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Table S1 Photovoltaic parameters of OPV devices using the binary systems (FBT:PCs1BM) and
(FBT:PDI) with different additives p-anisaldehyde (AA) and diphenyl ether (DPE) used for
solution processing (1% v/v in o-xylene).

Condition Voe (V) Jsc (MA/cm?) FF (%) PCE (%)
FBT: PC¢BM (1:1.5) with DPE 0.73 10.9 60 4.8
FBT: PCe1BM (1:1.5) with AA 0.76 125 73 7.0
FBT: PDI (1:1.5), with DPE 1.01 9.2 47 4.3
FBT: PDI (1:1.5), with AA 1.01 7.5 41 3.1

Device architecture: glass/ITO/ZnO/active layer/MoOx/Ag

Devices spin coated from o-xylene containing 1% AA or 1% DPE as additive, 20 mg/mL total concentration
and (1:1.5) weight ratio.
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Figure S1 J-V curves of OPV devices using the binary systems (FBT:PCs1BM) and (FBT:PDI)
with different additives p-anisaldehyde (AA) and diphenyl ether (DPE) used for solution
processing (1% v/v in o-xylene).
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Figure S3 AFM height image of binary vs ternary films with different PDI component as a third
component (spin coated).
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Figure S4 PL spectra of binary vs ternary films with different PDI component as a third component
(spin coated).
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Table S2 Photovoltaic parameters of OPV devices using spin coated (SC) binary and ternary active
layers under 1 sun illumination. (a) FBT prepared as reported in reference (1) and (b) FBT provided by
Brilliant Matters.

Condition Voc (V) Jse (MA/cm?) FF% PCE%
ZnO
Binary @ 0.76 (0.76) 13 (12.7) 72 (72) 7.1(6.9)
Ternary 2 0.83 (0.83) 13.2 (12.9) 69 (69) 7.6 (7.4)
Binary 0.76 (0.76) 12.5 (12.4) 73 (73) 7.0 (7.0)
Ternary ° 0.86 (0.86) 13.4 (13.2) 68 (68) 7.9 (7.8)
ZnO/PEIE
Binary 2 0.77 (0.76) 13.1 (12.4) 74 (73) 7.4 (7)
Ternary 0.85 (0.85) 13.4 (12.8) 73 (72) 8.3(7.9)
Binary 0.79 (0.78) 12.74 (12.6) 74 (72) 7.4 (7.1)
Ternary P 0.86 (0.86) 13.2 (12.9) 69 (69) 7.9 (7.6)

Device architecture: glass/ITO/ ZnO or (ZnO/PEIE)/active layer/MoOx/Ag

Devices spin coated from o-xylene containing 1% AA additive, 20 mg/mL total concentration and (1:1.5)
D:A::A; ratio (D: FBT, Ai: PCa1BM, and Az: PDI).

The values of the best device are reported, while the values in the parentheses stand for the average PCEs
from over 15 devices with 0.14 cm? active area.

4 FBT prepared as reported in reference (1) *.
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Figure S5 J-V curves of OPV devices using spin coated (SC) binary and ternary active layers
under 1 sun illumination. (a) FBT prepared as reported in reference (1) and (b) FBT provided by Brilliant

Matters.
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Power input (Pin) measurements and calculations: The Pin was measured using a Newport Si-
photodiode (818-SL/DB, 1cm? area) connected to an Ossila XTralien X200 source measure unit.
The Si-photodiode was positioned at three different distance from the LED light bulb,
corresponding to the three distances at which the OPV devices were positioned upon their testing.
The current produced by the Si-photodiode were recorded at both 2700 K and 6500 K LED

illumination (shown in Figure S6, as exemplified in Figure S7A).

5
—e— Warm (Pin= 568 pW/cm?)
=t \Warm (Pin= 288 pW/cm?)

44 —v— Warm (Pin= 113 pW/cm?)
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Figure S6 Different emission spectra of a Coidak bulb used for indoor light illumination. Model
No: FUT105, Power: 12W, Voltage: AC86~265V 50~60 Hz, Color Temperature: 2700-6500K.
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Figure S7 Si-photodiode A) current density response under a 2700 K LED illumination (distance

A, ca. X lux) and B) responsivity.

Table S3 Current density response (Jmeasured, MA/cm?) of the Si-photodiode under the different

LED illumination used for the OPV testing.

400 500 600 700 800 900 1000 1100

Wavelength (nm)

Jmeasured at DIStance A Jmeasured at DIStance B Jmeasured at D|Stance C
(mA/cm?) (mA/cm?) (mA/cm?)
2700 K 0.208 0.105 0.041
6500 K 0.209 0.101 0.041
The Pin was then calculated using Equation S1.
Jm I i
Pin:K X j- (DLED, normalized — T casured X j- (Dnormalized Equatlon 51

calculated

J measured

f (DLED, normalized ><Rphotodiode

Where Jmeasured COrresponds to the current density response of the Si-photodiode (values reported
in Table S3); @Lep is the irradiance spectra of the LED (Figure S6) and Rphotodiode (Figure S7 B) is

the responsivity of the Si-photodiode.

X (DLED, normalized

The calculated Pin values are reported in Table S4.

Table S4 Pis values (in pW/cm?) calculated according to Equation S1.

Distance A Distance B Distance C
2700 K 568 288 113
6500 K 610 294 120
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IHluminance measurements and calculations. The illuminance (1) measurements were measured
using a commercial digital luxmeter (Dr Meter). The values are reported in Table S5. The
illuminance at which the OPV devices were tested can also be calculated using the Si-photodiode
response, according to Equation S2 and considering that the Im/m? unit corresponds to the lux unit.

Im Equation S2
1=683 w > K x J OLED, normalized @ 555 nm X V

— 683 lﬂ % ]measured x
w ]calculated

683 :
= — X
7 f [DLED, normalizedephotodiode

f (DLED,normalized @ 555 nm XV

J measured

x f CI)LED, normalized @ 555 nm xV

Where | corresponds to the illuminance values and V is the photopic response (Figure S8). Since
the photopic response function has a maximum at 555 nm, the 683 Im/W factor is used at the
luminous efficiency and could be responsible of the discrepancy between the Imeasured and lcaiculated
that are reported in Table S5.
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Figure S8 Photopic response function.

Table S5 IHluminance values (Imeasured USing a digital luxmeter and lcaiculated according to Equation
S2) reported in lux.

| Distance A | Distance B | Distance C
2700 K
Imeasured 1750-1800 870-900 350-380
lcalculated 1410 714 282
6500 K
Imeasured 1900-1950 930-970 380-400
lcalculated 1230 597 243

S11



Integrated current calculation from EQE for indoor OPVs

According to recent reports in Nature Energy,> Advanced Materials,> and ACS AMI,* for a
photovoltaic cell, the EQE curve is independent of the emission spectrum of the light source. EQE
curves measured from the AM 1.5G condition can be used to get the integral current density (Jcar)
for indoor measurements. Jcar from EQE is expected to be consistent with the Jsc from J—V
measurement for the same device. The Jeal is calculated by the following equation:

Jeal = q.fooN (1).EQE(A) dA
0

Where N (1) is the photon flux spectrum which is the light photon numbers per nanometer per
square centimeter through the spectrometer and can be obtained by the following equation:

N @A) =E A).qA/hc

Where E (M) is the light power spectrum (irradiance), q is the elementary charge, A is the
wavelength, h corresponds to the Planck constant and c is the lightspeed.

To confirm that the EQE under AM 1.5G condition can be used for indoor, we calculated the Jcal
according to the above equations for the spin coated ternary devices and found that the current is
165.5 pA/cm? which is matching with the measured Jsc of 167.4 pA/cm? under warm white LED
(2000 lux: input power is 568 pW/cm?).

(@) « (b)

= Spin Coated Ternary

[uN
o
o

m?

60

-
N
o

404
6.0x10%°4 L 80

EQE (%)

204

Current density (HA ¢

k40

300 400 500 600 700 800 460 5(I)0 660 7(‘)0 860

Wavelength (nm) Wavelength (nm)

Figure S9 (a) EQE spectrum of the OPV devices with spin coated ternary active layers (optimized
FBT batch)! and (b) photon flux and integrated current density spectrum over the warm white LED
(2000 lux: input power is 568 uW/cm?) for OPV devices with spin-coated ternary active layers.
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Table S6 Photovoltaic parameters of OPV devices with spin coated (SC) binary and ternary active
layers under different warm indoor light illumination.

Pin (UW/cm?) Voc (V) Jse (MA/cm?) FF (%) PCE (%) Pout (UW/cm?)

Binary (ZnO/PEIE)

113 0.58 (0.58) 33 (32.7) 68 (66) 11.5(11.1) 13.0 (12.5)

288 0.61(0.61) 84.3 (83.3) 68 (67) 12.1 (11.8) 35.0 (34)

568 0.64 (0.64) | 157.8 (157.8) 70 (68) 12.4 (12.1) 70.7 (68.7)
Ternary (ZnO/PEIE)

113 0.65 (0.65) 33.5(33.4) 65 (64) 12.5 (12.3) 14.2 (13.9)

288 0.68 (0.68) 83.4 (83) 67 (66) 13.2 (12.9) 38.0 (37.2)

568 0.72 (0.71) | 157.4 (159.6) 70 (68) 14.0 (13.6) 79.3(77.1)

Device architecture: glass/ITO/ ZnO or (ZnO/PEIE)/active layer/MoOx/Ag

Devices spin coated from o-xylene containing 1% AA additive, 20 mg/mL total concentration and (1:1.5)
D:Aq:A; ratio (D: FBT, As: PCa1BM, and A;: PDI). EBT polymer provided by Brilliant Matters.

The values of the best device are reported, while the values in the parentheses stand for the average PCEs
from over 15 devices with 0.14 cm? active area.
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Figure S10 J-V curves of OPV devices with spin coated (SC) binary and ternary active layers
under different warm indoor light illumination.
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Table S7 Photovoltaic parameters of OPV devices with spin coated (SC) binary and ternary active
layers under different warm indoor light illumination.

Pin (UW/cm?) Voc (V) Jsc (MA/Ccm?) FF (%) PCE (%) Pout (UW/cm?)
Binary (ZnO)
113 0.55(0.55) | 34.5(34.5) 68 (67) 11.4 (11.3) 12.9 (12.7)
288 0.58 86.2 68 11.8 34
568 0.61 (0.61) | 170.4 (169.3) 70 (69) 12.8 (12.5) 72.8 (71.3)
Ternary (ZnO)
113 0.62(0.62) | 34.5(33.5) 67 (68) 12.7 (12.5) 14.3 (14.1)
288 0.65 88.4 66 13.2 37.9
568 0.68 (0.68) | 161.1 (163) 70 (68) 13.5(13.3) 76.7 (75.4)

Device architecture: glass/ITO/ ZnO/active layer/MoOx/Ag

Devices spin coated from o-xylene containing 1% AA additive, 20 mg/mL total concentration and (1:1.5)
D:Aq:A; ratio (D: FBT, Ai: PCe1BM, and Az: PDI). EBT polymer prepared as reported in reference (1).

The values of the best device are reported, while the values in the parentheses stand for the average PCEs
from over 15 devices with 0.14 cm? active area.
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Figure S11 J-V curves of OPV devices with spin coated (SC) binary and ternary active layers
under different warm indoor light illumination.
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Table S8 Photovoltaic parameters of OPV devices with spin coated (SC) binary and ternary active
layers under different warm indoor light illumination.

Pin (MW/cm?) Voc (V) Jsc (LA/CM?) FF (%) PCE (%) Pout (MW/cm?)

Binary (ZnO/PEIE)

113 0.57 (0.57) | 35.1(33.2) 70 (69) 12.4 (11.6) 14.0 (13.1)

288 0.61 (0.60) 86.2 (81) 70 (69) 12.8 (11.6) 36.8 (33.5)

568 0.63 (0.63) | 162.4 (154) 73 (73) 13.2 (12.5) 74.7 (70.8)
Ternary (ZnO/PEIE)

113 0.66 (0.65) | 35.9(34.4) 69 (68) 14.4 (13.5) 16.3 (15.2)

288 0.69 (0.68) | 87.3(83.5) 70 (69) 14.6 (13.6) 42.2 (39.2)

568 0.72 (0.72) | 167.4 (159) 73 (71) 15.5(14.3) 88.0 (81.3)

Device architecture: glass/ITO/ZnO/PEIE/active layer/MoOx/Ag

Devices spin coated from o-xylene containing 1% AA additive, 20 mg/mL total concentration and (1:1.5)
D:Aq:A; ratio (D: FBT, Ai: PCe1BM, and Az: PDI). EBT polymer prepared as reported in reference (1).

The values of the best device are reported, while the values in the parentheses stand for the average PCEs
from over 15 devices with 0.14 cm? active area.
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Figure S12 J-V curves of OPV devices with spin coated (SC) binary and ternary active layers
under different warm indoor light illumination.

S15



PCa:BM

(A
0 (A

-0.5 0.0 0.5 1.0

Oy (A7) Oy (A7)

PDI

0 (A

15 2.0 -0.5 0.0 0.5 1.0 15 2.0

Oy (A7)

Figure S13 GIWAXS 2D detector images for FBT, PCs1BM, and PDI.
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Figure S14 GIWAXS 1D plots with cake slices in the gz (out-of-plane) and gxy (in-plane).
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Figure S16 GIWAXS (a) 2-dimensional intensity vs. g-space images for the spin-coated blend
films and (b) one-dimensional intensity vs. gz-space (left) and gxy-space (right).

Table S9 Intermolecular spacings in Angstroms of the semi-crystalline regions in neat and spin-
coated blend films from the peaks of gz-space in Figure S16 (b).

d-spacing (A)
Sample FBT PC&1BM PDI
(100) [ (200) | (300) | (010) | (n=1) | (n=2)
FBT 20.27 9.97 6.68 3.61 — —
PCe:BM — — — — 8.73 452 —
PDI — — — — — — 14.96
Binary SC 19.04 9.67 6.54 3.61 — 4.52 —
Ternary SC _ 9.38 _ _ _ _
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Table S10 Contact angle measurements of using binary and ternary blend inks on different
substrates.

Substrate Average contact angle (°)
Bare Si (Binary Ink) 8.6
Bare Si (Ternary Ink) 13.0
Si/ZnO/PEIE (Binary Ink) 21.4
Si/ZnO/PEIE (Ternary Ink) 12.0
ITO/ZnO/PEIE (Binary Ink) 9.4
ITO/ZnO/PEIE (Ternary Ink) 10.6

Contact angles measured using Ossila Contact Angle Geniometer (product code: L2004A1)
1- The binary ink: FBT:PCsBM (1:1.5, 20 mg/mL) in o-xylene with 1% (v/v) p-anisaldehyde (AA) as solvent

additive.

2- The ternary ink: FBT:PCs:BM:PDI (1:1.2:0.3, 20 mg/mL) in o-xylene with 1% (v/v) p-anisaldehyde (AA) as

solvent additive.

Inks were drop-cast onto the substrate and the droplet angle measured.
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Table S11 Photovoltaic parameters of OPV devices under warm low light intensity (2000 lux)
with and without light soaking.

Condition Pin (MW/cm?)| Vo (V) | Jsc (WA/cm?) | FF% | PCE% | Pout (uW/cm?)
W/O light soaking (LS) 568 0.71 133 40 6.7 38
LS with UV filter 568 0.71 166 44 9.1 52
LS- W/O UV filter 568 0.71 169 70 14.8 84

Device architecture: glass/ITO/ ZnO/PEIE/active layer/MoOx/Ag

Devices spin coated from o-xylene containing 1% AA additive, 20 mg/mL total concentration and (1:1.5)
D:A::A; ratio (D: FBT (optimized batch), A;: PCs1BM, and Az: PDI).

0 |
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S -150-/
5 —%
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-200 - =@— Light soaking with UV filter

=& | jght sokaing W/O UV filter
T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Voltage bias (V)

Figure S17 J-V curves of OPV devices under warm low light intensity (2000 lux) with and without
light soaking.

S22



Table S12 Photovoltaic parameters of OPV devices with slot-die (SD) coated binary and ternary
active layers using different electron transporting layers under indoor warm light illumination
(2000 lux).

Pin (UW/cm?) Ve (V) Jsc (WA/CM?) FF (%) PCE (%) Pout (UW/cm?)
Binary (ZnO/PEIE), light soaking required
568 (W) | 0.63 (0.63) ‘ 154 (147) | 70 (68) ‘ 12.0 (11.1) ‘ 68 (63)
Binary (ZnO), light soaking required
568 (W) | 0.61 (0.61) ‘ 164.2 (155.3) | 68.0 (65) ‘ 12.0 (10.8) ‘ 68.1 (61.6)
Binary (PEIE), NO light soaking required
568 (W) | 0.57 (0.55) ‘ 163 (160.5) | 63 (58) ‘ 10.3 (9.0) ‘ 58.5 (51.2)

Device architecture: glass/ITO/ ZnO or (ZnO/PEIE) or PEIE/active layer/MoOx/Ag

Devices slot-die coated from o-xylene containing 1% AA additive, 20 mg/mL total concentration and
(1:1.5).

The values of the best device are reported, while the values in the parentheses stand for the average PCEs
from over 15 devices with 0.14 cm? active area.
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Figure S18 J-V curves of OPV devices with slot-die (SD) coated binary and ternary active layers
using different electron transporting layers under indoor warm light illumination (2000 lux).
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Stability tests according to 1ISOS

According to the International Summit on Organic Photovoltaic Stability (ISOS) protocols,>® there
are 5 stability tests to evaluate the OPVs stability performance:

1- Dark (ISOS-D-1-3)

2- Outdoor (ISOS-0-1-3)

3- Laboratory weathering testing (1ISOS-L-1-3)

4- Thermal cycling (ISOS-T-1-3)

5- Solar-thermal-humidity Cycling (ISOS-LT-1-3)

We performed the stability tests according to the stability testing protocol ISOS-D-1 and ISOS-T-
1

ISOS-D-1 ISOS-T-1 (thermal cycling)
(Shelf)
Test Light source None (Dark) None (Dark)
setup Load Open circuit Open circuit
Storage temperature Ambient 65/85 °C by cycling on/off hot
plate
Storage relative humidity | Ambient  and | Inert (N2 filled glovebox)’
(R.H.) inert
Characterization light source | Solar simulator | Solar simulator

In a recent review® the authors mentioned in the Miscellaneous Stability Measurements section
that:

1- In the thermal stability measurement, there are two categories of test conditions: 1) under high-
temperature condition above 100 °C, and 2) under low-temperature condition below 100 °C.

2- In the storage stability test, there are three widely used conditions: 1) stored in the air without
encapsulation; 2) stored in the air with encapsulation and; 3) stored in an inert atmosphere.

Here in our work and according to the previous references, we performed three stability tests:
1- Storage in inert conditions of unencapsulated devices under dark for 500 hours.

2- Storage in ambient conditions of unencapsulated devices under dark for 300 hours.
3- Thermal stability at 80 °C at inert conditions under dark for 300 hours.
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