for twisted interfaces, we note that
there are two main factors (see Eq. (S1.2)) influencing the dependence of the cross-plane thermal
conductivity on the thickness: (i) The ITR, Ry, which measures the resistance of the twisted interface
alone; and (i1) the resistance, Rapg, of the interface between each two optimally stacked layers within
the slabs residing above and below the twisted interface. Thus, the equation for the thermal
conductivity as a function of the number of layers, N, may be written as follows (see Eq. (S1.2) for
a full explanation):

(N/2-3)dag+dg
(N/2-3)RaB+Rg

kcp(N) =

To investigate the origin of the higher slope of kcp(N) for the twisted interface, we varied the value

(S4.2)

of Ry artificially. In Figure S9 below we compare the kcp(N) curves extracted from the
simulations of the aligned and 30.16° twisted interfaces (open red circles and black squares,
respectively) with the curve of the twisted interface, where we artificially reduce the value of Ry by
half (open blue triangles). Clearly, reducing Ry results in a reduction of the slope of the curve and a
weaker thickness dependence of kcp. Thus, we can conclude that the stronger thickness dependence

of the twisted system stems from the larger interfacial thermal resistance at the twisted interface.
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Figure S9. Thickness dependence of the thermal conductivity, kcp, of the aligned (open red circles)
and 30.16° twisted (open black squares) graphite junctions. Blue triangles represented the kcp of
graphite stacks with § = 30.16°, where the ITR is artificially reduced by a factor of 2. Eq. (§4.2) is

used to perform this calculation.
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5 Brillouin zone integration procedure

5.1 Brillouin zone of supercell in tBLG

For tBLG, the lattice structure is rigorously periodic only at some specific misfit angles, 8, where the
lattice vector L; = nya,; + n,a, in the bottom layer equals the vector L, = mya,; + m,a, in the
top layer with certain integers m1, m> and ni, no. Here, a; = a(1,0) and a, = a(1/2,v/3/2) are
the primitive lattice vectors of the bottom layer and a is the lattice constant of monolayer graphene.

Thus, the exact superlattice period is then given by:!>

Ing—n,la
L = na; + nya,| = ayn? +n2 + mn, = m, (S5.1)

where 6 is the angle between two lattice vectors L; and L,. In the simulations below, we always

rotated the supercell such that its lattice vectoris L; = L(1,0) and L, = L(l /2,\3/ 2).

Table S1. The parameters used to construct periodic supercells of various misfit angles.

0 (°) A (nm?) n, n, my m,

0 60.383688 24 0 24 0
0.696407 709.613169 48 47 47 48
1.121311 273.718420 30 29 29 30
2.000628 85.648391 17 16 16 17
3.006558 152.322047 23 21 21 23
4.048894 189.013524 26 23 23 26
5.085849 53.255058 14 12 12 14
7.926470 49.376245 14 11 11 14
9.998709 86.277388 19 14 14 19
15.178179 31.554670 15 4 4 15
19.932013 42.876612 15 8 8 15
25.039660 13.942761 9 4 4 9
30.158276 18.974735 11 4 4 11
32.204228 21.805221 12 4 4 12

S15



In this case, the corresponding reciprocal lattice vector of the moiré superlattice satisfies the relation
G, L; = 216, such that:

G == (8

1 41
==(%.-3), 62== 0. (S5.2)
Both the lattice vectors and the corresponding reciprocal lattice vectors of the superlattice of the tBLG

are presented in Figure S10. Table S1 reports the parameters used to construct thombus periodic

supercells of different misfit angles that can be duplicated to construct a rectangular periodic supercell.

5.2 Special points for Brillouin zone integration

The calculation of the sum over wave vector ¢ in eq 4 in the main text can be transformed to an
integral using the relation Y,(-++) = VifBZ(---)dq, where V, = (2m)3/Vis the volume of the
b

Brillouin zone (BZ) and V' is volume of the real-space unit-cell. The calculation of integral is usually
inefficient since it requires calculating the value of the function over a large set of & points in the first
BZ. To calculate such integrations more efficiently, simple k-point meshes can be replaced by a

16-19

carefully selected set of special points in the BZ, q;, over which the function is evaluated. The

integral can then be estimated via:
1 1
I'= V—beZf(Q) dg ~ =% wif (q.), (55.3)
where w; is the weight of the i data point, and N = ¥.; w; normalizes the weighting factors to unity.
The set of selected {q;} forms a grid in the irreducible Brillouin zone (IBZ), as is illustrated by the

red points in Figure S10b. The coordinates of these points for a hexagonal lattice are presented in Eq.

(S5.4).

(b)

vectors. (b) The corresponding first Brillouin zone of (a). G and G- are the reciprocal lattice vectors
of the superlattice. The triangle AI'MK represents the irreducible Brillouin zone. Red circles mark the
position of the special points used to evaluate the integral over the first Brillouin zone.
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I{q1 (9 3) 92 ( ) qs (118 f;)
= (E5) 0= (22),0= 2.2). (854
4= (%) a0= (50 = (22)

Here, t = +/3 and the units of the coordinates are 27 /L. The weighting factors {w;} are '°

1 1
Wi24689 = ;' W357 = 5 (S5.5)
Using Egs. (S5.3)-(S5.5), eq 4 in the main text can be evaluated as follows:
(eard) 2
A3 ~BEqua P\Eqya Al+3r(‘1k)
Tiot = 5 Y=t Wk 2 = (85.6)
ar

This equation was used to calculate the transition rate presented in Figure 3 of the main text.

6 Temperature dependence of interfacial thermal conductivity

In the main text, the target temperatures of the Langevin thermostats for the bottom and middle layers
of graphene and 4-BN were set to 225 K and 375 K, respectively. After reaching the steady-state, the
average temperature of the system was found to be ~300 K. To check the effect of average temperature
on our results, we calculated the cross-plane thermal conductivity (kcp) and the corresponding
interfacial thermal resistance (ITR) at a different temperature gradient (325 K — 475 K), resulting the
average steady-state temperature of ~400 K. The protocol described in Section 1 above was used to
perform these calculations, as well. Both ILP and Lennard-Jones (LJ) potential were tested for
graphite whereas for the bulk #-BN simulations only the ILP was used. The results for graphite and
bulk 4#-BN are illustrated in Figure S11 and Figure S12, respectively. For the ILP we find that the
overall values of kcp (ITR) decrease (increase) slightly with increasing average temperature. The
LJ potential calculations, as well, exhibit very week dependence on average temperature within the
range studied. Altogether, the thickness dependences of both quantities remain mostly insensitive to

the average temperature.
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Figure S11. Thickness dependence of kcp (a, ¢) and ITR (b, d) for Bernal-stacked graphite at
average steady-state temperatures of 300 K (red circles) and 400 K (black squares). The left and right
columns correspond to the xcp and ITR calculated with ILP (top panels) and LJ potential (bottom
panels), respectively.
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Figure S12. Thickness dependence of kcp (a) and ITR (b) for AA’-stacked #-BN at average
temperatures of 300 K (red circles) and 400 K (blue squares).
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7 Derivation of Fermi’s golden rule

7.1  Basic theory for phonons

7.1.1  Basic notations
Let us consider a 3D crystal with a total of N = N; N, N5 unit cells and periodic boundary conditions.

To be specific, let a;,i = 1,2,3 be the lattice vectors that define the unit cell. We index unit cells
with n = (n1,n2,n3) where each n; = 1,2, ---, N;, and their locations are R, = 213:1 n;a;. Assume that
there are » atoms in each unit cell, which are indexed with s = 1, -+, r. The mass and the equilibrium
distance of the s atom are notated as Mg and R?, respectively. Then the location of the s atom in
the n™ unit cell at time # can be expressed as:

Tns(t) = R, + RY + w4 (t), (S7.1)
where u,(t) is its displacement from its equilibrium position.

The Lagrangian for this classical problem can be written as
— Z 12 Ms|rns| (®) V, (S72)

where the second term is the sum of interactions between all pairs of atoms.
Under the harmonic approximation, i.e., expanding the total potential energy V around the
equilibrium positions, The Lagrangian can be simplified as

Ms|uns| (t) n, n'
= Z 12 -, _Zn n' Zss Yaa! Daa’ (S SI) UnsaUn's'q's (587.3)
where u,,, @ = 1,2,3 are the Cartesian coordinates of the displacement u,4(t) and

ba (1) = 5| = e (M) = 00w (271, (574)

s, s’ S, S

OTnsalpls! o

€q

Note that the first order term vanishes because we are expanding around the equilibrium positions.

!

bua (Z' ?,) represents the component of the force acted on the s™ atom in the n™ unit cell along «

direction when the atom s’ in the unit cell n’ moves a unit displacement along a’ direction. The

!
)

symmetries of ¢, (Z :,) appearing in Eq. (S7.4) arise from the intechangability of the second

)

derivative and the translational invariance of the interactions.

7.1.2  Dynamical matrix
The equation of motion of the s™ atom in the n™ unit cell can be derived using the Euler—Lagrange

equation as follows:

. n—nm
Milygq = — Zn’s’a’ ¢aa' (S s’ )un’s’a'a (87.5)

If we displace all atoms equally, i.e. shifting w,gyr t0 U,/g, + 8, the total force on the s™ atom in
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the n'" unit cell does not change. From the above equation we have

Swer b ("L 11) = 0, (576)

s, s’
We are looking for normal modes (because any general solution can be written as a linear combination
of them); these are solutions where all atoms oscillate with the same frequency. Moreover, because
of the lattice structure, we expect solutions to reflect this periodicity. So we guess solutions of the

form

finse () = Lesaei(q-Rn—wt), (S7.7)

R
where eg, are real-space solutions that will be determined later and q is the wave-vector in

reciprocal space. Substituting Eq. (S7.7) into Eq. (S7.5), we can get
©*e5q(q) = oo DS @ et (@), (S78)

where

D5 (q) = Y

!
1 =1 ~iq(Rn-R,) _ ! (
e n') =
o, Pa ( s, s’ ) 21 o, Pa

is called dynamical matrix (dimension 3r X 3r). Note that we have defined the relative cell distance

) S,) e~laR (S7.9)

vector Ry = R, — R,y and number index, | =n —n', where the infinite sum over n’ can be

replaced by the sum over [ for any value of the index n. Note that dynamical matrix is Hermitian

symmetric (i.e., [Dssl;“'(q)]* =D,

1(—q)) because ¢ is symmetric, so all the eigenvalues of Eq.
(S7.8) (wy(q),A = 1,2 ---,3r) are real for each q in the Brillouin zone (BZ), which is determined by
det|w; (q)85a 850" — Dis™ (@)| = 0. (S7.10)
Taking the conjugate of this equation, we have
0 = det [ ()] 8sabyrar — [D& @] | = det|0F(@)8sabsrer — DET (—@)],  (ST.11)
while replacing ¢ by —q in Eq. (S7.10), we have det|w2(—q)8sq8yq — Dssl;“'(—q)| = 0.

It’s clear that w?(q) and w%(—q) obey the same equation, thus we have:

w(—q) = wa(q). (S7.12)
The corresponding eigenvectors are orthonormal:
Tsalede) el = 1 (87.13)
The complex conjugate of Eq. (S7.8) gives
©*ela(@) = Tow[DS" @] €511 (@) = ora DYy (—@)e (@), (S7.14)
While replacing q by —q in Eq. (S7.8) we get the following equation:
©*e5(=q) = oot DL (—@egr o (— ), (S7.15)

From Eq. (S7.14) and Eq. (S7.15), we see that eigenvectors [eﬁa(—q)]* and el,(q) obey the same
S20



eigenvalue equation. Since the eigenvectors are normalized, we get the following property:

[e2 (—)] = el (q).

7.2 Second quantization

The general solution is a linear combination of all these normal modes, thus we have

Calq) —i iq- Qa(q.t) iq-
tnsa(©) = Zqa o [elu(@e o et e = 3, SR el (@',

(37.16)

(87.17)

where the we define the normal coordinates as Q;(q,t) = C;(q)e 2@t in the eigenvectors

representation. To ensure that the displacements u,,(t) are real (namely, U, (t) = U,s, (L)), the

following relation on Q,(q,t) and eZ, is enforced:

[02(q, el (@] = Qi(—q, el (—q),

(S7.18)

where we used the fact that the sum over q runs symmetrically over both negative and positive

values. Using Eq. (§7.16), we have
[QA(‘I; t)]* = Q)l(_q) t)a

7.2.1  Kinetic energy term
Using Eq. (S7.17), the kinetic energy of the system can be expressed as

(S7.19)

T = Snsa Mstihsa(®) = 5 Soar Taa Zqw[02(a, )0 (@', O] [ee(@ede(@)] Ty e 170V Rn =

~Ysa Yaq[02(a, )Qu (—q. O] [ede(@ede ()] =
> Sax[01(2. 003 (4.0 Zoa feda @[ (@] '} =5 20a[02(a. )05 (q. 0)] =
%qu[Ql (ql t) Q./'l(_ql t)],

1e.,

T == %a[01(q,D0:(~q,1)].

To derive Eq. (S7.20), we used Eqgs. (S7.13) and (S7.16), as well as the following equations:

1 i n.
;Zn el(q+q )Bn = 5q+q',05
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7.2.2  Potential energy term
Similarity, the potential energy can be rewritten in terms of the normal coordinates as follows:

U=23 S o et = 3 Z Z Z (", )%Z > 104@ 90x (@' 01 [ede(@eZ (@)]
sMs ‘gz g

i( )Rn,,—iq"R;
- %;;;‘7’““' (s,ls')e q:: \/:4—;4: - ;; Q(q,)Qx(q',t)] [esa(q)e (@ )]
2;;Z¢aal s s \/1:—1:;; Q1(q,)Qx(q', )] [esa(q)ega @) Z_el(qﬂl)Rn
6q+q =0
2222¢ 5" J%; [02(4, )0z (4,01 [ey(@)efr s ()]

=2 ) 10:@ 00 (.01 Y k(@) Y [Di (~aedy (~a)

qAd

1 /
=3 D 104,00 (4,01 ) elol@) 0} (-Deda(-a)

qAx sa

= 3 2.1020,00x (-, 01} @3 =22wl(q>ol(q 00:(-4,0

qAx

ie.,

U =Y 0} (@)Q1(q, )Q(—q. 1), (87.22)

where in above deriviation, the orthogonality of its eigenvectores and the symmetry of its eigenvalues

are used. Thus the Lagrangian reads as:

L=T=V =>%4[02(-4.00:(q.t) — }(0)Q1(~q,)Qx(q, )], (87.23)
Using the relation P(q,t) = d£/ 3Q,(q,t), the Hamiltonian of the system then can be written as:
H=T+V= %an[&(—q, t)P1(q,t) + 0;(9)Q1(—q,1)Qa(q, V)], (S7.24)
Now, we quantize H by asking the momenta and coordinates to be operators:
A = g2l P-gaPaa + 02;0-104al, (S7.25)

here ﬁq 2 and @q 2 obey the following commutation relations:
{ [Oq}u pq’l’] = ih5qq’5/m'
[qul qull] = 0’ [qu, qull] = 0

Similar to the case of ordinary quantum harmonic oscillators, it is convenient to define ladder

(37.26)

operators for each mode as follows:

Qqz = / ~(bga + b1 43), Par = h“;‘” (Bl —b_qa), (S7.27)

where B}; ; and Bq 2 are Bosonic creation and annihilation operators for phonons with momentum

q, branch index 4, and frequency wg;, which obeys the Bosonic commutation relation:
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[Eqb B;r’a’] = Oqq'Oan’

- Sl S - (57.28)
[Baasbyrar] =0, [Bh B, | =0

Substituting Eqs. (S7.27) into (S7.25) and using the properties Eq. (57.26) and (S7.28), we have

I~ - o, A
H= EZ[P—q/'qu/'l + “’q/’lQ-quqfl]
qA

LN 290 g 5 Gt — b R
=§Z[_ 2 (00~ ba) gz = baa) + @i 55— (baa + byp) (Baa + B1yp)
qA

h o~ o~ ~ - ~ -
_ t 7t t t
= ZZ “’ql[_(b—qaqu - b—q;tb—ql - bqlbql + bqlb—ql)
qA
+ (b_gabgr + B_qﬁiql + BLBM + B;ABiqA)]

h SN ~ . ~ o BTN
=2 0aal(B 12 qa + BgabT(5) + (Byabl + Blabign)]
qA

h at o ap o~ g o 1
= ZZ a)ql[(ijqlb_q,l + 1) + (Zbglbql + 1)] = Z ha)q,l <b;)1bql + E)
qA q4
Therefore, we finally get the quantized representation of non-interacting phonons:

~p o~ 1
H = Y43 hoog, (bglbql + 5)- (S7.29)

The operator of atom displacements (Eq. 1.14) is expressed in terms of the phonon operators by:

- h N -
Unsa = qu el e Rn(bq/l + biql)- (S7.30)

sa
2NMswqp

These equations will be used below.

7.3 Inter-phonon coupling within harmonic approximation

7.3.1  Hamiltonian with inter-phonon coupling
In this section, we consider systems that consist of two (or more) covalently bonded units that are

weakly coupled between them. Unlike previous studies that considered phonon-phonon couplings
resulting from anharmonicity effects,?’ here all phonon mode considered are Harmonic and the
couplings arise from the division of the entire system into subunits. The Hamiltonian of the whole
system can be written as:

H =H, + H, + Hy5, (S7.31)
To derive the expressions of H;, H, and H;, in Eq. (§7.31), we consider the Hamiltonian of the
whole system written as the function of the atomic displacements:

n—n'

s, s' )unsaun’s’a’a (87.32)

H=T+V = ZnsaT + EZn,n’ Zs,s’ Zaa’ ¢aa’ (
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Let’s assume that subsystem I and II contain atoms with indeices ranging from s = 1,2,---,r/2 and

s= g + 1,% + 2,---, 7, respectively. Then the kinetic energy term in Eq. (S7.32) can be rewritten as:

32
T = Zna [Zr/z Msunsa(t) + Zr _+1 Ms”r;sa(t)]' (S733)

While the potential energy term is:

1 r/2 , r r/2 r ,
n—n n-— n—n
= E E g E baa’ (S s’ )unsaun’s’a’ + E Daa’ ( )unsaun s'a’ T E E Do’ ( s s )unsaun’s’a’
s,

nn' a,a’ \ss'=1 s,s'=r/2+1 s=1s'=r/2+1
r r/2

-3 S

s=r/2+1s'=1

n—n'
s g ) Unsalln's'a’ (= Vip + Vo +Vip + Vo

Or equivalently,
( z n—n'
Zn ' Xaa! s,s'=1 baa’ s’ UnsaUn's'a’
!
_ T n—n
Vao = EZn,n’ Za,a’ z:S,s’=1’/2+1 baa’ ( s s )unsaun's'a'
)

2 n—n'
Vig = Zn n’Za a' ZT/ '=r/2+1 baa’ (

, (S7.34)
s, Sr>unsaun’s’a'
2
Znn’Zaa’Zs r/2+1Z:/—1 aa’ (

,)u u
r.r .,/
s, s’ nsa“n's'a

7.3.2  Second quantization
We may now quantize this Hamiltonian and write it in the basis of the eigenstates of the coupled

subunits. In second quantization, the atomic displacement operators of the two subunits are given in

the following form:

A Liq Ry (4 A~ r
2ga /ZNM ooy Coac TRn(@ga +al,,), SE [1,;]
Unsa = : ViR (2 ot . . (S7.35)
’ s iq' Ry (& 2 r
qum —ZNMS(T)q/Ar éiqne n (a ar a_q,/.l,) , SE [2 + 1,7‘]

. . . e . ~ ~T 2 Xt
Here, we use different notations for the creation and annihilation operators (8, G- A and agy,a’ q s

eigenvalues (wqy, Wqy) and eigenvectors (el &é1,) for the two subunits. Note that e, and é2, are
of the dimensions of the whole system, however their non-zero elements appear only on the relevant
subunits such that they obey the following relations: }; Sa(eﬁa)*es’l(; =6 5 X m(éﬁa) ésl(; =

S s Zsa(éﬁa)*esll; = Zsa(eﬁa) ésll; = 0. Defining the normal coordinates of the two subunits as:

~ h ~ At LA _ h 2 =t
Qg1 = /@(a,M +a',;); Q= /E(a,M +a' ), (S7.36)

and the corresponding momenta operators as:

fL(.oq,'[

Py = i 220 (af, —ag) 5 Py = (@ —a_qa), (S7.37)
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Eq. (S§7.35) reads:

sloc(Q) ia-R,, A r
que_etq nQqa, S € [1,_]
fnsa = Vs ’ (S7.38)

M iq'Rn H r ’
qu\/N_Mse Qga» SE[2+1,7"]
The second quantized kinetic energy operator is then written as:
~ ~ P 1 ~ A 1 =2 2
T = Tl + TZ = Equ Pq/lp—ql + Equll PqIAIP_qIAI, (S739)
Correspondingly, the various potential energy terms are obtained by substituting Eq. (S7.38) in Eq.
(S7.34):

r
2
ZEP)
1n=5
a

a'ss'=1nn

/ A v
Z Paa’ (n - T% ) Z i@y (@) leiq'R"Hq"R"' qu@q'l’
nn' S, s arhq A vV MSMS' N

r

2
~ A 1 1 . 1 —n'
= Ez Z Z quQq’l’ esla(Q)efla'(Q') Z Nel(q+q Ry Z ¢aa' (n " )
n' n

s, s'
aa’s,s'=1qq'A,2

el (Rn—R,1)

JMM

r

; Z i Z Qq2Q L(qel (g ¢ ( l ) e 1 ia+arr
= — q1 qlll €sa q eslal q Z aa’ , Z_e n!
2 aa’s,s'=1qq'A,2 i S, 8 Vv MsMs’ Py N

r
2

=320 D0 D Qg ele@eliy -0 Y dawr (') J%

a,a’ s,s'=1qA4" l

[uy

=

2

- %Z Z Qq2Q-q' €5 (@) ZZ: Z D5 (—q)el /(—q)
@ s™=1

s=1qAA a’
T
2
IC 5, A A A L I
= E Z (*)qA’quQ—q/l' Z Z ela(q) [esa(q)] ZEZ (l)q/quAQ—q/l’
qr a s=1 qA
ie.,
~ 1 2 A A
Vll = EZq/l mququ—ql" (S740)

Going from the second line to the third line we used the fact that the sum over n’ runs between +oo
and the summand depends only on the difference between n and n’, hence the sum is independent
of the value of the index n. Therefore, we can replace the sum over n’ by a sum over [ =n —n'
amd define R; = R,, — R,/ . Following the same procedure, we can get the corresponding

expressions for the second diagonal term:

~ 1 -y 2 =
VZZ = Equ (‘J(Z;/‘LQq/lQ—q/b (S741)

Similarly, for the off-diagonal terms we get:

S25



E;La (q) é;L'a’ (Q') l
MMy N

2 e (70)

@@’ 551 T g aiq ¥

a,a’ s=1 s’:%+1 qq'AA

iqgR.+iq" R 1A A
i "’QqAQq'l'

Z Qqaéq’a’ e?a(‘l)e '(q)z ellara R ’Z(p““ (s s’ )

iq-(Rn—Rn:)

MM

r
1 zz: - Z eldR @R,
=35 QqAQq’A’ esa(q)es’a’(q ) Z ¢aa Z_el a*a !

2 aa’ s=1g/_ % 1aq9' A S \ MM

r

NP (e
=5 QqAQ q' esa(q)e '( q) Z d)aa

2 aa’ 5:15':% 1A S8 MsMs

123”2 3 tud! @) Y b () oeeiut@
=5 qAl¥qn ZZ Z (es’a’ q ) Z aa’ esa q

2 q =1 /1,:371” aa’ s= 151__+1 s s M

3r/2 3r

1 A 2%

= Ez Z Z Vm’(‘l)qu‘qull
q A=1 /1’:32—r+1

Where we have defined:

V/l/l’ (q) = Zaa’
where

e'dR;
\/W d)aa
It’s easy to show that V;;/(q) has the following property:

VY (q) =Y ——

(

Vi (@) =V (—q).

Following the same procedure, we have:
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)
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.
2 ~ A

o 1 n—n' e @ey (@)1 p iim 2 A

Vo =5 Z Z ¢aa’( ,> Z uﬁel‘m"“q R QaaQqn

S, S
aa’ s'=1 s:g+1 nn’ ’ qrq'V MMy
r
2 T A 2
_1 n'—n &5 (q)esa(q) 1 iq" R +iqRyE A
5 ¢a'a ’ ——— n quA:qu
2a’as—l —roin'n 58 q'A g2 VMS'MS N
=lgr=Lyq ), ,
2

r el@(Rn=R,)

%Z ZQ 20q280g (q)em(enz “"*‘”R’Z‘f’aa( )W

r
; i r Z 0 ( ) ( ) ) el L(q+q’)R
= — Q qu eslal q esa q Z(l)aa Z 1

Za,a’szls/ g 199"AA s, s’ MMy N

e~ R

-2 Z Y G gt @)ed(- q')Z¢aa ) T

aa' s=1g-T, 19’22
2

NI

3r/2 3r
1 2 el
== QgrQ) e2(@)) ) baw ( &l (q)
2 q’ A=1A’=Z% g ;ler_zg_ﬂ Z SS VMM'
1 3r/2  3r K —iqR,
= EZ Z Z Qq/l’ qi ZZ Z esa(q) Z¢aa S s’ \/—efra'(tI)
q A=1 A’=37r aa’ s= 15’_1+1
1 3r/2 3r R + % r . l iqR, ’
ZE Z (QlMQqA’) ZZ Z (é_?’a’(q)) Z¢aa (S S’) M.M ’esaa(q)
q A=1 3T+1 aa' s=1 51=%+1 1 sTs
(% o \'
= {EZ Z Z Var (@)QqaQqy } =V
R (T
Define:
H =T+,
Hz = TZZ + sz ) (S745)
Hy; =V, +Vyy
we finally get the expressions of H;, H, and H;, in Eq. (S7.31) as follows:
3r/2 At A 1
l( H1 = Zq r/ hwq,l (aqlaq,l + E)
_ 3r ~ =t = 1
{ H, = Yq X =143 héd gy (aqz'aqﬂ + 5) . (S7.46)

kH12 = _Zq{ 3r/2 /1, 3y VM’(‘I)@qAQ:;AI +h. C-}
2

Here h.c. means the Hermitian conjugate. Since the indices of dg;, 3,1 2 and Qq 1 @q 4 belong to

the two system sections, we can define an abbreviated notation @,; and Qq 2 using the index A to

identify which subsystem they belong to. In this case, the Hamiltonian of the coupled system can be
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simplified as follows:
H=H,+H,, (S7.47)

where
Ay =3X,33 hwg,(al,a6,, + =
0= Zga=1M1Wqa (AgaQqa T 3

i o . (S7.48)
Zq {23 /2 Z/'l’ 3T+1 V)l)l (q)Qq/‘LQ;AI + h. C.}

7.4 Basic theory of many-body physics

7.4.1  Dynamics of the ladder operators
In order to describe the dynamics of the ladder operators appearing in the Hamiltonian of Eq. (S7.47)

we express them in the Heisenberg picture as follows:

Ht Ht

HAE =endye n, (S7.49)

a,(t) = eh ape “n
where we define the imaginary time 7 = it and introduce the notation p = (q,4) and p = (—q, ).

The corresponding equation of motion for the ladder operators is given by:

R0 = [,4,(1)]. (S7.50)

For the uncoupled system (H, = 0) this gives:

da, (1)
P
h ot

— . Hot  Het| - Hyt Hot  Hot =~ Hot
=[H0,ap(r)]= Ho,e h Gye h | =Hpe h dye h —e h dpe h H,

M M Hyt HOT
(Hoap apHO)e =e [HO, ap]e

1e.,

day(r) _ Hor _Hor

- =eh T [Ho, Gple” 1. (S7.51)
The commutator on the right-hand-side of Eq. (S7.51) can be evaluated as follows:

Ao, ] = [z,, hw, (a*ap n 1) ap,] = ¥ hwp @3y dy ] = Tp hay(@hapa, — a,yata,) =

Yp hwplabapd, — (8,7, + @ha,)a,| = —hw, Gy + Xy hop|ara,a, — aaya, | = —hw,a,.
ie.,
[Ho, 4] = —hawpydyy. (S7.52)
Therefore, we have:
S Hot Hpt Hot Hot
aagr(r) —er [H,, ap] = —hwpeTOc’ipe_To = —hwya, (7). (S7.53)

The solution of Eq. (S7.53) is d,(7) = a,(0)e™*r* = a,e”“»". For &;(T) we have

S28



. S7.54
aj(v) = aj(0)e?r” = alewr” ( )

7.4.2  Green’s function
To describe thermal transport properties between different system sections, we use the formalism of

thermal (or imaginary time) phonon Green’s function.?! To this end, we define the thermal Green’s

function for phonons as:

G (1,7) = = (Teap (D)}, (1)) = =Tr {p, 7. [a, (0!, () |}, (87.55)
where T, is the time ordering operator and py is the statistical operator for the grand canonical
ensemble (note that the chemical potential for phonons is zero):

py=e Pz, (S7.56)

where the partition function is given by Zy = Tr(e‘ﬁﬁ), and B =1/kgT, with kg being

Boltzmann’s constant and T the temperature. For time independent Hamiltonians, G, (7,7")
depends onlyon 7 —17’, i.e.,

Gpp' (1, 7)) = Gppr (T —7',0). (S7.57)

To show this we shall first assume that T > 7’ such that

Gy (1,7) = = (Tt (D)}, () = =Tr {p, T, |2, (D}, ()|} = —Tr{pua, (D), ()}

} = —Tr{pua,(z — 7)a},(0)}

—Tr {/’)‘HTT [&p(r — T’)d;/(O)]} = — (TTdP(T — T’)d;/(O)) = Gpp (t—7',0)

Where we have used the commutativity of py and e™ & and the invariance of the trace operation

towards cyclic permutations. Similarly, for T < T’ we have:
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Gy (1,7) = = (Tey (D)) () = =Tr{puT; |8, () (@) |} = ~Tr {pua), )y ()}

= —Trypye h a e hehd,e he=—Tr Pud,ye hape heh

+ A(r-1") A(r-1") +
= —Tr {/’)‘Hc’ip,e R dpe R } = —Tr {ﬁH&p,(O)&p(T - T’)}

— —Tr {pHTT [a; (0)d,(r — r')]} = —Tr {pHTT [ap(r - r')aj,(O)]}

_ “IPN "N at _ ’

= —(T,a,(r—1 )ap,(O)) = Gpp (1 —7',0)
For simplicity, we will introduce the notation G,,,/ (7, 0) = Gy, (7). We further note that when using
imaginary time G,,/(7) is a periodic functions in the domain [—fh, ff] with a period of Bh (see

Page 236 of Ref. 2!):

G,, (t+ pBh0)=G,,(1,0),7<0
{ bp p PP (S7.58)

Gpp' (T — B1,0) = Gy (7,0),7 > 0
To show this, we shall again assume first that —fh < 7 < 0 to write, that is
Gy (7 + B1, 0) = —(Tpap (z + BR)AT, (0)) = — (@, (x + B)E, (0))

H(t+ph) H(t+ph)
= -—Tr{pye " aye h

c’ip,} = —Tr {ﬁHeﬁﬁeTC’ipe h e‘ﬁﬁ&pr
,\ ,\ 1 P -
= _Tr{pHeﬁHap(r)e‘ﬁHapr(0)} = —Z—Tr{e_ﬁHeﬁHap(T)e‘ﬁHapr(0)}
H
1 ~ -BHA 1 -BH4 a
= —ZTr{ap(*[)e ap;(())} = —ZTr{e ap/(O)ap(T)}

1 oA A
- _ZTr{e_'BHTT[ap(T)dP’(O)]} = —Tr{puTe[ay (D |} = Gypi (7, 0)

Similarly, for fA >t > 0 we have:
Gy (= B, 0) = = (T;8, (v — BRI, (0)) = — (@), (0, (r — B1)

H(z-ph)
h

A

A(z-Bh) 5 Ht  _Ht
= —Tr{pydye ape” R = —Tr {ﬁHdpre‘ﬁHe Rd,e n eﬁH}
~ ~ 1 . . .
= —Tr{pHapr(O)e‘BHap(T)eBH} = —ZTr{e‘ﬁHapr(O)e‘BHap(T)eﬁH}

= iTr{ap,(O)e-ﬁﬁ a,(0)} = - iTr{e‘ﬁﬁ ap (1), (0)}
Zy Zy

1 2 ~ ~ ~ e ~ ~
B _ZTr{e_ﬁHTr[ap(T)ap’(o)]} = —Tr{puT:[8,(D)ay |} = Gy (7,0)
Therefore, G, (t) can be expanded as a Fourier series in the domain [0, 7] as follows:
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Gpp’ (r) = Z_oo e_lw"TGppl(ia)n). (87.59)

2mn
where w, = T3 and the associated Fourier coefficient is given by
2nm

ph

Having proven the translational time invariance and the periodicity of the Green’s functios we can

Gpp (i) = fﬁ dre'n? G, (1), w, = (S7.60)
now calculate it for the uncoupled system:
- (c’ip(O)e_“’PTd;,(O)ewP'T ), T—17" >0

G (1,7 = — (Tea,(Dal (1) = ,
PP L — (@ (0" @, (0)e™ ), T’ <0

e T (ap(O)a ,(0)), T—17'>0

—e~Te'™ (q ,(O)ap(O)), T—17'<0

e~ @pTe®'” (@t (0)a,(0) + [ap(O) ,(0)]>,r —7'>0
~opTe®'™ (g @l (0)a,(0)), T-7'<0
~wpT g @y [( ,(O)ap(O))+5pp] —7'>0
e~ (4 @l (0)a,(0)), 1-17'<0
ie.,
e~ @pTe®'T [( /(0)d,(0)) + 5pp,] T—17' >0

G (1,7 = , (S7.61)
o —e=ere™ (@},(0)a,(0)), T— 7' <0

where we have used Eq. (S7.54) for @,(7), fi;(‘[’) and Commutation relation [&p(O), c’i;,(O)] =

Opp'- To calculate (d;;,(O)dp(O)), we first prove following equation:
efBed = ¥ o —[A™, B], (S7.62)
where [A®),B] = [/i, [AG-D), E]] To prove this identity, we define the operator f(t) = eABe~t4

and taylor expand it around t = 0:

F© = FO +tf' @ + 5770 + - =T S (57.63)
The corresponding derivatives are given by:

I{ f’(t) — etAAB‘e—tA ABA tA _ etﬁ[&g]e—tﬁ

gf”(t) = e'4(A[A,B] - [A ] A)e~t4 = etg[“i(z);é]e_tg, (S7.64)

L f(n)(t) — etA[A("), B]e_tA
Substituting Eq. (S7.64) into Eq. (S7.63), we have:
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eABe™A = 32 )= [A™, B]. (S7.65)
It’s clear that Eq. (S7.61) is a spectial case of Eq. (S7.64) with t = 1. With this we can proceed as

follows:

(@5,(0)a,(0)) = TOTr{e BHo p,(O)ap(O)} —ZiHoTr{e ﬁHOa ,(0)ePHog=BHog (O)}

1 (o Epr R _
- Z_TF{ZT[HO(n)' 3, )] eFa <0>}
Ho n=0 )
Note that [HO, dp,(O)] = ha)p,d;;,(O), we have

(8,7, a},(0)] = (hw,)"a, (0). (S7.66)

such that:

(@}, (0),(0)) = Tr{z( 5 [Ho(’”, al, () -ﬁHoa,,(m}

n.
n=0
Tr a,,(0) e PHog,(0)
TR

1
— o, Phwy, - a a = e Phopr(g a
= e ——Tr{e"Fa, (0)a,, (0)} = e~F v (@, (0)ay, (0))

Hy
= e~Fhowr ((af,(0)a,(0)) + 8pp)
therefore, we obtain (d;,(O)&p(O)) (eﬁh“’l” — 1) = Spp:. For p’ # p and general ePh@pr e have

(aAZ,(O)&p(O)) = 0. For p’ = p we obtain (&;(O)dl,(O)) = [eﬁh“’r’ — 1]_1. Hence, we have:

A A 1
(apl(o)ap(0)> = 5plpm = p/pnB((Up), (S767)

where ng (wp) is the Bose-Einstein distribution for phonons. Substituting Eq. (S7.66) in Eq. (S7.61)
we obtain:
—6pp’ [1 +ng (a)p)]e“"l'(f‘r’), T—17'>0

G° (t,7) = , .
pp —5pprn3(wp)e"wP(T"T ), T—17'<0

(S7.68)

Note that only those Green’s functions of the form GSPI(T, ') = GI? (t —7')8,, are non-zero due
to the orthogonality of normal modes. Looking at the non-vanishing terms and setting t' = 0,

without loss of generality, we can calculate the Fourier transform of GO(T) from Eq. (S7.60):

G;(;)(lwn) — foﬁfl dTeiw”TGg(T) — _J‘Oﬂh dreiwnt [1 + nB(wP)]e—wpr — 1+TlB(wp)[ (lwn—wp)ﬂh

iwp—wp
1
1+(—) 21N h —Bhwp _ h
1] = Phory) (B By _ 1) = — at (e ’ 1) =1 1-elter =1
lwn—wp lwn—wp ePhop_q lwn—wp ePhop_q lwp—wp’
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ie.,
1
iwp—wp'

G (iwy,) == (37.69)

7.4.3  Interaction picture
Next, we can proceed with calculating the Green’s function of the coupled system. To this end, we

define the coupling Hamiltonian operator term in the interaction picture as:

HoT _Hot
Ai(x)=en Hee n . (S7.70)
The time evolution of H(7) is then given by:
hah;C(T) [H,, BL(D)]. ($7.71)

Note that the Green’s function defined above was given in the Heisenberg picture. To proceed, we

need to transform it to the interaction picture:

A~

R At At
Gy (7,0) = = ey (D],(0) = ~Tr {puTe [ 7 G, (0)e 7 al, )}
| Br Hyt [ Hyt H T Hyt Hrt
= —Tr {/’)‘HTT [eTe _<eT (0)e~ > Te_Td;,(O)l}

= e {puf, [0, 93,0003} 0]

where,

I)

Hot
al(c) = et a,(0)e H . (S7.72)
is the operator in interaction picture and the operator U is defined by:

Hoty _H(r1-72) _Hota

U(t,t,)=e ne & e n, (S7.73)

Note that while U is not unitary, it satisfies the following group property:
U(t1,72)U(72,73) = U(14,73), (S7.74)
and the boundary condition U(t;,7;) = 1. In addition, the T derivative of U is simply:

a0(t,t") {A Byt _H(r—7')  Hot _ ﬁ(T—T')} Hot'
h—— = h e

Hehe R —en He R f
ot 0

Hot Hyr Hyr _H(=t') _Hor'  Her = _Hot_
=eh (Hy—He hehe & e h =eh(—H)e & U(r,1)

=-H.(0)U(7,1")
ie.,

6U(TT )

ha‘c

—AL(0)U(1,1"), (S7.75)
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The solution of Eq. (S7.75) is (see page 235 of Ref. 2!):

U(r,7) = zzzoﬂf; dry - [ dry, T [HE(ny) - Hi(Tp)]s (S7.76)

n!

The exact thermal Green's function now may be rewritten in the interaction picture as:

Gy (7,0) = —%Tr {e=PAT.[0(0, @)U (z, 0)]al, (0}
Tr{e~#AT, [0(0, @) () (z, 0)a, (0)]}
Tr{e‘ﬁﬁ}
Tr {e B[ (Bh, 0)T, [ap (DU0,00(z,0)a, (0)]}
Tr{e-FHT(BR,0)}

Tr{e~F"0(8h, 0T, a0 (0,0)a", (0)]}
Tr{e=FH U (1, 0)}
Tr{e~FT, [0(8h, 0)ah (Dl ()]}
Tr{e=FR U (1, 0)}

Where we used the fact that we are free to change the order of the operators within the time ordering

operation (see pages 241-242 of Ref. 2!).

7.4.4  Wick’s theorem
Thus the Green’s function can be expanded as®!

m —~ —~
Seomi(-7) o dT1fy " dtm (TRl (o) B em) 8 (@)@, (0o

m .Bh h ~ —
550 omi(-3) " S drye [P ara T AL () AE )Y

Gpp' (7,0) = — : (S7.77)

where (---), represents the ensemble average with respect to the non-interacting basis
Tr{e‘ﬁﬁ0 (- )}. Or explicitly,

h ~ ~ A h h P = A~ ~
G (@3 I dry (T AL (1) ap(Dal, (D)ot [P az, [P Ao (T AL ()AL 8y (D] ()0 +--

G,y (7,0) = — . (S7.78
' (7.0) 12 [P ar (AL (e ))o+5i " vy [0 ary(T AL () HEGE) Yo+ ( )
For consiceness we introduce the following notation:
_ 1 1\™ -Bh Bh ~ ~
D =—(=2)" [ dey o [} dep (T, AL () - B (2o, (87.79)

To simplify the calculation in Eq. (S7.77), we adopt Wick’s theorem (see pages 237-241 of Ref.

21y, which can be expressed as follows:

A A

(T[ABCD - YZ])o = (T[AB])o(Te[CD])o -+ AT [T Z])o + (T [AC])o(T2[BD])o - (T [XZ]}o + -+, (7.80)
Here 4,B,..,Y,Z represent a,(t) or c’i;(r). In Eq. (7.80), each term corresponds to a particular

pairing of the operators ABCD -+-YZ and all possible pairings are taken into account. Here, the only
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non-vanishing propagators will have the form [see Eq. (S7.68)]:
(T [a}, (@) ay (@) = = (T2 [a, (D), () |)o = 62y (1.7) = GR(x =78,y (S7.81)

Therefore, the second term in the numerator of Eq. (S7.78) can be calculated as:

1 (An o
I, = 7 dty (TTHé(Tl)ap(T)a;’(0)>O

0

1 An 1 Bh
324 ~T ~ 324 A ~T
=3 fo dry (TeHe (T1))o (T2, (0)8,(1))o — 7 fo dty (T He (1) 8, (1), (0))o c

1 (Bh _ 1 [Bh ~
=G,y (1,0) [_E f dry (TTHé(Tl))Ol -z f dry (T HE (1) 8, (D)), (0))o,c
0 0
The first term in above equation is called disconnected part since the pairing is performed separately

on H.(r;) and a,(7) c’i;, (0). All other terms have pairs that mix creation and annihilation operators

of the Hamiltonian with @,(z) or c’iT,(O) and are said to have connected party. For simplicity we

include all these terms in the notation (T,H, (t1a, (T)a 1(0))0,c. Furthermore, we define G (1) (T) =
Bh 7 ~ At

- fo dty (T:He (1) 8, ()8, (0))o,c. Then we have,

Iy = —+ [ dry (T AL (2, (0l (0))o = 63, (1,00D; + 61 (), (57.82)

Using this method, the third term in the numerator of Eq. (S7.78) can be calculated as:

Iy = o 7 dry 37 dry (T AL ) AL )8, (al 00 = 5 [ dty [ dty (T AL GO AL () (et (018, (D))o +
= [ dry [P dry (T L))o (T, Hc(rl)ap(r)a*,(o»oC = [P ary [P dry (T L))o (T (2)a, (A (0)o +
[0 dry [P ey (T L )AL ()8, (D) (0)oc = Gy (7,0 [ 7 dry 1" dy (T AL )AL (r))o] +

— P dey (T AL ()0 [ dry (T AL (2, (D) (0o + s 1 dey (THL T J) dty (T (1) 8y (D& (0o +

202 202

= [P ary [P dry (T AL )AL () 3y (0l (0))o..
Here, the last term is denoted as G(2 (7).

Using Eq. (S7.82), the second and third terms on the right hand above equation can be simplified as

follows:
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1 ph _ ph _ 1 ph _ ph _
oTH f dt, (T.HL(1,))o f dr, (TTHé(Tl)dp(r)&;,(O))O,C Ty f dty (T, HL(11))o f dr, <T1Hg(r2)a,,(r)a;,(o)>o,c
0 0 0 0

—1 [Bh _ 1 ph . ~ ~ T
- fo dr, (TTHé(rz))O— — fo dr, (TTHg(rl)ap(r)a;,(o)m_

N = N =

N =

—1 (B . T . T
- f dry (T HL(11))o [ drz (T AL (rz)dp(r)&;,(o))o’c
0 |

—1 B N 1 1
2 ey e |5 [an i a, @al
0 | J

1[-1 Ah _ 11— -
3| ) @A [7 f dq<T7Hé(r1)a,,(r>a;,(o»o,c_

- [—71 fo g (rz))o] [%1 fo ¥ ity (L) 8, (08 O] = DD D)

Where, we performed the following integration variables interchange 7; <= 7,. Thus we have

I = G(Z (1) + G(l (DD, + Gy (T,0)Dy, (S7.83)
Similarity, we can calculate the fourth term of Eq. (S7.78) as:
Iy = == [P duy [P, [P dog (T L) A () Al (13) 8,0} (0)) =
=2 P dry [P dry [0 g (T AL () AR ) BT (Toap(1)al (0))g + 3 %
Iy [P dr, [P dvg (T AL () BE(2))o (T AL (20 (18} () + 3 %
=2 [P ary [P dry [P deg (T AL D)o (T AL (1) Al (1), (1A% (0))o,c +
=2 [P ay [P dry [P dry (T AL )AL A (1)a,(0)al (0))o =
Gy (4,00 [ 7" dy [ dry f)" ds (T AL GO BE () BE (D)o +
— I dry 3" deg (T AL () BE(2))o [ 11 dry (T BE (1), (D)@l (0o | +
— [Py [P de (T AL () B (1) (00 0o [ [ dey (T L))o | + 600 = 650 (0) +

(2) 2 @D, + G“) (1D, + G, (7, 0)D;.

ngher order terms can be treated in the same manner (see pages 95-96 of Ref. ?!). Then when

substituting I, 3,1, and all higher order terms into Eq. (S7.78), we can simplify the numerator as

follows:

1 (An _ A
6o (@ 3 fo d, (T AL () a, (D} ()

1

Bh Bh
b ) dn [ dn A A8, O +
0

=62, + G0 (@) + G (@) + | (L4 Dy + Dy + )

Noting that the expression (14 D; + D, +--+) is exactly canceled with the denominator, the

Green’s function can be simplified as:
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Gpp (1) = GO (T) + G(l (D) + c;(z (D) + -, (S7.84)
where,
60(0) = = [ dey (T AL (1) 8ga (D] 5 (0o
62(0) = = " dry [ dey (T AL ) A1) 82 (D& 1 (0o

(S7.85)

7.5  Calculation of Green’s function

7.5.1  First order appriximation
In Eq. (S87.85), we go back to the full notation @,; to distinguish phonons of different branches,

then G (1) (T) is calculated as:

11 Bh 3r/2 3r
6@ =35 dnr. zz z V() 0y (e 3 (20
= , 3T
3r/2  3r
£ 508k ()0 () | 2 @al . (0,
j= .y 3
L |
3r/2
T I S I R A ] [y () + & (2]
= - Tq ZZ Z Ari\T1 a_ Tq a_ ki’ 71 a T
2h ), oL 3r 2 Wk @pj7 J kj j kj
SERGE 2 » ) y o,
£y [y (o) + &%, ()] [a-iy (1) + a8l (@0)] { ga(als 1 (0o
2 Wi CUk
k j=1 ji= 3r et 9}

According to Wick’s theorem?!, the terms that contain agja_g; and aikja,t ;1 are equal to zero,

thus the first term of above equation are calculated as:

(k Bh .
gu=—ZZZ Z J% f dy ({71 () (1)8a (D] (0o

j=1 = 3r

o+ (Tely (1)L (1) g2 (D8]0 (0o}

3r/2  3r

) o
ZJZ Z m f a7y ({1,074 (T)8ga (D))o (Tl 1 (0 (7))

+(T, ,(rl)aql(r)mr a0 (0 (11))o

3r/2 3r

E E E ”I( ) hdr {GO (1,718, _1.6,:G% 1 (t1,0)8 é
110qa\T,T1)0g,—k03G 1 1 (Tq, —k9A'j'
= 3r /—k] " q q jYq'2 q j

+ GO (1,18 G0 (11, 0)811:81,}
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Simplification of above equation gives:

AI( qQ Bh 0 3r '
—LL dty G T,T1)G 1, (74,0)6,,, 1<A<=—<A<3r
(4\/mf 2(T,T1) q'A (71,0) qq 2
gu = —A@fﬁh dr, q,l(r 7,.)G ,A,(Tl,O)6qq , 1<A < 3% <A< 3r (57.86)

|k4— wawal

Similarity, the second term of G(l), (7) 1s calculated as:

0 else

Ve (k)
g1z = 422 Z 2 a]);]wk] f dry (Tl (1)ah; (1) (M al (0o

,3‘r
2

+ <Tﬁik,.,(r1)a_kj ()8l (0o

£ V) e
ZZ Z ; d, (Tl 3 ()@ (2 (Tetth (1) s (D)

=, W B

o+ (Tetd 10 ()84 (7))o (T o (1) 202 (D))o

1e.,

(V@ fﬁhdrl GOIAI(le!O)qu(T 7,)8 1<asZ<r<sr

—— Jo aq”
4 WgaDgy!
- ! Y9 fﬁhdrl GOIAI(Tl,O)GqA(T 7,)6

— ’
|k4- (l)qawal -

0 else

N

1< 33{<){ <3r (57.87)

Note that since V,;:(q) = Vy31(—q) [Eq. (S7.44)], the first order approximation of Green’s function

can be written as

Vy—( 2 fﬂh dr, q/l(T Tl)G (71' O)Sqq, 1<2< Za < 3r
2 wq,lwa 2
¢ (D=4 v @ o . (S7.88)
Caray ) dry G (re)Gy (11,08, 1<2 < <A<3r
| 2 D@, q 2
k 0 else

To derive the Green’s function in frequency domain, we use the expression for Fourier series, then

we have:

ph ph 1 . 1 .
dt, G‘?A(T, Tl)G:/A/ (1,0) = jo dty [ﬁz e‘“"n(f‘fl)GgA(iwn)l [ﬁz e W' m G“;,A, (i(unf)l
n n'

1 ) Bh
=_(ﬁh)2nzn:,e_lwnr[ ; dT el(wn w /)11]6 (lwn)G 'A’(lw ,) —
1
z—(ﬁh)ZnZ —lwnT[ﬂh(snn ]G (l(,l)n)G ,A/(lw I) = 'th —l(unTG (la)n)G :Ar(l(un)

According to the definition of Fourier series [see Eq. (S7.60)], we get the Fourier coefficient of
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6h) .
qu qlll (T) :

Gar(iwp) Gy (iwn)8qq, 1< A<

|
(1) ,
G 147 = =V, (q) . . 1] 3 S7.89
aiaq' 2 ({0n) iA—lagl(zwn)ag,l,(lwn)aqq,, 1<t<¥<i<z  G7)

0, else

where G 1y (fwy) = ql(uon) x p

arq W(lwn) X G ,A,(Lwn) and T

'y (iw,) is defined as

qrq q/lq

_V _
Dy, 1<i<T < <3
2 ,a)ql&)qlf 2

28 o) =4 V@ o 3r (S7.90)

, 1< <=<A1<3r
lz /(T)q,lwq/lf

qq”
0, else

7.5.2  Second order approximation
The second order approximation of the Green’s function in Eq. (S7.85), G;i) q' (1), is calculated as:

1 (Bh
Oe® =gz | | Y, [ZZ Z Vst (k) Q,, (2@, ()

ky ji=1 I_3T+1

3r 1 3r
z 3r [ 2 3r
O VUi 00, @[ D) V() 0y, (020}, (1)
ke i1:1i;:37r+1 k2 j2:1j;:37r+1

w
3

'M y

2

2

Z i k) Gy (201, (02) |8 (Dt (o = g1+ g2+ g5 + 94

1., _37
2 ==
i 5+l

where,

1sjls%<j{s3r 1sjzs%<j2’s3r
Z Pl il (kl) ’(kz)
k1j1j1 k2j2j; 1111 J2J2

i X 2 X (S7.91)
X T Qg s, )0} 1 () 0y, @0} (1283 (DY (0o

L
Shz f fo dTZ

.31 _ .31y
1<j1S5<j1<3r _ 1<i,<s—<iy<3r
% -1 .’ ' ot ’ Vi jr (kl)V'* il (kz)

kujr Kaiai} J1i1 iy (S7.92)

1 Bh Bh
g2 = @fo dTl fo dTZ R 24 ~ A R ot
X (Terljl(ﬁ)lej{ (T1)kai§ (Tz)kaiz (Tz)aq/’l('f)aqw (0)>0,c

1si,<7<i{<3r (1sj,s5<jj<3r
2z Liyjost Visis (k)Y (kz) (S7.93)

X ATe Qi T OF i, (0 Oy, (1)1 (2282 ()]0 (0o e

Bl g (B il
g3 th f T1 f dTZ klllll
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. 3r _. . 3r .
1511s7<1{s3r 151257<1§s3r

* *
Zklili; koiyil Vilii(kl)vizié (k2)

. R 2 R (S7.94)
X <T1Qk1i{ (T1)Q;£1i1 (T1)kai§ (Tz)Q;Eziz (Tz)aq)l (™) a;r,—y (0))0,c

1 (Bh Bh
gas = ﬁfo dTl fo dTZ

In what follows we will expand the term g,. The expansion of all other terms follows the same lines
. . . A =t = At
and eventually results in the same expression. Expanding the product Qy,; Q kl}.{Q kaib, Qieyi,» WE CAN

rewrite Eq. (S7.92) as follows

. _3r _ .y . 3r . *
1)y <5< 1 <31 1Sip <5 <ip<3r lej'l(kl)Vizié(kZ)

1 h h
92 == foﬁ dr, foﬁ d, {3 X1y (S7.95)

k1j1j1 kyii} & &
Vil 22 \/wk111("k11"1w"212“)k2i§
Where
1= (Te[ag,,(t) + @ty D] |Gk (0) + 8L @) [Biyug (22D + 8Ty (02)] (A, (72) + @, (1) ]@ga (D)l 0 (0))
T %kqj M1 —kqj V" 1 —kqyji\*1 kyji N1 kpiz \*2 —kyip 2 —kai \'2 kyi, 2 qA q'A 0,c
_ PN P~ PN P~ ~t I~ ~T =t I~ PN P~ ~T =t PN
=(T, [aku'la—klj{ + gy, G+ ALy Aoyt + a—ku&aku’{]Tl [akziéa_kziz F gy gy, + A4 1 Aoy
st ot 1 4ot
+ a_kzl.éakziz]r2 aq,l(‘r)aq,l, (0))o,c
—la &t +at & 5 ot st o 5 (gt
= (T, [y, &Ly + a—kljla—klj{]rl |Giizal,i, + a_kzi;a—kziz]TZ qa(D)a g5 (0))oc
Where the symbol [...];, signifies that the operators in the brackets are given in the interaction

picture. The last equality in above equation comes from the fact that the contractions of the product
of the operators are equal to zero when the number of creation and annihilation operators are not the
same (see Wick’s theorem in Ref. 2!). Using Wick’s theorem?!, we are able to calculate the above

equation term by term as follows:
( L = <T‘cak1]’1 (T1)a,t1j{ (T1)3k2i§ (Tz)altziz (Tz)@q)L (T)a;f,y (0))0,c
I = (Tollgyj, ()& o (08T 0 (22)8ky1, (72)8q2 (D811 (0))o

~t 2 2 At . ~t (S7.96)
Iz = (T‘ra—kljl (T1)a_k1j{ (T1)akzi; (72) Ay, (72)8q2(7) Qoo (0))o,c

U (Tr‘ﬂkljl (Tl)a—klj{ (T1)aik2i£ (T2)8-kyi, (T2) g2 (7) a;f,y (0))o,c

We shall now calculate them term by term:
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I = (Tolyyj, ()& 1 (T Bpeyiy (1)1, (22)8g2 (D ks (0o c
=(T.a r,—y(o)aklh (T)o(T:a akzlz (Tz)akzl’ (t2))o (Tra a '(T1)aq1(f)>0
+(Tely,, (T2) Ak, j, (00 (Trd] 1 (0)8jey i1 (72))o (T '(Tl)aq)l(T)>0
AT 0y (D)o (Tl (1), (1)) (Tr 1, (122 (Do
+(T; ak Jl (T1)ak21’ (t2))o (70 r,—y(o)aklh (1)) (Tra akzlz (t2)Aga())o,c
[G (01,0081, g7 8,0 * Gy, (12,T2) 8411+ Ga (7, T1)5k1q5j{/1]
+ [Gl(c)ljl (71, T2)8kyky 8oy * G 47 (T2, 0081y q 8127+ G (3, T1)5k1q5j{,1]
+ (69202 0By O * Gy, (T, T8, 1 G (T 72) B3
+ [G,(()lj{ (T2, T1) Ok, 8121 - G ,1' (71,0)8p,q' 6,2 Gq;l('f 72)61yq 12,1]
= 60, (1 ™)ty 81ty * Gz (T2 By Ot - G (5, 11) 810113
+ [G,glj{(fz:ﬁ)(?klkz&;]; Ggra(T1,0)81k,q/65,2 " Ga (T, T2)5k2q5i2/1]
The last equality results from the fact that j; and j; are indices of different ranges (belonging to

different subsystems) and the same holds for i, and i3. Similarity,
Iy = (Tpaly ;@D @A (128 4y, (1) 82 (D811 (0))o
= (Tl 1 ()&, g (T))o (Telly ; (21)Bga (D)o (TeT s (128 1y, (T2))o
+(Telif (018 ki, (7))o (Trl . j, (2)8ga (D)o (Tl s (22)E sy 1 (E1))o
+(Telif (018 ki, (7))o (Te! s (22)8ga (D)o (Trl . ;, (2)E 1 (1))o
+(T;a ,A,(O)a kl]’(T1)>o (T, a_k i (Tz)aqa('[))o (T:a a—k1] (tpa- kyi, (T2))o
= 602 (21,06 s 810 - G (T T8k 8,1~ G, (T2 T2) 511
+ 693 (12, 08y 810 - G (T T8y 81,2 6 (71 T2)Bkyiy Sy
+ [GO, 2 (@2 008 81z * GO (T T2)8sgqBis " Gy, (B0, TS i1 ]
[qu(rl,ow ka0t ,-Ggl(r,rz)a_kzqaiél-GEkljl(TZ,rl)aklkzajliz]

= [G,(;f,v (T2:0)5—k2q’5i2/1’ ' 63/1(’[: 71)0_kyq0j,2° ngu‘{ (T1,T2)5k1k25j1’i;]
+ 692 (1 08y 81~ G T2)8kyqBi~ 6oy, (T2 T1) Oty |

Where, again, the last equality results from the fact that j; and j; are indices of different ranges

(belonging to different subsystems) and the same holds for i, and i}. Similarly, we obtain I, =

I3 = 0 for the same reason, as shown below:
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I = (Teliy, (2D & (T)E' 1 (22)8 1y, (22)8qa (D) g3 (0o
= (de2111(0)6k1j1(11)>o (T,at 1 (T1)8qa (D)o (T.a _k i (72)A 1,1, (T2))o
+ (Tratk i, (Tz)aklj1 (T (Trd ,A,(O)fl_kziz (T2))o (Tfakli{ (T1)dq,1('[))o
+(T,a! a2/ (08,1, (T2))o (T.a _k i1 (72)8qa(D))o (T.a, '(Tl)akljl(‘[l))o
+(Teh L (1) 8 gty (20 (Telt) 10 (0, g, ()0 (Tl (22802 (D)o
= [Gg, @008 r8, 17 G (5, T1) i1 Gyt (T2, T2) 81t
+ [G,‘Sl,-l (71, T2)8kyiey 811, " Gt (T2, 008 iyt 81,20~ G (%, T1)5k1q5j{/1]
+ (690 (12, 08 oy 810 - G (T T2)8kygSitn * Gy, (11,7281

+ [G£1j{(T2’T1)6_k2k16izj{ . G(?/Ar(‘l.'l, 0)5k1ql i G‘(I)A(T' Tz)é‘—kzqaiél] =0.

I3 = <Tfaik1j1 (Tl)a—klj{ (’H)akzig (Tz)altziz (Tz)an(T)a:;W(O))o,c
= (T}, (008 1 (T))o (Tl j, (1) 8ga(DDo( e 1. (22) Byt ()
+(T;a ak iy (Tz)a klj’(T1))0 (T,a IAI(O)akzl’(Tz»o (T;a a—klh (T1)aq,1('[))0
+(T,a IAI(O)akz," (t2))o (Ta akzlz (Tz)an(T»o(T a—k111 (T1)a kl]’(T1)>0
+(Telt 0D Byig (T))o (Tl 1 (00 1 (21D (Tef 1, (22)8ga (D)o
= [Gf,’w (71,008 1, q6j12 * Gga (T, T1)8_k1q07,2 " Gieyi, (Tlez)Sizig]
+ [G,?Ziz (T, T2) 8 kyky 11, * Gty (T2, 0) By S+ GO (T, T8y q ,M]
62 (2 081y B0 6% (0 72) 81y P10 * 6ok, (12,7008, 1]
+ [G,‘gzl.é (T2, T8 kyky Ot * G (T2, 008 ey 8120+ G (T, 72) By, A] = 0.
The two non-vanishing terms (I; and I,) produce the following contributions to g, of Eq.(S7.95):

1< ]15 o jl<3r _1si,<<i)<3r lej’(kl)V;il(kZ)

1 (Bh )
921=§f0ﬁ dr foﬁ dry4 X2 DI L = L=

k koiyi ~ ~
i 2722 Whkyja Py j1 Plegiz Py i,

1sjls§<j{s3r
kj1j1

i<l (k)V, s (k)
1<i;<—<ip<3r }1}' VY, U2
2 1 2 0 .0 .
[lejl(Tl,T2)5k1k25j1i2 qual('[z,o)(skzq'(sl !
JornBi 0nBig,

h h
éfoﬁ dTl Ioﬁ dTZZ 2

kaizi;

1<j1537r<j{s3r 1si25§<i§s3r V5 g GV (e2)

0 i ph ph = izipy
Gqﬂ(T'Tl)‘Squ‘Sfil]*'szfo do Jy dea X, kyiy}

0
[ACR AL
Wy j2 By jf, Phegiz Dy it

G:;IAI(Tl,O)(S‘qu' i A 'Gga(f,fz)5kzq6i2/1 =

V“a(q)VhA:(q )

1=1 wgj, [@qr@ iyt
S 1 ﬁh ph A (q' )V I(‘I) 3r
aq 0 .0 0 ’ or
o drify dr, :{_3r+1 PN Gaj(T2,71) * Gy (11, 0)Ggy (1, TZ)], LA € [1, >

0 else

[ A h ’ 3
{ %foﬁ drlfoﬁ dTZZZ [th(‘fl,’[z)'G‘(;,A:(TZ,O)G‘(;A(T,Tl)], LA E 7r+ 1,3r]

and
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. 3r _ . . 3r _. *
1sj,=20<jis3r (1sipsr<ij=ar VRV (ko)

1 (Bh Bh —
924 ZEIO dTl fo dTZ Zkljlj{ k2i2i£ — — 14 -
J“’hh“’klj’l“’kziz“’kzi;
i3 <3l V. g (k)V" s (kp)
1 ph Bh 15]152<]153r 151252<1253r juji vl lzl; 2 [ 0 0
2l dnly duk, kil Ggr3 (T2, 08 _teyq 81,00 * Gga (T, 71) 8y )12

\/“’k1j1“’k1j’1“’kziz“’kzi;

. _3r . . 3r _. *
151 S5<jis3r 1si s <ip<37 Vju-fl(kﬂViZi:Z(kz)

1 (B Bh
R R L) R M (6320 (r1, 008 iy Sy -

kqjji kaizi; > >
Uih 22t Whkyja Oy j! Pheziz Py i,

G (T, T2)8_kyqitz - ngljl(Tz,T1)5k1kz5jliz] =

8q' BH Bh Vi (q’)V;-I (q) 3r
_4q9° 3r J1 J1 0 0 0 ’ or
(32 fo dr, fo drt, J'i:%fl—w,,,-'l T [qu{(rl,rz)(;qw(rz,O)qu(r, Tl)], LA E [1, >

L Bh T Vi@V i(a) 3r .

9 2 J1 0, 0, , 0 ’ or

2y duf, dr Zj1=1—wq,-1 o [th(Tz.Tl)Gq 2 (11,0060, (3, rz)], Y 1,3r]
0 else

Here we used the following properties: w_g3 = wga and V;1(—q) = V/{kj{ (q) [see Egs. (87.12)
and (S7.44)].

The equivalence of g,; and g,, can be seen by changing the integration variables 7, < ;.

Substituting g,; and g,4 into Eq. (S7.95), g, is given by:

Tr lea(q)V]-*llr (q"

3
J1=1 wgj, [@qa@ gyt

8o’ (BR Bh Vi @V, (@) o

_4qq9" 3r J1 J1 0 0 0 ’ or

Ly dn )y dr N crrond Go 1 (T2, 11) Gy (11,0)G gy (x, rz)], LA € [1, 2]
0

[ A h ’ 3
( 2 [P g, [P ey 3 G}, (11, 72)G 5 (1, O)Gga(r,rl)], LA € [7’+ 1,3r]

9= (87.97)

else

By changing the indices and integration variables, it’s straightforward to show that the other three

terms (g4, g3, g4) are identical to g,, thus the final expression of G;i?q, (@ [Eq. (87.85)) can be

calculated as:

[ Bh Bh Vlf-’(‘ll)V;./(ll) , 37
%fo d‘rlfo drzzs_,rzﬂ M[ng{(Tz,Tl)Ggllr(Tl,O)G:'JA(T,TZ)], A A E[l,;

J1=5+1 @it |Parqiar

G2, (1) =4g, = , oy @V S7.98
qrq'2 (@ 92 &ifoﬂﬁ dr, foﬂh dr, g:lw[g%l (T1vT2)G.(,)’)J (TZ,O)G(?A(T, T1)]’ LA € [Z+ 1’37,] ( )
l 4 1= g, Wgawgt 1 2
0 else
. 2 . . .
To calculate G;i)q, 4 in frequency space, we expand G; /1) g (t) in a Fourier series:
2 1 —i 2 .
G(A) » (1) ==Y, e lwn‘rG(A) o (iwy,)
arq Bh qrq (S7.99)
@ ; _ (Ph i @ '
Gq/l,q’/ll (l(l)n) = fO dTelwnTGq/qu/ll (T)

Using Eq. (S7.69) we get for 1, A" € [1, 32—r],
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procbr 5 V(@)Y @)
62, (@) = i dt, i dr, Z —h[ng{(rz,rl)cgl,(rl,O)Gg,l(r,rz)]

arq g
j’_3_r (,()q]1 qu_wall

1=5+1

3r ) 7 * , h A
— 5‘1‘1' g J1 (9 )V/U1 (@) (# d 1 —iwn, (T2~71) ;0 —iwn, Ty
4 e — dt, dt, - e G (l(unz h G A,(Lwn )
A= Caiiv Car®a'a’ Jo 0 ph s ﬁ

1 ;
. ﬁz e"“’n(T_TZ)GgA(iwn)
n

ph
3 ! * d l(wn —wn )‘171
= M zr: V/’l'j{(q )Vlj{(q) 1 f T, € 1 2
4
.31
]1=7

h

|

Wil ] W W rﬁh ¥
1 qj1V Yar%q’'2 o, J

(L
e‘i“’nTGgl(iwn)Ggll(iwnl)Gf;j{(iwnz 4
Ik dTZ e_i(wnz_wn)fz

5
=17 —iwnptn0 0 . 0 .
=— Jocony Bh et G (iwp) Gq/l’(l“’nl)qu{(l“’nz)5n1n25nn2
q q nnq,ny

I

32 Vs (@5 @ 1
3
2

5 . Var s (@ WV (q) _ .
;;11 Ze—lwnf 0 (iwy) |> Z B e il Goj{(m)n) G,‘;A:(La)n)
n

(uql(,()qlll

-/

Comparing above expression with Eq. (§7.99), the Fourier transform of G;fgq ,(7) reads as

A’ 7 (q )V;Url(q

@ ; _ qq GO (i 0
quq,)v(Lwn) A(lwn) 44 y3r {_3_r+1—w 'W qj{(Lwn) qur(lwn) (S7.100)
qj q A

where we have introduced the notation:
2(2) (la) ) 6 3r l’ '(q )V ’(q) (la) )
arq'y n 4 j1= 3r+1 wqj;,l\} WaqaWgl y q], n

and G( ) ,A,(lwn) = G G(lwy) - e ey A,(la)n) qul(uun) Similarly, for A,1" € [—+ 13r] we

(87.101)

have:
! 3y, (Q)V-* ,(q’)
2 , Jji2 A ,
Sy (f0n) = —LTE | I GO, (i) (S7.102)
Wqj,q wawall
and all together we have for z? ahg' (iwy):
qq Z3r /1"(‘1)1]1 0 ( ) /1/1'6[131]
f=e1y, W Gy (iwn), ’ '
RCTUN R 2y
2 .
Z‘(I/'l).q')l’(lwn) = 84q’ % V]'1A(¢I)V].*lll(ql) 0 /s Ax 3r 13 . (S7.103)
TZh:l— cIJ'1(lwn)’ A E [7+ ’ T]
Wqjq wawall
\ 0 else
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7.5.3  Dyson’s equation
Substituting Egs. (S7.90) and (S7.103) into Eq. (S7.85) and performing a Fourier transform, we have:

. , 1 . 2 .
qu,q’/’l’ (l(l)n) = G‘?Lqul(lwn) + G;}Bq/l/(l(l)n) + G;A?qlll (lwn) + -

= GO (i0)8gqrSz0 + G (iwn) * To0 (i) - G (i) + Gy (i) -3 0 (i)
Gy (iwn) + - = Gy (iwn)8qq 127 + Gy (iwn)  Zga gz (iwn) * G s (i)
or
Gaag' 2 ((wn) = Gy (i0n)8qqr 8331 + Gy (iwp) * Zgz grar (i) - Gy (iwy) — (S7.104)
Eq. (S7.104) is the so-called Dyson’s equation (see Ref. 2!), where

. 1 . 2 i
qu,qﬂ (la)n) = ZC(I)L),CI,)L’ (la)n) + ZC(I)L),QIA’ (la)n) -|-

is called self-energy and Zggq 4 (fwp),n =12, is the self-energy of n'™ order approximation. Up

to the second order approximation, the self-energy is written as

( vy (@) 3r
Sqql AN

_ a9 , 1<A1<—
2 qu(T)qAr 2

V(@
5qql AT

— — )
2 (T)qlwal
V. (g
6‘1‘1, 3r A,]gl_(q) )Lfll(q) 0 . 1 A’ 3r
L T Canlien) A E[LS
175 (qull wawall

<A <3r

15/1'53—;<,133r

Zang v (fwn) = (S7.105)

3r * !
2 V; V.
6‘"”22 jaa(@) fl’ll(q)GO-
2 2= -~ Cai
\ w‘Ul wawall

(iw,), AA € [32—r+ 1,3r]

7.6 Fermi’s golden Rule
To get the Fermi’s golden Rule, we need to calculate the retarded Green’s function, which can be

calculated from Gg; 57 (iw,) by analytic continuation to the real axis via iw, = @ +in with an

infinitesimal positive 1?%2!:

G;A,q/l’ (W) = Ggpgn(iwy » 0 +in),n -0 (S7.106)
Similarity, the retarded self-energy is defined as

Zoaqr (@) = Zgyqp (o, > @ +in),n -0 (S7.107)
The transition rate of phonons of branch A at q, Tg3(w), is related to the retarded self energy
Lo (w) via?% 22:

[ya(w) = —2Im2}; 3 (w). (37.108)
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Using the expression for Gg ,(iwy,) [Eq. (S7.69)] and focused on the second order approximation**

22 we have:
2
SYT s Pl relLy]
ST ygaiog) =4+ T2 Caner (w=agp, )i ’ (S7.109)
| 1 32—T |V,-1;L(q)|2 1 3r
k Z Jj1=1 wqh&)ql (a)—a)qjl)+in' A € I:?+ 1,37']
Using the relation:
1
Im|———|=—-nf(w—w, ). S7.110
[(w w I)+t7l] " (w wqh) ( )
qj
The transition rate reads as
(oo gl
| 7 3 1 3r
45 1{r_£+1m Ch wqj{)’ A€ [1' 7]
[ga(w) = . 1 (S7.111)
ner W@l o 3r
l 2211_1 o Gt §(w CIJ1)’ AE [ +1 Sr]
Or equivalently,
(
| 772 3 | A]1(q)‘ 5(E - Ey) 1e [1 3_r]
[a(E = hw) —4 2 ’1‘_“ FqjyPar 24 (S7.112)
Vi@l
L . 22_1 - 6(E — By,), 1e|F+ 130

qj1
Tg2 (E) represents the probability per unit time of a transition with energy E from phonon branch A
at wave number q in subsystem I (I) to a set of phonon branches in subsystem II (I) with the same
wave number. Here, state g1 in one subsystem is coupled to state qj; in the other subsystem via:

Vajt (q). Since the two expressions in Eq. (S7.112) are completely equivalent just representing

transitions of opposite directions we consider only the first one in what follows. Assuming that
subsystem II sufficiently large such that its density of states is nearly continuous, the sum over its

states in the above expression can be replaced by an integral over the energy »;(--+) —
J()p(Eg)dE, giving:

{|V/11’(‘1)| } {|V/11’(q)| } —E

§(E—Ey) = —p(E) —‘”. (S7.113)

EEqg)

!Eq

e (B) =2 [ aBgp(Eg)——pr

Eq. (§7.113) represents the transition rate of the phonons with energy E from branch A and wave
number q in subsystem I to the continuous manifold of states in subsystem II. The total transition
rate between the two subsystems is then given by the sum of transition rates from all states in

subsystem I, weighted by their phonon populations, to the manifold of states in subsystem II.
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Assuming that the two subsystems are weakly coupled such that the width of state g4 in subsystem
I'is small and the probability to leave it at an energy other than  Eg; is negligible we can now write

total transition rate as:

e—ﬁEqap(Eq’l) “V’U'(q)'z}g

1 _ T[fl3 ].I=Eq}L
[iort = Z 7€ ﬁEqAFqA(EqA) =7 Z 7 £? .
ql ql ai

2

mh o e FEar p(Eq2) |V,1,/1+32—r(q)

2
2 Ly 7 EZ,

Finally we get

2
n_hg e—ﬁEq/‘l p(qu)
[tot = Ta(E) = TZq)l

Vl,l+¥(q)

(87.114)

z Eg
where Z = Yq3 e PEar is the partition function. Here, we choose the index of phonon branches A
such that the phonon branch with lower energy has a smaller index, i.e., Eq, < Egy, forindex 4; <
A,. Note that phonon branches A and j; belong to the subsystem I (with index from 1 to 3r/2) and
subsystem II (with index from 1to 1+ 3r/2 to 3r), respectively, we choose j' = 4 + 32—r to make
sure that E,;» = Eg4; since phonon energy of two uncoupled system is identical. Eq. (S7.114) is the

Fermi’s golden rule for inter-phonon coupling.
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