SUPPORTING INFORMATION

Pd-Catalyzed C(sp³)–H Biarylation via Transient Directing Group Strategy

Mingruo Ding, Wenkai Hua, Min Liu, Fengzhi Zhang*,†

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China Email: zhangfengzhi@zjut.edu.cn

Table of contents

I. General information	S3
II. Optimization Studies	S3
III. Representative Procedure for Biarylation	
IV. Synthesis and characterization of cyclic diaryliodonium salts	S6
V. Characterization Data of Biarylated Compounds	S9
VI. Further Transformation of 3a	
VII. Control Experiments	
VIII. Reference	
IX. NMR Spectra	S30

I. General information

All reagents were obtained from commercial suppliers and used without further purification. Yields for all compounds were determined by the column chromatography which was generally performed on silica gel (200-300 mesh) using petroleum ether 60-90 (PE)/EtOAc as eluent, and reactions were monitored by thin layer chromatography (TLC) on a glass pate coated with silica gel with fluorescent indicator (GF254) using UV light. The ¹H reree and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker ADNANCE III 500 MHz or 600 MHz using CDCl₃ as solvent with TMS as internal standard. Chemical shifts are given in ppm (δ) referenced to CDCl₃ with 7.26 for ¹H and 77.03 for ¹³C, and to DMSO-*d*₆ with 2.50 for ¹H and 39.52 for ¹³C. Signals are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and coupling constants are expressed in hertz. Melting points were measured on a SGW® X-4B apparatus and uncorrected. HRMS were recorded on Agilent 6210TOF LC/MS mass spectrometer.

II. Optimization Studies

Table S1: Optimization of TDGs

Entry ^a	TDGs	Yield(%) ^b
1	Glycine	18
2	beta-Alanine	nr
3	Valine	21
4	tert-Leucine	31
5	Phenylalanine	27
6	Phenylglycine	24
7	4-Aminobutyric acid	nr
8	Anthranilic acid	nr

^aReaction conditions: 0.2 mmol **1a**, 0.22 mmol **2a**, 10 mol% Pd(OAc)₂, 10 mol% TDGs, 1.5 equiv AgTFA, 1.0 mL AcOH, 120 °C, 12 h. ^bIsolated yields.

Table S2: Optimization of solvents

0 Ia	+	ToTf 2a	Pd(OAc) ₂ (10 mmol%) AgTFA (1.5 eq) <i>te<u>rt-Leucine (20 mmol%)</u> Solvents, 120 °C</i>	3a
---------	---	------------	---	----

Entry ^a	Solvents	Yield(%) ^b
1	HFIP/AcOH (1/1)	33
2	HFIP/AcOH (4/1)	39
3	HFIP/AcOH (9/1)	42
4	HFIP/AcOH (19/1)	25
5	HFIP	trace

6	<i>i</i> -PrOH/AcOH (9/1)	trace
7	<i>n</i> -BuOH/AcOH (9/1)	trace
8	TFE/AcOH (9/1)	40
9	HFIP/TFA(9/1)	33

^aReaction conditions: 0.2 mmol **1a**, 0.22 mmol **2a**, 10 mol% Pd(OAc)₂, 10 mol% TDGs, 1.5 equiv AgTFA, 1.0 mL Solvent, 120 °C, 12 h. ^bIsolated yields. HFIP=1,1,1,3,3,3- hexafluoro-2-propanol; TFE= 2,2,2-trifluoroethanol; TFA= trifluoroacetic acid

Table S3: Condition optimization

0 + 1a	ToTf 2a	Pd(OAc) ₂ (10 mmol%) AgTFA (1.5 eq) <i>t<u>ert-Leucine (X mmol%)</u> Additive HFIP/AcOH (9/1, 0.2M), 120 °C</i>	o J J Ja
Entry ^a	Х	Additive	Yield(%) ^b
1	40		49
2	60		47
3	100		34
4	40	3Å MS	56
5	40	MgSO ₄ (2 eq)	45
6°	40	3Å MS	60
7 ^d	40	3Å MS	65

^aReaction conditions: 0.2 mmol **1a**, 0.22 mmol **2a**, 10 mol% Pd(OAc)₂, 10 mol% TDGs, 1.5 equiv AgTFA, 1.0 mL Solvent, 120 °C, 12 h. ^bIsolated yields. ^c0.4 mmol **1a**, 0.2 mmol **2a**, ^d0.8 mmol **1a**, 0.2 mmol **2a**.

III. Representative Procedure for Biarylation

Synthesis of 2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(3a). To a 15 mL pressure vessel equipped with a magnetic stir bar were introduced 2-methylbenzaldehyde 1a (92 μ L, 0.8 mmol), cyclic diaryliodonium salt 2a (86 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), AgTFA (66 mg, 0.3 mmol), *tert*-leucine (10.6 mg,0.08 mmol) and 3Å MS (120 mg). Next, the mixture of HFIP (0.9 mL) and HOAc (0.1 mL) were added into the above mixture. The reaction was then stirred at room temperature for 10 min before heated to 120 °C in oil bath for 12h. After cooling to room temperature, the reaction mixture was diluted with DCM (10 mL), filtered through a pad of Celite, and the filtrate was then concentrated in vacuo. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 200:1) to yield the desired product 3a (52 mg, 65%) as a White solid.

For 4 mmol scale reaction: To a 100 mL pressure vessel equipped with a magnetic stir bar were introduced 2-methylbenzaldehyde 1a (1.84 mL, 16 mmol), cyclic diaryliodonium salt 2a (1.71 g, 4 mmol), Pd(OAc)₂ (90 mg, 0.4 mmol), AgTFA (1.32 g, 6 mmol), *tert*-leucine (210 mg, 1.6 mmol) and 3Å MS (2.4 g). Next, the mixture of HFIP (18 mL) and HOAc (2 mL) were added into the above mixture. The reaction was then stirred at room temperature for 10 min before heated to 120 °C in oil bath for 12h. After cooling to room temperature, the reaction mixture was diluted with DCM (100 mL), filtered through a pad of Celite, and the filtrate was then concentrated in vacuo. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 200:1) to yield the desired product **3a** (1.05 g, 66%) as a White solid.

IV. Synthesis and characterization of cyclic diaryliodonium salts

C

OTf 2m

General procedure for the preparation of cyclic diaryliodoniums

These diphenyleneiodoniums were synthesized according to previous work¹.

To a stirred solution of 2-iodoaniline derivative (5.0 mmol) in EtOH (20 mL) was added phenylboronic acid (7.5 mmol, 1.5 equiv), K_3PO_4 (3.18 g, 15.0 mmol, 3.0 equiv), $Pd(PPh_3)_4$ (288.5 mg, 0.25 mmol, 5 mol%). The reaction proceeded at a reflux for 12h under argon atmosphere before EtOH was removed by rotary evaporation. The residue was extracted with EtOAc, and the combined organic layers were washed with H₂O and brine, dried over anhydrous Na₂SO₄, concentrated by rotary evaporation. The crude product was purified by column chromatography to afford the desired 2-aminobiaryl derivative.

2-Aminobiaryl derivative (5 mmol) was suspended water (5 mL) at 0 °C and HCl (12 N; 1 mL) was added. After slow addition of a solution of NaNO₂ (10 mmol) in water (2 mL), the reaction mixture was stirred for 20 min at 0 °C. A solution of ice cooled KI (12.5 mmol) in water (2 mL) was added, and then it was allowed to warm to r.t. and stirred overnight before 1M aqueous Na₂S₂O₃ was added until the color of the mixture didn't change. The phases were separated, and the aqueous phase extracted with EtOAc (20 mL × 3). The combined organic layers were washed with H₂O (20 mL ×2) and brine (20 mL×1), dried over anhydrous Na₂SO₄, concentrated in a vacuo. The residue was purified by column chromatography

to yield 2-iodobiaryl derivative.

In a 50 mL round bottom flask, 1.4 equiv (7 mmol) of *m*-chloroperbenzoic acid (*m*-CPBA) was taken. A solution of 2-iodobiaryl derivative (5 mmol) in anhydrous DCM (20 mL) was added, followed by dropwise addition of TfOH (3 equiv) with constant stirring at ice-bath. The solution was stirred for 3h at r.t. before DCM was removed by rotary evaporation. Et₂O (20 mL) was added to the remained solid, and the mixture was stirred for 20 min, and filtered. The collected solid was washed with Et₂O three times, dried in high vacuo to provide the required cyclic diaryliodonium salts.

¹H and ¹³C NMR spectra for the following known cyclic diaryliodonium salts showed good agreement with the literature data.

Diphenyleniodonium trifluoromethanesulfonate $(2a)^1$,

3,7-Dichlorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2b)²

3,7-Difluorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2c)¹

3,7-Dimethyldibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2d)¹

2,4-Dimethyldibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2f)¹

3-Chloro-6,8-dimethyldibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2h)³,

1,4-Dimethyldibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (21)⁴

3,7-bis(trifluoromethyl)dibenzo[*b,d*]iodol-5-ium trifluoromethanesulfonate (2e): white solid (2.1g, 74% yield); ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.87 (d, *J* = 8.8 Hz, 2H), 8.58 (q, *J* = 3.6, 2.8 Hz, 2H), 8.40 – 8.24 (m, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 144.65, 131.49 (q, *J*_{C-F}= 33.0 Hz), 129.1, 128.3, 127.9 (q, *J*_{C-F}= 7.8 Hz), 123.9, 123.6 (q, *J*_{C-F}= 272.4 Hz); HRMS m/z (ESI) calcd for C₁₄ H₆F₆I [M-OTf] ⁺ : 414.9413, found: 414.9408, error 1.1 ppm. Me,

7-fluoro-2,4-dimethyldibenzo[*b,d*]iodol-5-ium trifluoromethanesulfonate (2g) : white solid (1.8g, 76% yield); ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.44 – 8.38 (m, 1H), 8.11 (m, 1H), 8.07 (d, *J* = 3.6 Hz, 1H), 7.81 – 7.76 (m, 1H), 7.38 (s, 1H), 2.62 (s, 3H), 2.47 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.9 (d, *J*_{C-F}= 252.4 Hz), 141.8, 141.4, 139.7, 139.2, 132.5, 129.1 (d, *J*_{C-F}= 8.6 Hz), 125.6, 123.3, 121.9 (d, *J*_{C-F}= 10.6 Hz), 119.6 (d, *J*_{C-F}= 22.8 Hz), 118.8 (d, *J*_{C-F}= 28.6 Hz), 25.0, 21.0; HRMS m/z (ESI) calcd for C₁₄H₁₁FI [M-OTf] ⁺ : 324.9884, found: 324.9884, error 0.0 ppm.

7-(ethoxycarbonyl)-2,4-dimethyldibenzo[*b,d*]iodol-5-ium trifluoromethanesulfonate (2i): white solid (1.6g, 60% yield); ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.88 – 8.78 (m, 1H), 8.51 – 8.37 (m, 1H), 8.31 – 8.21 (m, 1H), 8.14 (t, *J* = 9.8 Hz, 1H), 7.44 (t, *J* = 4.9 Hz, 1H), 4.40 (q, 2H), 2.63 (s, 3H), 2.47 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 164.3, 146.8, 141.9, 141.3, 139.5, 133.7, 132.4, 131.6, 127.8, 126.3, 124.0, 122.23, 122.12, 62.16, 25.08, 21.00, 14.60; HRMS m/z (ESI) calcd for C₁₇H₁₆O₂I [M-OTf] ⁺ : 379.0189, found: 379.0189, error 0.0 ppm.

Me

2j

2,4-dimethyl-7-(trifluoromethyl)dibenzo[*b,d*]iodol-5-ium trifluoromethanesulfonate (2j): white solid (1.7g, 65% yield); ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.70 – 8.58 (m, 2H), 8.33 – 8.21 (m, 2H), 7.51 (s, 1H), 2.68 (s, 3H), 2.51 (s, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆) δ 146.89, 141.99, 141.20, 139.52, 133.94, 130.37 (q, *J* _{C-F}= 33.1 Hz), 128.64, 128.41, 126.54, 124.36, 123.65 (q, *J* _{C-F}= 272.8 Hz), 122.22, 120.09, 25.11, 21.01; HRMS m/z (ESI) calcd for C₁₅H₁₁F₃I

[M-OTf] ⁺ : 374.9852, found: 374.9847, error 1.3 ppm.

2k

2,4-dimethyl-7-nitrodibenzo[*b,d*]iodol-5-ium trifluoromethanesulfonate (2k): white solid (1.1g, 44% yield); ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.13 (m, 1H), 8.75 – 8.49 (m, 2H), 8.38 – 8.14 (m, 1H), 7.59 – 7.39 (m, 1H), 2.67 (s, 3H), 2.51 (s, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆) δ 148.62, 147.65, 142.17, 140.53, 139.71, 134.42, 128.23, 127.37, 127.07, 126.51, 125.18, 121.76, 25.03, 20.98; HRMS m/z (ESI) calcd for C₁₄H₁₁NO₂I [M-OTf] ⁺ : 351.9829, found: 351.9829, error 0.0 ppm.

7-(tert-butyl)-2,4-dichlorodibenzo[*b,d*]iodol-5-ium trifluoromethanesulfonate (2m) : white solid (1.4g, 50% yield); ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.62 (m, 1H), 8.51 (m, 1H), 8.36 (t, *J* = 1.5 Hz, 1H), 8.02 (m, 1H), 7.98 (m, 1H), 1.39 (s, 9H); ¹³C NMR (151 MHz, DMSO-*d*₆) δ 156.44, 145.55, 138.97, 137.64, 134.31, 129.37, 129.28, 128.87, 127.90, 125.70, 124.40, 123.43, 36.29, 31.25; HRMS m/z (ESI) calcd for C₁₆H₁₄Cl₂I [M-OTf] ⁺ : 402.9511, found: 402.9511, error 0.5 ppm.

V. Characterization Data of Biarylated Compounds

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3a) White solid (52 mg, 65% yield). Mp: 89 - 90 °C; $R_f = 0.17$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.05 (s, 1H), 7.92 (dd, J = 7.9, 0.8 Hz, 1H), 7.80 (dd, J = 7.7, 1.2 Hz, 1H), 7.45 (td, J = 7.5, 1.4 Hz, 1H), 7.38 – 7.28 (m, 4H), 7.18 – 7.11 (m, 3H), 7.06 – 6.97 (m, 2H), 4.31 – 4.07 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 191.9, 145.9, 144.0, 142.5, 139.0, 138.0, 134.1, 133.8, 131.9, 130.5, 129.9, 129.8, 129.3, 128.9, 128.3, 128.0, 126.8, 126.4, 100.2, 35.5; HRMS m/z (ESI) calcd for C₂₀ H₁₅IONa [M+Na] + : 421.0060, found: 421.0049, error 2.5 ppm. IR (cm⁻¹): 1694, 1595, 1461, 1001, 755.

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-4-methoxybenzaldehyde (3b) Colorless oil (54 mg, 63% yield); $R_f = 0.28$ (PE/EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 9.94 (s, 1H), 7.93 (dd, J = 7.9, 0.8 Hz, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.36 (td, J = 7.5, 1.1 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.22 (dd, J = 7.6, 1.6 Hz, 1H), 7.14 (dd, J = 6.3, 2.6 Hz, 1H), 7.04 (td, J = 7.4, 1.4 Hz, 2H), 6.85 (dd, J = 8.6, 2.5 Hz, 1H), 6.63 (d, J = 2.5 Hz, 1H), 4.19 (d, J = 7.2 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 190.3, 163.8, 145.9, 145.1, 143.9, 139.0, 137.7, 133.3, 129.9, 129.8, 129.2, 128.9, 128.3, 128.0, 127.7, 126.3, 117.1, 112.1, 100.1, 55.4, 35.6; HRMS m/z (ESI) calcd for C₂₁H₁₇IO₂Na [M+Na] +: 451.0165, found: 451.0162, error 0.8 ppm. IR (cm⁻¹): 1682, 1597, 1565, 1460, 1250, 755.

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-4-methylbenzaldehyde (3c) Colorless oil (58 mg, 70% yield); $R_f = 0.16$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.01 (s, 1H), 8.00 – 7.85 (m, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.35 (td, J = 7.5, 0.9 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.20 (dd, J = 7.6, 1.6 Hz, 1H), 7.17 – 7.10 (m, 2H), 7.03 (m, 2H), 6.91 (s, 1H), 4.18 (d, J = 2.3 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.5, 145.9, 144.6, 143.9, 142.4, 138.9, 138.0, 132.7, 131.8, 130.9, 129.9, 129.8, 129.3, 128.9, 128.2, 128.0, 127.6, 126.2, 100.2, 35.5, 21.7; HRMS m/z (ESI) calcd for C₂₁H₁₇IO₂Na [M+Na] + : 435.0216, found: 435.0221, error 1.14 ppm. IR (cm⁻¹): 1682, 1600, 1459, 1213, 820, 767, 752.

4-fluoro-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3d) Colorless oil (70 mg, 84% yield); $R_f = 0.47$ (PE/EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 9.96 (s, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.80 (dd, J = 8.6, 6.0 Hz, 1H), 7.36 – 7.29 (m, 3H), 7.14 (dt, J = 4.4, 1.6 Hz, 2H), 7.09 – 7.05 (m, 1H), 7.02 (m, 2H), 6.79 (dd, J = 9.8, 2.4 Hz, 1H), 4.22 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 190.0, 165.8 (d, $J_{C-F} = 256.5$ Hz), 146.0 (d, $J_{C-F} = 8.7$ Hz), 145.6, 144.0, 139.0, 137.0, 133.4 (d, $J_{C-F} = 9.9$ Hz), 130.6, 130.07, 129.9, 129.5, 129.0, 128.4, 128.0, 126.7, 118.6

(d, $J_{C-F} = 22.1$ Hz), 114.1 (d, $J_{C-F} = 22.1$ Hz), 100.1, 35.3.; HRMS m/z (ESI) calcd for $C_{20}H_{14}FIONa [M+Na]^+$: 438.9966, found: 438.9974, error 2.03 ppm. IR (cm⁻¹): 1689, 1600, 1583, 1246, 828, 765, 756.

4-chloro-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3e) Colorless oil (64 mg, 74% yield); $R_f = 0.47$ (PE/EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 10.00 (s, 1H), 7.91 (dd, J = 7.9, 0.7 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.39 – 7.30 (m, 4H), 7.15 (dd, J = 7.4, 1.7 Hz, 2H), 7.11 – 7.01 (m, 3H), 4.31 – 4.08 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 190.4, 145.6, 144.2, 144.0, 140.1, 139.0, 137.0, 132.3, 131.8, 131.8, 130.1, 129.9, 129.5, 129.1, 128.4, 128.0, 127.2, 126.7, 100.1, 35.3; HRMS m/z (ESI) calcd for C₂₀H₁₄ClIONa [M+Na]⁺ : 454.9670, found: 454.9679, error 2.07 ppm. IR (cm⁻¹): 1685, 1589, 1560, 1459, 1209, 1085, 1001, 899, 814, 756.

4-bromo-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3f) White solid (71 mg, 75% yield); Mp: 65 - 67 °C; $R_f = 0.47$ (PE/EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 10.00 (s, 1H), 7.92 (dd, J = 8.0, 1.0 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.48 (dd, J = 8.2, 1.8 Hz, 1H), 7.39 - 7.31 (m, 3H), 7.23 (d, J = 1.8 Hz, 1H), 7.17 - 7.13 (m, 2H), 7.11 - 7.01 (m, 2H), 4.27 - 4.13 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 190.6, 145.5, 144.2, 144.0, 139.0, 137.0, 134.7, 132.75, 131.7, 130.2, 130.0, 129.9, 129.4, 129.1, 129.0, 128.4, 128.0, 126.7, 100.1, 35.3; HRMS m/z (ESI) calcd for C₂₀H₁₄BrIONa [M+Na]⁺ : 498.9165, found: 498.9174, error 1.91 ppm. IR (cm⁻¹): 1690, 1584, 1460, 1209, 1016, 819, 759.

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-4-nitrobenzaldehyde (3g) White solid (55 mg, 62% yield). Mp: 123 - 125 °C; $R_f = 0.45$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 10.11 (s, 1H), 8.12 (dd, J = 8.5, 2.1 Hz, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.90 – 7.84 (m, 2H), 7.37 (m, 2H), 7.31 (td, J = 7.5, 0.9 Hz, 1H), 7.14 (dd, J = 6.4, 2.1 Hz, 2H), 7.10 (dd, J = 7.6, 1.5 Hz, 1H), 7.01 (td, J = 7.7, 1.6 Hz, 1H), 4.33 (dd, J = 46.4, 16.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃)

δ 189.8, 150.3, 145.4, 144.2, 144.1, 139.2, 137.9, 136.4, 131.0, 130.4, 129.9, 129.7, 129.2, 128.7, 128.2, 127.2, 126.7, 121.6, 100.1, 35.8.; HRMS m/z (ESI) calcd for C₂₀H₁₄INO₃Na [M+Na]⁺ : 465.9911, found: 465.9909, error 0.4 ppm. IR (cm⁻¹): 1691, 1518, 1350, 809, 754, 741.

4-((4-chlorophenyl)thio)-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3h) Colorless oil (58 mg, 53% yield). $R_f = 0.25$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 9.95 (s, 1H), 7.90 (dd, J = 8.0, 1.0 Hz, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.41 – 7.29 (m, 7H), 7.13 – 6.98 (m, 5H), 6.80 (d, J = 1.7 Hz, 1H), 4.22 – 4.04 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 190.6, 145.6, 145.4, 143.9, 143.3, 139.0, 137.2, 135.4, 135.2, 131.5, 131.2, 129.9, 129.9, 129.8, 129.4, 129.0, 128.3, 128.0, 126.5, 125.1, 100.1, 35.2.; HRMS m/z (ESI) calcd for $C_{26}H_{18}$ CIISONa [M+Na]⁺ : 562.9704, found: 562.9707, error 0.6 ppm. IR (cm⁻¹): 1686, 1585, 1474, 1092, 1013, 820, 754.

4-formyl-3-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl(3r,5r,7r)-adamantane-1-

carboxylate (3i) White solid (61 mg, 53% yield). Mp: 129 - 131 °C; $R_f = 0.40$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 9.99 (s, 1H), 7.91 (dd, J = 8.0, 0.9 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.36 – 7.28 (m, 3H), 7.17 (dd, J = 7.6, 1.6 Hz, 1H), 7.14 – 7.10 (m, 1H), 7.08 – 7.00 (m, 3H), 6.80 (d, J = 2.2 Hz, 1H), 4.19 (q, J = 16.3 Hz, 2H), 2.09 (s, 3H), 2.02 (d, J = 2.5 Hz, 6H), 1.81 – 1.72 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 190.5, 175.4, 155.2, 145.7, 144.4, 143.9, 139.0, 137.4, 132.1, 131.4, 130.0, 129.8, 129.3, 129.0, 128.4, 128.1, 126.5, 124.8, 120.2, 100.1, 41.1, 38.6, 36.3, 35.4, 27.8.; HRMS m/z (ESI) calcd for C₃₁H₂₉IO₃Na [M+Na]⁺ : 599.1054, found: 599.1050, error 0.62 ppm. IR (cm⁻¹): 2907, 2850, 1746, 1682, 1605, 1459, 1229, 1205, 1180, 1042, 755.

4-formyl-3-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl 9H-xanthene-9-carboxylate (3j)

Colorless oil (70 mg, 56% yield). $R_f = 0.23$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 9.99 (s, 1H), 7.85 (dd, J = 7.9, 1.0 Hz, 1H), 7.75 (d, J = 8.5 Hz, 1H), 7.44 – 7.34 (m, 4H), 7.31 (dd, J = 5.5, 3.6 Hz, 2H), 7.29 – 7.25 (m, 2H), 7.21 (dd, J = 8.2, 0.8 Hz, 2H), 7.15 (t, J = 7.5Hz, 2H), 7.13 – 7.08 (m, 2H), 7.00 (dd, J = 5.2, 3.8 Hz, 1H), 6.98 – 6.92 (m, 2H), 6.65 (d, J =2.2 Hz, 1H), 5.22 (s, 1H), 4.15 (d, J = 1.8 Hz, 2H).¹³C NMR (126 MHz, CDCl₃) δ 190.4, 169.2, 154.6, 151.3, 145.6, 144.5, 143.9, 138.9, 137.2, 132.1, 131.8, 129.9, 129.5, 129.4, 128.9, 128.9, 128.3, 128.0, 126.5, 124.3, 123.5, 119.7, 117.4, 117.2, 100.0, 45.6, 35.5.; HRMS m/z (ESI) calcd for C₃₄H₂₄IO₄ [M+H]⁺ : 623.0714, found: 623.0741, error 4.37 ppm. IR (cm⁻¹): 2922, 2850, 1749, 1636, 1480, 1456, 1258, 1118, 751.

5-fluoro-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3k) Colorless oil (52 mg, 63% yield). R_f = 0.47 (PE/EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 10.00 (d, *J* = 2.4 Hz, 1H), 7.93 (dd, *J* = 7.9, 0.7 Hz, 1H), 7.50 (dd, *J* = 8.9, 2.7 Hz, 1H), 7.38 – 7.31 (m, 3H), 7.20 – 7.11 (m, 4H), 7.08 – 7.00 (m, 2H), 4.17 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 190.4 (d, *J* _{C-F} = 1.7 Hz), 161.5 (d, *J* _{C-F} = 248.5 Hz), 145.7, 143.9, 139.0, 138.3 (d, *J* _{C-F} = 3.0 Hz), 137.6, 135.4 (d, *J* _{C-F} = 5.8 Hz), 133.7 (d, *J* _{C-F} = 6.9 Hz), 129.9, 129.8, 129.2, 129.1, 128.4, 128.1, 126.6, 120.8 (d, *J* _{C-F} = 21.4 Hz), 115.6 (d, *J* _{C-F} = 22.0 Hz), 100.1, 34.8.; HRMS m/z (ESI) calcd for C₂₀H₁₄FIONa [M+Na]⁺ : 438.9966, found: 438.9971, error 1.3 ppm. IR (cm⁻¹): 1691, 1492, 1420, 1238, 759.

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-5-(trifluoromethyl)benzaldehyde (3l) Colorless oil (70 mg, 75% yield). $R_f = 0.19$ (PE/EtOAc = 100:1); ¹H NMR (600 MHz, CDCl₃) δ 10.08 (s, 1H), 8.07 (d, J = 2.1 Hz, 1H), 7.93 (dd, J = 8.0, 1.2 Hz, 1H), 7.69 (dd, J = 8.1, 2.1 Hz, 1H), 7.38 – 7.32 (m, 3H), 7.29 (d, J = 7.4 Hz, 1H), 7.18 – 7.15 (m, 1H), 7.13 (dd, J = 7.6, 1.7 Hz, 1H), 7.09 – 7.03 (m, 2H), 4.30 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 190.2, 146.3, 145.6, 144.1, 139.1, 137.0, 134.2, 132.6, 130.2, 129.9, 129.8 (q, $J_{C-F} = 3.4$ Hz), 129.5, 129.4 (q, $J_{C-F} = 33.2$ Hz), 129.2, 128.5, 128.2, 127.1 (q, $J_{C-F} = 3.8$ Hz), 126.9, 123.6 (q, $J_{C-F} = 271.4$ Hz), 100.1, 35.5; HRMS m/z (ESI) calcd for C₂₁H₁₅OF₃I [M+H]⁺ : 467.0114, found: 467.0099, error 3.3 ppm. IR (cm⁻¹): 1697, 1617, 1461, 1332, 1168, 1129, 755.

4-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)isophthalaldehyde (3m) Colorless oil (55 mg, 64% yield). $R_f = 0.30$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 10.08 (s, 1H), 10.05 (s, 1H), 8.27 (d, J = 1.8 Hz, 1H), 7.95 (dd, J = 7.9, 1.8 Hz, 1H), 7.90 (dd, J = 8.0, 1.1 Hz, 1H), 7.17 – 7.14 (m, 1H), 7.12 (dd, J = 7.6, 1.6 Hz, 1H), 7.09 – 7.05 (m, 1H), 7.05 – 7.01 (m, 1H), 4.32 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 190.9, 190.5, 149.0, 145.5, 144.0, 139.1, 136.8, 134.9, 134.4, 132.9, 132.7, 132.4, 130.1, 129.9, 129.5, 129.1, 128.4, 128.1, 126.8, 100.1, 35.8; HRMS m/z (ESI) calcd for C₂₁H₁₅O₂Na [M+Na]⁺ : 449.0009, found: 449.0015, error 1.4 ppm. IR (cm⁻¹): 1694, 1604, 1459, 1157, 1001, 755.

Methyl-3-formyl-4-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzoate (3n) Colorless oil (72 mg, 79% yield). $R_f = 0.33$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 10.05 (s, 1H), 8.43 (d, J = 1.9 Hz, 1H), 8.09 (dd, J = 8.0, 1.9 Hz, 1H), 7.90 (dd, J = 8.0, 1.0 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.22 (d, J = 8.0 Hz, 1H), 7.16 – 7.11 (m, 2H), 7.03 (m, 2H), 4.34 – 4.23 (m, 2H), 3.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.0, 166.0, 147.3, 145.6, 144.1, 139.0, 137.1, 134.1, 134.0, 132.2, 132.2, 130.0, 129.9, 129.4, 129.0, 128.9, 128.4, 128.0, 126.7, 100.1, 52.3, 35.7.; HRMS m/z (ESI) calcd for C₂₂H₁₇IO₃Na [M+Na]⁺ : 479.0115, found: 479.0102, error 2.7 ppm. IR (cm⁻¹): 1724, 1693, 1608, 1435, 1289, 1198, 1115, 1001, 756.

4-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-3',5'-dimethyl-[1,1'-biphenyl]-3-carbaldehyde (30)

Colorless oil (39 mg, 39% yield). $R_f = 0.33$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.13 (s, 1H), 8.05 (d, J = 2.1 Hz, 1H), 7.95 (dd, J = 8.0, 1.0 Hz, 1H), 7.70 (dd, J = 8.0, 2.1 Hz, 1H), 7.38 – 7.32 (m, 3H), 7.26 (s, 2H), 7.23 – 7.19 (m, 2H), 7.18 – 7.14 (m, 1H), 7.07 (m, 3H), 4.32 – 4.19 (m, 2H), 2.42 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 191.9, 145.9, 144.0, 141.2, 139.9, 139.5, 139.0, 138.5, 138.0, 134.2, 132.4, 132.2, 130.0, 129.8, 129.4, 129.3, 129.0, 128.8, 128.8, 128.3, 128.1, 126.4, 124.8, 100.2, 35.2, 21.4.; HRMS m/z (ESI) calcd for $C_{28}H_{23}IONa [M+Na]^+$: 525.0686, found: 525.0709, error 4.6 ppm. IR (cm⁻¹): 1686, 1604, 1459, 1164, 1017, 1000, 842, 753.

Diethyl-2-(3-formyl-4-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)malonate (3p) Colorless oil (67 mg, 60% yield). $R_f = 0.14$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 10.03 (s, 1H), 7.91 (dd, J = 8.0, 1.1 Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.55 (dd, J = 8.0, 2.1 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.17 – 7.11 (m, 3H), 7.07 – 7.01 (m, 2H), 4.66 (s, 1H), 4.35 – 4.14 (m, 6H), 1.36 – 1.19 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 191.3, 167.6, 145.7, 144.0, 142.5, 138.9, 137.6, 134.4, 134.0, 132.2, 131.5, 131.5, 129.9, 129.8, 129.4, 128.9, 128.3, 128.0, 126.4, 100.1, 62.0, 61.9, 57.2, 35.1, 13.9; HRMS m/z (ESI) calcd for C₂₇H₂₅IO₅Na [M+Na]⁺ : 579.0639, found: 579.0640, error 0.2 ppm. IR (cm⁻¹): 2981, 1732, 1690, 1461, 1302, 1234, 1176, 1148, 1031, 756.

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-3-methylbenzaldehyde (3q) Colorless oil (59 mg, 72% yield); $R_f = 0.16$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.20 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.47 (dt, J = 15.5, 5.5 Hz, 2H), 7.40 (dd, J = 7.5, 1.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.22 (dd, J = 7.4, 6.6 Hz, 1H), 7.16 (d, J = 7.4 Hz, 1H), 7.11 (td, J = 7.7, 1.6 Hz, 1H), 6.59 (d, J = 7.7 Hz, 1H), 4.22 – 4.06 (m, 2H), 2.26 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.4, 146.2, 144.0, 140.2, 139.1, 139.0, 137.0, 135.9, 135.0, 129.6, 129.4, 129.0, 128.4, 128.3, 127.1, 126.9, 126.1, 100.0, 31.5, 19.6.; HRMS m/z (ESI) calcd for C₂₁H₁₇IONa [M+Na]⁺ : 435.0199, found: 435.0216, error 4.2 ppm. IR (cm⁻¹): 1686, 1538, 1459, 1238, 1001, 755.

3-chloro-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3r) White solid (54 mg, 63% yield). Mp: 68- 70 °C; $R_f = 0.45$ (PE/EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 10.14 (s, 1H), 7.99 (dd, J = 8.0, 1.0 Hz, 1H), 7.83 (dd, J = 7.7, 1.3 Hz, 1H), 7.65 (dd, J = 7.9, 1.3 Hz, 1H), 7.46 (m, 1H), 7.38 (m, 2H), 7.29 (m, 1H), 7.27 – 7.21 (m, 1H), 7.16 (dd, J = 7.4, 1.4 Hz, 1H), 7.10 (m, 1H), 6.63 (d, J = 7.5 Hz, 1H), 4.30 (dd, J = 86.4, 16.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 190.9, 146.0, 143.8, 139.6, 139.1, 136.9, 136.3, 136.3, 134.9, 129.7, 129.5, 129.1, 128.4, 128.3, 128.3, 128.1, 127.2, 126.3, 100.0, 31.9.; HRMS m/z (ESI) calcd for C₂₀H₁₄CIIONa [M+Na]⁺ : 454.9670, found: 454.9676, error 1.4 ppm. IR (cm⁻¹): 1697, 1681, 1586, 1459, 1242, 1001, 755.

2-fluoro-6-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3s) White solid (58 mg, 70% yield). Mp: 72- 74 °C; $R_f = 0.18$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.32 (s, 1H), 7.90 (dd, J = 7.9, 1.2 Hz, 1H), 7.39 (m, 1H), 7.35 – 7.30 (m, 3H), 7.19 (m, 1H), 7.15 – 7.12 (m, 1H), 7.07 – 6.97 (m, 3H), 6.89 (d, J = 7.7 Hz, 1H), 4.32 – 4.14 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 188.6 (d, $J_{C-F} = 10.4$ Hz), 165.7 (d, $J_{C-F} = 258.6$ Hz), 145.8, 144.2, 144.2, 138.9, 137.6, 134.7 (d, $J_{C-F} = 10.4$ Hz), 130.1, 129.9, 129.4, 128.8, 128.1, 127.9, 127.7 (d, $J_{C-F} = 3.4$ Hz), 126.3, 122.6 (d, $J_{C-F} = 5.4$ Hz), 114.1 (d, $J_{C-F} = 22.8$ Hz), 100.2, 36.0 (d, $J_{C-F} = 2.0$ Hz); HRMS m/z (ESI) calcd for C₂₀H₁₅OFI [M+H]⁺ : 417.0146, found: 417.0137, error 2.1 ppm. IR (cm⁻¹): 1702, 1608, 1462, 1245, 1000, 756.

2-((4,4'-dichloro-2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (4a) Colorless oil (57 mg, 61% yield). $R_f = 0.20$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.04 (s, 1H), 7.92 (d, J = 2.1 Hz, 1H), 7.81 (dd, J = 7.6, 1.4 Hz, 1H), 7.51 (td, J = 7.5, 1.5 Hz, 1H), 7.43 (m, 1H), 7.34 (dd, J = 8.2, 2.1 Hz, 1H), 7.29 (d, J = 2.1 Hz, 1H), 7.14 (t, J = 7.3 Hz, 2H), 7.05 (d, J = 8.1 Hz, 1H), 6.94 (d, J = 2.1 Hz, 1H), 4.18 (dd, J = 60.4, 16.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 192.0, 143.4, 141.3, 141.0, 140.2, 138.4, 134.4, 134.0, 134.0, 133.8, 132.6, 132.0, 131.1, 130.5, 129.2, 128.4, 127.3, 126.6, 100.0, 35.7.; HRMS m/z (ESI) calcd for C₂₀H₁₃Cl₂IONa [M+Na]⁺ : 488.9280, found: 488.9286, error 1.2 ppm. IR (cm⁻¹): 1693, 1643, 1456, 1098, 999, 817, 752.

2-((4,4'-difluoro-2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (4b) Colorless oil (62 mg, 72% yield). $R_f = 0.15$ (PE/EtOAc = 100:1);¹H NMR (500 MHz, CDCl₃) δ 10.03 (s, 1H), 7.81 (dd, J = 7.6, 1.1 Hz, 1H), 7.64 (dd, J = 8.1, 2.6 Hz, 1H), 7.50 (td, J = 7.5, 1.3 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 7.20 – 7.13 (m, 2H), 7.07 (td, J = 8.3, 2.5 Hz, 2H), 6.97 (td, J = 8.3, 2.6 Hz, 1H), 6.63 (dd, J = 9.9, 2.6 Hz, 1H), 4.16 (dd, J = 62.2, 16.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 192.0, 162.6 (d, $J_{C-F} = 246.8$ Hz), 161.3 (d, $J_{C-F} = 252.0$ Hz), 141.2, 141.1 (d, $J_{C-F} = 3.4$ Hz), 140.9 (d, $J_{C-F} = 7.4$ Hz), 138.9 (d, $J_{C-F} = 3.3$ Hz), 134.0, 133.8, 132.3, 132.0, 131.6 (d, $J_{C-F} = 8.5$ Hz), 130.8 (d, $J_{C-F} = 8.0$ Hz), 127.2, 125.9 (d, $J_{C-F} = 23.6$ Hz), 116.0 (d, $J_{C-F} = 22.6$ Hz), 115.3 (d, $J_{C-F} = 20.7$ Hz), 113.2 (d, $J_{C-F} = 21.1$ Hz), 99.9 (d, $J_{C-F} = 8.1$ Hz), 35.8.; HRMS m/z (ESI) calcd for C₂₀H₁₃F₂IONa [M+Na]⁺ : 456.9850, found: 456.9871, error 4.9 ppm. IR (cm⁻¹): 1697, 1591, 1471, 1199, 856, 818, 750.

2-((2'-iodo-4,4'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (4c) Colorless oil (55 mg, 65% yield). $R_f = 0.15$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.09 (s, 1H), 7.82 (dd, J = 7.7, 1.3 Hz, 1H), 7.76 (d, J = 0.7 Hz, 1H), 7.47 (td, J = 7.5, 1.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.14 (m, 3H), 7.03 (t, J = 8.1 Hz, 2H), 6.80 (s, 1H), 4.18 (s, 2H), 2.35 (s, 3H), 2.32 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.8, 142.9, 142.9, 141.1, 139.4, 138.9, 137.9, 137.9, 134.0, 133.7, 131.9, 130.1, 130.0, 129.9, 129.7, 128.8, 127.1, 126.7, 100.4, 35.3, 21.3, 20.5.; HRMS m/z (ESI) calcd for C₂₂H₁₉IONa [M+Na]⁺ : 449.0352, found: 449.0373, error 4.9 ppm. IR (cm⁻¹): 1694, 1597, 1473, 1207, 818, 751.

2-((2'-iodo-4,4'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4d)

Colorless oil (71 mg, 67% yield). $R_f = 0.18$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 9.98 (s, 1H), 8.17 (s, 1H), 7.78 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.61 (dd, *J* = 13.6, 5.0 Hz, 2H), 7.53 – 7.40 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.26 (dd, *J* = 15.5, 4.9 Hz, 2H), 7.11 (d, *J* = 7.5 Hz, 1H), 4.28 (dd, *J* = 78.0, 16.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 192.1, 148.5, 146.2, 140.4, 139.1, 135.9 (d, *J* _{C-F} = 3.8 Hz), 133.9, 133.8, 133.6, 132.0, 131.5 (q, *J* _{C-F} = 33.2 Hz), 130.9 (q, *J* _{C-F} = 32.4 Hz), 130.0, 129.2, 127.4, 126.2 (q, *J* _{C-F} = 3.7 Hz), 125.0 (q, *J* _{C-F} = 3.4 Hz), 123.9 (q, *J* _{C-F} = 272.6 Hz), 123.4 (q, *J* _{C-F} = 4.0 Hz), 122.7 (q, *J* _{C-F} = 272.7 Hz), 99.1, 35.9; HRMS m/z (ESI) calcd for C₂₂H₁₃F₆IONa [M+Na]⁺ : 556.9807, found: 556.9811, error 0.7 ppm. IR (cm⁻¹): 1698, 1601, 1321, 1169, 1127, 1085, 834, 755.

2-((2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (4e) Colorless oil (45 mg, 53% yield). $R_f = 0.15$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.05 (s, 1H), 7.81 (dd, J = 7.7, 1.3 Hz, 1H), 7.46 (td, J = 7.5, 1.5 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.32 – 7.29 (m, 2H), 7.17 (d, J = 7.7 Hz, 1H), 7.14 – 7.09 (m, 1H), 7.04 (dd, J = 1.4, 0.6 Hz, 1H), 7.03 – 7.00 (m, 1H), 6.84 – 6.63 (m, 1H), 4.21 (dd, J = 47.4, 16.3 Hz, 2H), 2.50 (s, 3H), 2.23 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.7, 146.5, 145.2, 142.7, 142.0, 138.0, 137.5, 134.1, 133.6, 131.9, 129.9, 129.8, 129.5, 129.2, 128.0, 128.0, 126.6, 126.3, 103.0, 35.4, 29.4, 20.6.; HRMS m/z (ESI) calcd for C₂₂H₁₉IONa [M+Na]⁺ : 449.0352, found: 449.0359, error 1.6 ppm. IR (cm⁻¹): 1693, 1596, 1210, 1006, 773, 753.

2-((4-fluoro-2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4f)

Colorless oil (46 mg, 52% yield). $R_f = 0.17$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.03 (s, 1H), 7.82 (dd, J = 7.7, 1.3 Hz, 1H), 7.49 (td, J = 7.5, 1.5 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.11 – 7.03 (m, 2H), 6.98 (td, J = 8.3, 2.6 Hz, 1H), 6.76 (d, J = 1.5 Hz, 1H), 6.66 (dd, J = 10.0, 2.6 Hz, 1H), 4.17 (dd, J = 67.5, 16.4 Hz, 2H), 2.50 (s, 3H), 2.25 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.7, 162.4 (d, $J_{C-F} = 246.4$ Hz), 145.6, 142.2, 141.7, 141.1 (d, $J_{C-F} = 3.2$ Hz), 140.6 (d, $J_{C-F} = 7.3$ Hz), 137.7, 134.1, 133.8, 132.0, 131.2 (d, $J_{C-F} = 8.1$ Hz), 130.9, 129.7, 128.3, 127.0, 115.9 (d, $J_{C-F} = 22.2$ Hz), 113.1 (d, $J_{C-F} = 21.4$ Hz), 103.4, 35.5, 29.4, 20.6.; HRMS m/z (ESI) calcd for C₂₂H₁₈FIONa [M+Na]⁺ : 467.0279, found: 467.0277, error 0.4 ppm. IR (cm⁻¹): 1695, 1598, 1493, 1452, 1210, 1006, 858, 748.

2-((4-chloro-2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4g)

Colorless oil (60 mg, 65% yield). $R_f = 0.17$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.01 (s, 1H), 7.81 (dd, J = 7.7, 1.2 Hz, 1H), 7.49 (td, J = 7.5, 1.4 Hz, 1H), 7.39 (t, J = 7.5Hz, 1H), 7.27 (dd, J = 7.5, 2.7 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.05 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 2.0 Hz, 1H), 6.71 (d, J = 1.0 Hz, 1H), 4.17 (dd, J = 71.0, 16.4 Hz, 2H), 2.49 (s, 3H), 2.23 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.6, 145.3, 143.5, 142.1, 141.6, 140.1, 137.6, 134.0, 133.7, 133.7, 132.0, 131.1, 131.0, 129.7, 129.1, 128.0, 126.9, 126.5, 102.8, 35.3, 29.4, 20.6.; HRMS m/z (ESI) calcd for C₂₂H₁₈CIIONa [M+Na]⁺ : 482.9961, found: 482.9983, error 4.8 ppm. IR (cm⁻¹): 1688, 1596, 1450, 1209, 1105, 1009, 761.

Ethyl-2-(2-formylbenzyl)-2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-4-carboxylate(4h)

Colorless oil (63 mg, 63% yield). $R_f = 0.38$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 9.96 (s, 1H), 7.97 (dd, J = 7.9, 1.7 Hz, 1H), 7.77 (d, J = 1.3 Hz, 1H), 7.75 (dd, J = 7.7, 1.4 Hz, 1H), 7.43 (td, J = 7.5, 1.5 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.17 (d, J = 7.9 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 7.01 (dd, J = 1.4, 0.4 Hz, 1H), 4.39 – 4.14 (m, 4H), 2.46 (s, 3H), 2.18 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.6, 166.3, 149.6, 145.5, 142.1, 142.0, 138.5, 137.6, 134.0, 133.6, 131.8, 130.8, 130.6, 130.1, 129.8, 127.7, 127.6, 126.7, 101.9, 60.9, 35.3, 29.3, 20.6, 14.3; HRMS m/z (ESI) calcd for C₂₅H₂₇INO₃[M+NH₄]⁺ : 516.1030, found: 516.1022, error 1.6 ppm. IR (cm⁻¹): 1716, 1696, 1598, 1451, 1288, 1251, 1177, 1109, 1007, 858, 771, 754.

Ethyl-2-(2-formyl-5-(tosyloxy)benzyl)-2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-4-carboxylate (4i) Colorless oil (68 mg, 51% yield). $R_f = 0.11$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 9.86 (s, 1H), 8.00 (dd, J = 7.9, 1.7 Hz, 1H), 7.66 (dd, J = 18.9, 8.4 Hz, 4H), 7.24 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 7.9 Hz, 1H), 7.00 (d, J = 1.5 Hz, 1H), 6.97 (dd, J = 8.5, 2.3 Hz,

1H), 6.72 (d, J = 2.3 Hz, 1H), 6.48 (d, J = 1.6 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 4.17 (dd, J = 99.6, 16.2 Hz, 2H), 2.44 (s, 3H), 2.41 (s, 3H), 2.16 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 189.9, 166.2, 153.2, 149.6, 145.7, 145.3, 144.5, 142.2, 137.8, 137.5, 132.5, 132.3, 132.2, 130.6, 130.2, 130.1, 129.9, 129.9, 128.3, 128.0, 127.6, 125.1, 120.6, 101.8, 61.1, 34.9, 29.2, 21.7, 20.5, 14.3.; HRMS m/z (ESI) calcd for C₃₂H₂₉IO₆SNa [M+Na]⁺ : 691.0622, found: 691.0628, error 0.8 ppm. IR (cm⁻¹): 1716, 1696, 1599, 1377, 1287, 1190, 1177, 1091, 964, 834, 814, 741.

2-((2'-iodo-3',5'-dimethyl-4-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (**4j**) Colorless oil (64 mg, 65% yield). $R_f = 0.19$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 9.99 (s, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.30 (s, 1H), 7.24 (d, J = 7.9 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.06 (d, J = 0.5 Hz, 1H), 6.69 (s, 1H), 4.28 (dd, J = 83.1, 16.4 Hz, 2H), 2.49 (s, 3H), 2.23 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.6, 148.5, 145.2, 142.2, 141.3, 139.1, 137.8, 134.0, 133.7, 131.9, 131.4, 130.4, 130.1 (q, $J_{C-F} = 32.4$ Hz), 129.9, 129.2, 127.0, 126.0 (q, $J_{C-F} = 3.7$ Hz), 124.1 (q, $J_{C-F} = 272.8$ Hz), 123.3 (q, $J_{C-F} = 3.8$ Hz), 102.0, 35.4, 29.3, 20.6.; HRMS m/z (ESI) calcd for C₂₃H₁₈F₃IONa [M+Na]⁺ : 517.0222, found: 517.0247, error 5.0 ppm. IR (cm⁻¹): 1693, 1599, 1333, 1163, 1123, 1097, 1007, 834, 756.

2-((2'-iodo-3',5'-dimethyl-4-nitro-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4k) Colorless oil (60 mg, 64% yield). $R_f = 0.41$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 9.98 (s, 1H), 8.15 (dd, J = 8.3, 2.4 Hz, 1H), 7.84 (d, J = 2.2 Hz, 1H), 7.81 (dd, J = 7.6, 1.4 Hz, 1H), 7.51 (td, J = 7.5, 1.5 Hz, 1H), 7.44 (td, J = 7.5, 1.1 Hz, 1H), 7.29 (d, J = 8.3 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.09 (dd, J = 1.5, 0.6 Hz, 1H), 6.78 – 6.64 (m, 1H), 4.29 (dd, J = 110.9, 16.4 Hz, 2H), 2.50 (s, 3H), 2.26 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.8, 151.4, 147.6, 144.5, 142.4, 140.5, 140.4, 138.0, 134.1, 133.8, 132.6, 132.1, 130.9, 130.2, 127.5, 127.4, 124.0, 121.4, 101.3, 35.7, 29.2, 20.6.; HRMS m/z (ESI) calcd for C₂₂H₂₂IN₂O₃ [M+NH₄]⁺ : 489.0670, found: 489.0664, error 1.2 ppm. IR (cm⁻¹): 1697, 1518, 1344, 1261, 1099, 1008, 809, 751.

2-((2'-iodo-3',6'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (4l) Colorless oil (31 mg, 37% yield). $R_f = 0.14$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.03 (s, 1H), 7.83 (dd, J = 7.7, 1.3 Hz, 1H), 7.46 (td, J = 7.5, 1.4 Hz, 1H), 7.40 – 7.29 (m, 3H), 7.21 – 7.09 (m, 3H), 7.05 – 6.99 (m, 2H), 4.10 (dd, J = 42.8, 16.2 Hz, 2H), 2.50 (s, 3H), 1.91 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.6, 145.4, 144.6, 141.9, 139.9, 137.7, 134.8, 134.4, 133.7, 132.3, 129.9, 129.7, 129.5, 129.3, 128.7, 128.0, 126.9, 126.8, 108.2, 35.2, 29.5, 21.3.; HRMS m/z (ESI) calcd for C₂₂H₁₉IONa [M+Na]⁺ : 449.0373 found: 449.0367, error 1.4 ppm. IR (cm⁻¹): 1696, 1597, 1466, 1207, 809, 752.

2-((4-(tert-butyl)-3',5'-dichloro-2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (4m) White solid (75 mg, 72% yield). Mp: 132 - 134 °C; $R_f = 0.60$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.09 (s, 1H), 7.81 (dd, J = 7.6, 1.4 Hz, 1H), 7.45 (td, J = 7.5, 1.5 Hz, 1H), 7.41 (d, J = 2.4 Hz, 1H), 7.38 (dt, J = 7.4, 3.7 Hz, 1H), 7.32 (dd, J = 8.0, 2.0 Hz, 1H), 7.07 (dd, J = 9.7, 4.7 Hz, 2H), 6.99 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 2.4 Hz, 1H), 4.23 (q, J = 16.4 Hz, 2H), 1.29 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 191.8, 151.9, 150.2, 142.2, 140.8, 140.0, 137.0, 134.5, 134.1, 133.7, 131.7, 131.1, 129.1, 128.1, 127.6, 126.9, 126.9, 123.5, 102.9, 36.1, 34.7, 31.3.; HRMS m/z (ESI) calcd for C₂₄H₂₁Cl₂IONa [M+Na]⁺ : 544.9906, found: 544.9914, error 1.5 ppm. IR (cm⁻¹): 1695, 1597, 1372, 1211, 1107, 1009, 813, 755.

VI. Further Transformation of 3a 1. Procedure for the Synthesis of Compound 5⁵

A 20 mL Schlenk tube was charged with **3a** (80 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol)

and KOAc (22 mg, 0.22 mmol). The tube was evacuated and filled with N₂ with three times. Next, diphenylphosphine (38 μ L, 0.22 mmol) and DMA (1 mL) were added into the tube via syringe. The reaction was then stirred for 12 h at 130 °C in oil bath. After cooling to room temperature, the reaction mixture was diluted with EtOAc (10 mL),filtered through a pad of Celite, and the filtrate was washed with H₂O (10 mL×2) and brine (10 mL) before it was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (PE/EtOAc =200:1) on silica gel to provide the desired products **5** as a white solid.

2-((2'-(diphenylphosphaneyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (5) White solid (52 mg, 57% yield). Mp: 125 - 127 °C; $R_f = 0.13$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.06 (s, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.37 – 7.27 (m, 9H), 7.15 (m, 8H), 7.00 (t, J = 7.3 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.78 (d, J = 7.5 Hz, 1H), 4.19 (dd, J = 86.5, 16.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 192.0, 146.8, 146.5, 143.1, 140.8, 138.0, 137.0, 136.8, 134.1, 134.0, 133.9, 133.9, 133.8, 133.7, 133.6, 131.8, 130.8, 130.0, 129.8, 128.9, 128.7, 128.5, 128.5, 128.4, 128.2, 128.2, 127.8, 127.6, 126.6, 125.5, 35.7.; HRMS m/z (ESI) calcd for C₃₂H₂₆OP [M+H]⁺ : 457.1716, found: 457.1716, error 0.0 ppm. IR (cm⁻¹): 1694, 1596, 1434, 1207, 753, 696.

2. Procedure for the Synthesis of Compound 6⁶

A 25 mL Schlenk-type tube equipped with a magnetic stir bar was charged with $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), K_2CO_3 (55.3 mg, 0.4 mmol), **3a** (80 mg, 0.2 mmol), and DMF (1 mL). Then the tube was evacuated and backfilled with nitrogen (3 times). Hexamethyldisilane (HMDS) (123 µL, 0.6 mmol) were added into the tube via microsyringe. The mixture was first stirred at room temperature for 10 minutes and then stirred at 100 °C (preheated oil bath) for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with brine (3 times), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (PE/EtOAc =200:1) on silica gel to provide the desired products **6** as a Colorless oil.

2-((2',6-bis(trimethylsilyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (6) Colorless oil (65 mg, 78% yield). $R_f = 0.37$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 9.90 (s, 1H), 7.76 (dd, J = 7.7, 1.3 Hz, 1H), 7.60 (dd, J = 7.5, 0.9 Hz, 1H), 7.48 (dd, J = 7.5, 1.0 Hz, 1H), 7.44 (td, J = 7.5, 1.4 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.25 (t, J = 7.5 Hz, 1H), 7.20 (td, J = 7.5, 1.4 Hz, 1H), 7.03 (d, J = 7.7 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 6.87 (dd, J = 7.6, 0.7 Hz, 1H), 4.05 (dd, J = 112.9, 16.4 Hz, 2H), -0.02 (s, 9H), -0.11 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 191.7, 148.8, 147.1, 143.4, 139.7, 139.6, 137.9, 134.8, 133.9, 133.5, 132.6, 131.3, 130.5, 129.9, 129.9, 128.1, 126.9, 126.6, 126.5, 35.9, 0.5, 0.3.; HRMS m/z (ESI) calcd for C₂₆H₃₃OSi₂

[M+H]⁺ : 417.2064, found: 417.2056, error 2.0 ppm. IR (cm⁻¹): 2954, 1697, 1599, 1412, 837, 757, 732.

3. Procedure for the Synthesis of Compound 77

A 15 mL pressure vessel equipped with a magnetic stir bar was charged with **3a** (80mg, 0.2 mmol), Pd(OAc)₂ (2.3 mg, 5 mol %), DPPF (5.5 mg, 5 mol%), Na₂CO₃ (42.4 mg, 0.4 mmol), KOAc (59 mg, 0.6 mmol), followed by iodobenzene (33 μ L, 0.3 mmol), and DMF (4 mL) as solvent. The reaction tube was backfilled with nitrogen and sealed. After the reaction mixture was stirred at 120 °C in oil bath for 12 h, it was allowed to cool to ambient temperature. The reaction mixture was diluted with EtOAc (15 mL) and washed with brine (5 mL). The organic phase was dried with Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (PE/EtOAc =200:1) on silica gel to provide the desired products **7** as a white solid.

2-(triphenylen-1-ylmethyl)benzaldehyde(7) White solid (44 mg, 63% yield). Mp: 121 - 123 °C; $R_f = 0.14$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.14 (s, 1H), 8.66 - 8.55 (m, 4H), 8.27 (dd, J = 8.3, 0.7 Hz, 1H), 7.92 (dd, J = 7.6, 1.5 Hz, 1H), 7.68 - 7.63 (m, 2H), 7.62 - 7.58 (m, 1H), 7.56 - 7.52 (m, 1H), 7.50 (td, J = 7.5, 1.6 Hz, 1H), 7.45 (dd, J = 7.4, 6.6 Hz, 1H), 7.39 (m, 1H), 7.30 (dd, J = 16.3, 7.4 Hz, 2H), 5.20 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 192.5, 143.9, 136.9, 134.0, 133.8, 132.5, 131.8, 131.5, 131.2, 131.1, 130.7, 130.3, 130.0, 129.6, 128.4, 127.4, 127.3, 127.0, 126.9, 126.5, 125.7, 123.6, 123.4, 123.1, 121.5, 40.4.; HRMS m/z (ESI) calcd for C₂₆H₂₂NO [M+NH₄]⁺ : 364.1696, found: 364.1685, error 3.1 ppm. IR (cm⁻¹): 1693, 1597, 1203, 744.

4. Procedure for the Synthesis of Compound 8⁸

A mixture of **3a** (80 mg, 0.2 mmol), diphenylacetylene (72 mg, 0.4 mmol), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), NaOAc (32.8 mg, 0.4 mmol), *n*-Bu₄NCl (167 mg, 0.6 mmol) and DMF (1 mL) in a pressure vessel at room temperature was purged with nitrogen. The sealed tube was kept in an oil bath at 110 °C in oil bath for 24 h. After being cooled to room temperature, hydrochloric

acid (1 M, 10 mL) was carefully added. The aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. The solvent of the filtrate was removed under reduced pressure. The residue was purified by column chromatography (PE/EtOAc =200:1) on silica gel to provide the desired products **8** as a white solid.

2-((9,10-diphenylphenanthren-4-yl)methyl)benzaldehyde (8) White solid (60 mg, 66% yield). Mp: 161 - 163 °C; $R_f = 0.16$ (PE/EtOAc = 100:1);¹H NMR (500 MHz, CDCl₃) δ 10.30 (s, 1H), 8.61 – 8.40 (m, 1H), 8.01 (dd, J = 7.2, 1.7 Hz, 1H), 7.60 (dd, J = 7.8, 1.7 Hz, 1H), 7.56 – 7.48 (m, 3H), 7.43 (m, 3H), 7.36 (t, J = 6.9 Hz, 2H), 7.30 – 7.24 (m, 4H), 7.20 (m, 6H), 5.37 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 192.7, 143.8, 140.0, 139.6, 137.6, 137.3, 136.1, 134.2, 133.7, 133.2, 132.8, 131.4, 131.1, 131.0, 130.5, 129.9, 127.7, 127.6, 127.3, 127.0, 127.0, 126.4, 126.2, 125.9, 125.1, 41.2.; HRMS m/z (ESI) calcd for C₃₄H₂₄ONa [M+Na]⁺ : 471.1719, found: 471.1765, error 9.6 ppm. IR (cm⁻¹): 1693, 1597, 1439, 1196, 764, 748, 723, 700.

5. Procedure for the Synthesis of Compound 9

To a 25 mL Schlenk-type tube, $PdCl_2(PPh_3)_2$ (4.2 mg, 0.006 mmol) and CuI (2.3 mg, 0.012 mmol) were added to the dissolved biaryl iodide (80 mg, 0.2 mmol) in NEt₃ (0.5 mL) under nitrogen atmosphere and stirred another 10 minutes in room temperature. Then, trimethylsilylacetylene (34 µL, 0.24 mmol) was added to reaction mixture and stirred another 6h at 80°C in oil bath. After completion, the reaction mixture was filtered through celite pad and washed with EtOAc, evaporated solvent under reduced pressure. The residue was purified by column chromatography (PE/EtOAc =200:1) on silica gel to provide the desired products **9** as a colorless oil.

2-((2'-((trimethylsilyl)ethynyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (9) Colorless oil (47 mg, 64% yield). $R_f = 0.28$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 10.05 (s, 1H), 7.80 (dd, J = 7.7, 1.4 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.44 (td, J = 7.5, 1.5 Hz, 1H), 7.36 – 7.22 (m, 6H), 7.22 – 7.19 (m, 1H), 7.11 (d, J = 7.5 Hz, 1H), 6.99 (dd, J = 5.7, 3.0 Hz, 1H), 4.31 (s, 2H), 0.24 – 0.02 (m, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 191.8, 144.5, 143.3, 140.5, 138.5, 133.9, 133.6, 132.0, 131.7, 130.1, 130.1, 129.3, 129.1, 128.3, 127.8, 127.1, 126.6, 126.0, 122.9, 104.1, 97.9, 35.3.; HRMS m/z (ESI) calcd for C₂₅H₂₄OSiNa [M+Na]⁺ : 391.1489, found: 391.1483, error 1.5 ppm. IR (cm⁻¹): 2157, 1697, 1598, 1470, 1249, 1208, 863, 843, 758.

6. Procedure for the Synthesis of Compound 10

A dry Schlenk tube equipped with a stir bar was charged with **3a** (80 mg, 0.2 mmol), *tert*-butyl acrylate (58 μ L 0.4 mmol), Et₃N (0.14 mL, 1.0 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), tri*-o*-tolylphopine (12.2 mg, 0.04 mmol) and CH₃CN (1.5 mL). The reaction mixture was stirred at 90 °C in oil bath for 6 h. After completion, the reaction mixture was filtered through celite pad and washed with EtOAc, evaporated solvent under reduced pressure. The residue was purified by column chromatography (PE/EtOAc =50:1) on silica gel to provide the desired products **10** as a colorless oil.

tert-butyl (*E*)-3-(2'-(2-formylbenzyl)-[1,1'-biphenyl]-2-yl)acrylate (10) Colorless oil (52 mg, 78% yield). $R_f = 0.14$ (PE/EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 9.91 (s, 1H), 7.73 (dd, J = 7.7, 1.4 Hz, 1H), 7.66 (dd, J = 5.6, 3.6 Hz, 1H), 7.40 (td, J = 7.5, 1.5 Hz, 1H), 7.37–7.33 (m, 2H), 7.33–7.27 (m, 3H), 7.25 (d, J = 16.0 Hz, 1H), 7.20–7.14 (m, 2H), 7.11–7.03 (m, 2H), 6.21 (d, J = 16.0 Hz, 1H), 4.17 (q, J = 16.3 Hz, 2H), 1.48 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 191.6, 165.9, 142.7, 141.9, 141.2, 139.6, 138.5, 133.8, 133.6, 133.1, 131.6, 130.6, 130.3, 130.3, 129.8, 129.5, 128.1, 127.8, 126.6, 126.5, 125.9, 120.7, 80.2, 35.2, 28.1.; HRMS m/z (ESI) calcd for C₂₇H₂₆O₃Na [M+Na]⁺ : 421.1774, found: 421.1768, error 1.6 ppm. IR (cm⁻¹): 1704, 1633, 1598, 1320, 1203, 1149, 983, 867, 754.

7. Procedure for the Synthesis of Compound 119

Trifluoromethanesulfonic acid (2.7 μ L, 0.03 mmol) was added to a HFIP (2 mL) solution of **3a** (80 mg, 0.2 mmol) at 0 °C. After stirring at the same temperature for 20 min, the reaction was quenched with phosphate buffer (pH 7). The aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL), and the combined organic layers were washed with brine and dried (Na₂SO₄). The solvent of the filtrate was removed under reduced pressure. The residue was purified by column chromatography (PE/EtOAc =200:1) on silica gel to provide the desired products **11** as a light yellow solid.

1-(2-iodophenyl)anthracene (11) Light yellow solid (55 mg, 72%). Mp: 155 - 157 °C; $R_f = 0.66$ (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 8.52 (s, 1H), 8.13 - 8.06 (m, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.98 (s, 1H), 7.86 (d, J = 8.4 Hz, 1H), 8.94 - 6.98 (m, 1H), 7.58 - 7.50

(m, 1H), 7.44 (m, 1H), 7.33 (d, J = 6.7 Hz, 1H), 7.21 (td, J = 8.0, 1.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.5, 142.3, 139.3, 131.7, 131.7, 131.6, 131.0, 129.9, 129.1, 128.6, 128.5, 128.0, 127.9, 126.6, 126.4, 125.6, 125.4, 124.9, 124.7, 100.6.; HRMS m/z (EI) calcd for C₂₀H₁₃I [M]⁺ : 380.0062, found: 380.0057, error 1.3 ppm. IR (cm⁻¹): 3046, 1016, 884, 756, 750, 735, 726.

8. Procedure for the Synthesis of Compound 12

Ethylmagnesium bromide (in THF 2 M, 0.12 mL, 0.24 mmol) was added to a anhydrous THF (1 mL) solution of **3a** (80 mg, 0.2 mmol) at 0 °C. The reaction mixture was stirred at rt for 12 h. Then the reaction was quenched with saturated aqueous NH_4Cl . The resulting solution was extracted with DCM, and the organic layer was dried over Na_2SO_4 . The solvents were removed under reduced pressure and the residue was purified by flash column chromatography to afford the expected secondary alcohol **12** as a white solid.

1-(2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)propan-1-ol (12) White solid (56 mg, 65% yield). Mp: 100 - 102 °C; $R_f = 0.28$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.95 (m, 1H), 7.45 (m, 1H), 7.35 (m, 1H), 7.33 – 7.27 (m, 3H), 7.26 – 7.21 (m, 1H), 7.20 – 6.95 (m, 6H), 4.61 (m, 1H), 3.94 – 3.48 (m, 2H), 1.73 – 1.36 (m, 2H), 0.90 – 0.63 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.3, 146.1, 144.1, 144.0, 143.0, 142.8, 139.1, 138.9, 138.6, 138.2, 136.9, 136.6, 130.7, 130.6, 130.0, 129.9, 129.7, 129.6, 129.2, 129.1, 128.9, 128.8, 128.2, 128.0, 127.9, 127.3, 127.2, 126.8, 126.7, 126.2, 126.1, 125.7, 125.6, 100.2, 100.1, 71.4, 71.3, 36.1, 36.1, 31.1, 30.9, 10.3, 10.2; HRMS m/z (ESI) calcd for C₂₂H₂₁IONa[M+Na]⁺ : 451.0529, found: 451.0518, error 2.4 ppm. IR (cm⁻¹): 3377, 1461, 1453, 1441, 1429, 1017, 1001, 973, 769, 755.

9. Procedure for the Synthesis of Compound 13

1-Amino-4-methylpiperazine (35 mg, 0.3 mmol) and **3a** (80 mg, 0.2 mmol) was dissolved in the DCM (2 mL) and Na₂SO₄(57 mg, 0.4 mmol) was added. The reaction mixture was stirred at rt for 12 h. The solvents were removed under reduced pressure and the residue was purified

by flash column chromatography (DCM/MeOH = 50:1) to afford the desired products **13** as a colorless syrup.

(E)-1-(2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)-N-(4-methylpiperazin-1-

yl)methanimine(13) Colorless syrup (93 mg, 94% yield). $R_f = 0.31$ (DCM/MeOH = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 7.93 (dd, J = 8.0, 1.1 Hz, 1H), 7.82 (dd, J = 7.8, 1.3 Hz, 1H), 7.52 (s, 1H), 7.32 (td, J = 7.5, 1.2 Hz, 1H), 7.29 – 7.25 (m, 3H), 7.22 – 7.17 (m, 1H), 7.13 (m, 3H), 7.06 – 7.00 (m, 1H), 6.99 – 6.94 (m, 2H), 3.87 (dd, J = 40.4, 16.7 Hz, 2H), 3.21 – 3.03 (m, 4H), 2.63 – 2.51 (m, 4H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.1, 143.9, 138.9, 138.0, 137.0, 134.5, 134.4, 130.9, 129.8, 129.5, 129.1, 128.9, 128.2, 128.1, 128.1, 126.6, 126.1, 125.5, 100.0, 54.3, 51.0, 45.8, 36.5.; HRMS m/z (ESI) calcd for C₂₅H₂₇IN₃ [M+H]⁺ : 496.1244, found: 496.1229, error 3.0 ppm. IR (cm⁻¹): 3419, 2795, 1459, 1448, 1364, 1283, 1000, 754.

10. Procedure for the Synthesis of Compound 14¹⁰

o-Phenylenediamine (21.6 mg, 0.2 mmol) and an **3a** (88 mg, 0.22 mmol) were dissolved in DMF (1.8 mL) and H₂O (0.2 mL). The resulting reaction mixture was stirred at 80 °C in oil bath in an open flask for overnight. Then the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The crude product obtained was purified by column chromatography (PE/EtOAc =10:1) on silica gel to afford the corresponding benzimidazole **14** as a white solid.

2-(2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)-1*H*-benzo[d]imidazole (14) White solid (80 mg, 82% yield). Mp: 224- 226°C; $R_f = 0.26$ (PE/EtOAc = 10:1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.54 (s, 1H), 7.83 (dd, *J* = 7.9, 0.8 Hz, 1H), 7.65 (dd, *J* = 6.7, 2.4 Hz, 2H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.39–7.34 (m, 2H), 7.32 (td, *J* = 7.6, 1.0 Hz, 1H), 7.24–7.15 (m, 4H), 7.10 (m, 2H), 7.03 (td, *J* = 7.7, 1.5 Hz, 1H), 6.97 (m, 2H), 4.30 (dd, *J* = 82.2, 15.9 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.5, 145.5, 143.6, 143.6, 139.6, 138.6, 138.4, 134.2, 131.1, 130.1, 129.9, 129.5, 129.3, 129.2, 129.1, 129.0, 127.8, 126.2, 125.7, 122.2, 121.2, 118.8, 111.1, 100.4.; HRMS m/z (ESI) calcd for C₂₆H₂₀IN₂ [M+H]⁺ : 487.0666, found: 487.0649, error 3.4 ppm. IR (cm⁻¹): 3044, 2669, 1445, 1416, 1373, 1269, 1001, 764, 753, 743.

VII. Control Experiments

Synthesis of 1-(2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)ethan-1-one-1-(o-tolyl)ethan-1-one (17). To a 15 mL pressure vessel equipped with a magnetic stir bar were introduced 2'-methylacetophenone (104 μ L, 0.8 mmol), cyclic diaryliodonium salt 2a (86 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), AgTFA (66 mg, 0.3 mmol), alanine (7.1 mg,0.08 mmol) and 3Å MS (120 mg). Next, the mixture of HFIP (0.9 mL) and HOAc (0.1 mL) were added into the above mixture. The reaction was then stirred at room temperature for 10 min before heated to 130 °C for 24 h. After cooling to room temperature, the reaction mixture was diluted with DCM (10 mL), filtered through a pad of Celite, and the filtrate was then concentrated in vacuo. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 200:1) to yield the desired product 17 as a White solid.

1-(2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)ethan-1-one--1-(*o***-tolyl)-ethan-1-one** (**17).** White solid (17 mg, 20% yield). Mp: 67- 69°C; R_f = 0.16 (PE/EtOAc = 100:1); ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.1 Hz, 1H), 7.55 (dd, J = 7.6, 1.3 Hz, 1H), 7.31 (m, 4H), 7.25 (td, J = 7.5, 1.2 Hz, 1H), 7.15 (dd, J = 7.6, 1.7 Hz, 1H), 7.11 (dd, J = 7.2, 1.7 Hz, 1H), 7.07–6.98 (m, 3H), 4.06 (dd, J = 53.8, 16.2 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 202.2, 146.1, 144.2, 139.8, 138.8, 138.6, 138.5, 132.0, 131.1, 130.1, 129.8, 129.8, 128.6, 128.4, 127.9, 127.8, 126.0, 125.9, 100.3, 36.9, 29.7.; HRMS m/z (ESI) calcd for C₂₁H₁₇IONa [M+Na]⁺ : 435.0216, found: 435.0206, error 2.4 ppm. IR (cm⁻¹): 1674, 1429, 1351, 1266, 1255, 1015, 999, 774, 766, 750.

Deuteration Experiments

To a 15 mL pressure vessel equipped with a magnetic stir bar were introduced 2methylbenzaldehyde **1a** (48 mg, 0.4 mmol) and **1a-CD₃** (49 mg, 0.4 mmol), cyclic diaryliodonium salt **2a** (86 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), AgTFA (66 mg, 0.3 mmol), *tert*-leucine (10.6 mg,0.08 mmol) and 3Å MS (120 mg). Next, the mixture of HFIP (0.9 mL) and HOAc (0.1 mL) were added into the above mixture. The reaction was then stirred at room temperature for 10 min before heated to 120 °C in oil bath for 8 h. After cooling to room temperature, the reaction mixture was diluted with DCM (10 mL), filtered through a pad of Celite, and the filtrate was then concentrated in vacuo. The residue was purified by flash chromatography on silica gel and analyzed for its isotopic distribution. The KIE value for this reaction was estimated to be $k_{\rm H}/k_{\rm D} \approx 4.0$ by ¹H NMR spectra.

VIII. Reference

 Liu Z., Zhu D., Luo B., Zhang N., Liu Q., Hu Y., Pi R., Huang P. and Wen S. Org. Lett. 2014, 16,

5600-5603

2. Akimoto G., Otsuka M., Miyamoto K., Muranaka A., Hashizume D., Takita R., and Uchiyama M. *Chem. Asian J.* **2018**, *13*, 913-917

3. Wu B. and Yoshikai N. Angew. Chem. Int. Ed. 2015, 54,8736-8739

4. Heinen F., Engelage E., Dreger A., Weiss R., and Huber S. M. *Angew. Chem. Int. Ed.* **2018**, *57*, 3830–3833

5. Bonnafoux L.;Gramage-Doria R.; Colobert F.; Leroux F. R. *Chem. Eur. J.* **2011**, *17*, 11008 11016

6. Lu A.; Ji X.; Zhou B.; Wu Z.; Zhang Y. Angew. Chem. Int. Ed. 2018, 57, 3233 – 3237

- 7. Pan S.; Jiang H.; Zhang Y.; Chen D.; Zhang Y. Org. Lett. 2016, 18, 5192–5195
- 8. Li J.; Chang H.; Feng C.; Wu Y. Org. Lett. 2016, 18, 6444-6447

9. Fujita T.; Takahashi I.; Hayashi M.; Wang J.; Fuchibe K.; Ichikawa J. *Eur. J. Org. Chem.* 2017, 262–265

10. Wang, Y.; Sarris, K.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 4823-4826

IX. NMR Spectra

3,7-bis(trifluoromethyl)dibenzo[*b,d***]iodol-5-ium trifluoromethanesulfonate (2e)** ¹H NMR (600 MHz, DMSO-*d*₆)

7-fluoro-2,4-dimethyldibenzo[*b*,*d*]iodol-5-ium trifluoromethanesulfonate (2g) ¹H NMR (600 MHz, DMSO-*d*₆)

7-(ethoxycarbonyl)-2,4-dimethyldibenzo[*b,d*]iodol-5-ium trifluoromethanesulfonate (2i)

7-(tert-butyl)-2,4-dichlorodibenzo[*b,d*]iodol-5-ium trifluoromethanesulfonate (2m) ¹H NMR (600 MHz, DMSO-*d*₆)
2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(3a) ¹H NMR (500 MHz, CDCl₃)

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-4-methoxybenzaldehyde (3b) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-4-methylbenzaldehyde(3c) ¹H NMR (500 MHz, CDCl₃)

4-fluoro-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3d)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

4-chloro-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(3e) ¹H NMR (500 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

4-bromo-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3f) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-4-nitrobenzaldehyde(3g) ¹H NMR (500 MHz, CDCl₃)

4-((4-chlorophenyl)thio)-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(3h) ¹H NMR (500 MHz, CDCl₃)

. 170 100 90 f1 (ppm) . 60

7.2 7.1

7.0 6.9 6.8 6.7

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

5

7.4 7.3 f1 (ppm)

4-formyl-3-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl(3r,5r,7r)-adamantane-1-carboxylate(3i) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

г

10.5

8.0 7.9 7.8 7.7 7.6 7.5

4-formyl-3-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl 9*H*-xanthene-9-carboxylate(3j) ¹H NMR (500 MHz, CDCl₃)

5-fluoro-2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(3k) ¹H NMR (500 MHz, CDCl₃)

S50

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-5-(trifluoromethyl)benzaldehyde (3l) ¹H NMR (600 MHz, CDCl₃)

4-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)isophthalaldehyde (3m) ¹H NMR (500 MHz, CDCl₃)

Methyl-3-formyl-4-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzoate(3n) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

4-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-3',5'-dimethyl-[1,1'-biphenyl]-3-carbaldehyde(3o) ¹H NMR (500 MHz, CDCl₃)

Diethyl-2-(3-formyl-4-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)malonate(3p) ¹H NMR (500 MHz, CDCl₃)

S56

2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)-3-methylbenzaldehyde(3q) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

2-fluoro-6-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (3s) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

2-((4,4'-dichloro-2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4a) ¹H NMR (500 MHz, CDCl₃)

2-((4,4'-difluoro-2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4b) ¹H NMR (500 MHz, CDCl₃)

2-((2'-iodo-4,4'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4c) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

2-((2'-iodo-4,4'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4d) ¹H NMR (500 MHz, CDCl₃)

2-((2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4e)

¹H NMR (500 MHz, CDCl₃)

2-((4-fluoro-2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4f)

¹³C NMR (126 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2-((4-chloro-2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4g) ¹H NMR (500 MHz, CDCl₃)

120 110 100 90 f1 (ppm) -10 . 30

Ethyl-2-(2-formylbenzyl)-2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-4-carboxylate(4h) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

Ethyl-2-(2-formyl-5-(tosyloxy)benzyl)-2'-iodo-3',5'-dimethyl-[1,1'-biphenyl]-4-carboxylate(4i) ¹H NMR (500 MHz, CDCl₃)

2-((2'-iodo-3',5'-dimethyl-4-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4j) ¹H NMR (500 MHz, CDCl₃)

2-((2'-iodo-3',5'-dimethyl-4-nitro-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4k) ¹H NMR (500 MHz, CDCl₃)

2-((2'-iodo-3',6'-dimethyl-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde (4l) ¹H NMR (500 MHz, CDCl₃)

2-((4-(tert-butyl)-3',5'-dichloro-2'-iodo-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(4m) ¹H NMR (500 MHz, CDCl₃)

2-((2'-(diphenylphosphaneyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(5) ¹H NMR (500 MHz, CDCl₃)

2-((2',6-bis(trimethylsilyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(6) ¹H NMR (500 MHz, CDCl₃)

2-(triphenylen-1-ylmethyl)benzaldehyde(7)

¹H NMR (500 MHz, CDCl₃)

2-((9,10-diphenylphenanthren-4-yl)methyl)benzaldehyde(8) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

2-((2'-((trimethylsilyl)ethynyl)-[1,1'-biphenyl]-2-yl)methyl)benzaldehyde(9) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

tert-butyl (*E*)-3-(2'-(2-formylbenzyl)-[1,1'-biphenyl]-2-yl)acrylate(10) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

1-(2-iodophenyl)anthracene(11) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

1-(2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)propan-1-ol(12) ¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

(*E*)-1-(2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)-*N*-(4-methylpiperazin-1-yl)methanimine (13)

2-(2-((2'-iodo-[1,1'-biphenyl]-2-yl)methyl)phenyl)-1*H*-benzo[d]imidazole(14) ¹H NMR (500 MHz, DMSO-*d*₆)

S87