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Figure S1. (a), (b), (c) FE-SEM images of the carbon cloth (CC); (d), (e), (f) FE-SEM 

images of the actived carbon cloth (ACC); (g) Contact angle test of CC and ACC; (h), 

(j) Nitrogen adsorption-desorption isotherms of CC and ACC, respectively.

Figure S2. Conductivity of carbon cloth (CC) activated carbon cloth (ACC).
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Figure S3. Schematic diagram of traditional TPR method (a) and in situ formed 

carbon strategy (b) for constructing metal carbides.

Figure S4. Digital photo of NiMoO4/ACC and Ni6Mo6C/NiMoOx/ACC.
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Figure S5. (a) SEM image, (b-d) corresponding elemental mapping images and TEM 

images (e) and HRTEM (f) of NiMoO4/ACC.
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Figure S6. SEM images and TEM image of Ni6Mo6C/NiMoOx-300 (a, b, c), 

Ni6Mo6C/NiMoOx-500 (d, e, f) and Ni6Mo6C/Mo2C-600 (g, h, i).

Figure S7. (a) EPR spectra and (b) Raman spectra of NiMoO4/ACC and 

Ni6Mo6C/NiMoOx-400.
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Figure S8. EPR spectra (a) and XRD patterns (b) of NiMoO4/ACC and 

NiMoOx/ACC.

Figure S9. (a) HER polarization curves and (b) Tafel  slope plots of 

Ni6Mo6C/NiMoOx-400, NiMoOx/ACC, NiMoO4/ACC precursor and carbon substrate 

ACC.
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Figure S10. Tafel plots obtained from the polarization curves at a large overpotential 

range (>50 mV) in 1.0 M KOH electrolyte.

Figure S11. Exchange current density of various catalysts through extrapolation of 

Tafel plots in low overpotential region. 
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Figure S12. (a) CV of Ni6Mo6C/NiMoOx-400 in 1 M PBS (pH =7) with a scan rate of 

50 mV s-1. (b) The calculated turnover frequency curve of Ni6Mo6C/NiMoOx-400 

catalyst for HER.

The TOF of Ni6Mo6C/NiMoOx-400 for HER was calculated based on a 

electrochemical CV method. Figure S9a shows CV curve in the region of -0.2 to 0.6 

V vs. RHE for Ni6Mo6C/NiMoOx-400 in 1 м phosphate buffer solution (PBS, pH = 7). 

The integrated charge over the whole potential range should be proportional to the 

total number of active sites. Assuming a one-electron process for both reduction and 

oxidation process, the upper limit of active sites could be calculated. Figure S9b 

shows the polarization curves in 1 M KOH, normalized by the active sites and 

expressed in terms of TOF. The turnover frequency (TOF) value at overpotential of 

100 mV is 1.23 s-1 in alkaline media, which is larger than those for reported 

Mo2C-based materials and so on. (the TOF values of these catalysts at 100 mV 

usually below 1.0 s-1)
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Figure S13. Cyclic voltammetry of (a-d) Ni6Mo6C/NiMoOx-T, respectively, the 

arrows represent the increased scan rate from 2 mV/s to 10 mV/s.

Figure S14. The capacitive currents at 0.25 V vs. RHE against scan rate fitted to a 

linear regression enables the estimation of Cdl, where the slope are Cdl of 

Ni6Mo6C/NiMoOx-T.
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Figure S15. The HER polarization curves of Ni6Mo6C/NiMoOx-400 with different 

calcination time.

Figure S16. The polarization curves for different batches of Ni6Mo6C/NiMoOx-400 

under the same electrochemical conditions; the data of batch 1 is presented in Figure 

3a.



S11

Figure S17. (a) Polarization curves for Ni6Mo6C/NiMoOx-400 in pH = 0 and pH = 7 

media and (b) corresponding Tafel plot

Figure S18. (a) Digital photo of catalyst under electrochemical test (-0.1 V vs. RHE) 

and (b) schematic illustration of the microstructure of catalyst during HER process.
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Figure S19. (a) FE-SEM images and (b), (c) HRTEM images of 

Ni6Mo6C/NiMoOx-400 after 60 h i-t test

Figure S20. XRD patterns of initial Ni6Mo6C/NiMoOx-400 (black) and after i-t test 

for 60 h in 1 M KOH (red). 
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Figure S21. XPS and EPR spectra of Ni6Mo6C/NiMoOx-400 after long-term test. 

High-resolution for the Mo 3d peak (a), Ni 2p3/2 peak (b), O 1s peak (c) and EPR 

spectra (d). 

Figure S22. Mechanism of hydrogen evolution reaction under alkaline conditions.
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Figure S23. The stable configurations of H adsorption on various sites: (a) Pt (111); 

(b) Ni2Mo, (c) NiMo2, (d) CMo2, (e) Ni3 and (f) Mo3 of Ni6Mo6C (511). (Ni: green, 

Mo: cyan, C: black, Pt: grey H: white).
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Figure S24. (a) The configurations of initial and final state for water adsorption on 

different sites of Ni6Mo6C (511); (b) Corresponding calculated water adsorption 

energy of different sites on Ni6Mo6C (511) and Pt (111).

Table S1. Comparison of the HER performance for Ni6Mo6C/NiMoOx/ACC with 
other recent transition metal carbides-based catalyst.

Catalysts

η (mV) - j (mA cm-2)  

Tafer slope (mV dec-1)

at lower overpotential 

regime

Electrolyte IR compensation References

Ni6Mo6C/NiMoOx/ACC
29-10

42
1 M KOH × This work

Mo2C nanoparticles
176-10

58
1 M KOH × 1

Mo2C/G-NCS
70-10

39
1 M KOH - 2

Mo2C/2D-NPC
45-10

46
1 M KOH √ 3

MoxC@3D N-doped C
122-10

78
1 M KOH - 4

Mo2S/Mo2C
220-1000

43
1 M KOH √ 5

Co-Mo2C nanowires
118-10

44
1 M KOH √ 6

MoxCoxC@C
83-10

50
1 M KOH √ 7

MoP/Mo2C@C
75-10

58
1 M KOH √ 8
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CoMoC
46-10

46
1 M KOH - 9

Ni3Mo3C/NPC 

NWS@CC

215-100

106
1 M KOH √ 10

Co-NC@Mo2C
99-10

60
1 M KOH √ 11

Table S2. The surface content of Ni and Mo element of Ni6Mo6C/NiMoOx-400 before 

and after long-term test.

Element Catalyst Initial After long-term test

Ni (at %) 6.2 6.1

Mo (at %) 3.6 3.3
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