Supporting Information

for

DPAGT1 Inhibitors of Capuramycin Analogues and Their Antimigratory Activities of

Solid Tumors

Katsuhiko Mitachi, ${ }^{\text {a }}$ Rita G. Kansal, ${ }^{\text {b }}$ Kirk E. Hevener, ${ }^{\text {a }}$ Cody D. Gillman, ${ }^{\text {c }}$ Syed M. Hussain, ${ }^{\mathrm{b}}$ Hyun Gi Yun, ${ }^{\mathrm{c}}$ Gustavo A. Miranda-Carboni, ${ }^{\mathrm{d}}$ Evan S. Glazer, ${ }^{\mathrm{b}}$ William M. Clemons Jr., ${ }^{\text {c }}$ and Michio Kurosu*a
${ }^{a}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Av, Memphis, TN 38163, USA
${ }^{b}$ Department of Surgery and Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, 910 Madison St, Suite 300, Memphis, TN 38163, USA
${ }^{c}$ Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Bld. Pasadena, CA 91125, USA
${ }^{d}$ Department of Medicine, Division of Hematology-Oncology, University of Tennessee Health Science Center, 19 S. Manassas Av, Memphis, TN 38163, USA mkurosu@uthsc.edu

Table of Contents

Experimental S3-S41

References S42

General

All chemicals were purchased from commercial sources and used without further purification unless otherwise noted. THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and DMF were purified via Innovative Technology's Pure-Solve System. All reactions were performed under an Argon atmosphere. All stirring was performed with an internal magnetic stirrer. Reactions were monitored by TLC using 0.25 mm coated commercial silica gel plates (EMD, Silica Gel $60 \mathrm{~F}_{254}$). TLC spots were visualized by UV light at 254 nm , or developed with ceric ammonium molybdate or anisaldehyde or copper sulfate or ninhydrin solutions by heating on a hot plate. Reactions were also monitored by using SHIMADZU LCMS-2020 with solvents: A: 0.1% formic acid in water, B: acetonitrile. Flash chromatography was performed with SiliCycle silica gel (Purasil $60 \AA$, 230-400 Mesh). Proton magnetic resonance (${ }^{1} \mathrm{H}-\mathrm{NMR}$) spectral data were recorded on 400 , and 500 MHz instruments. Carbon magnetic resonance (${ }^{13} \mathrm{C}-\mathrm{NMR}$) spectral data were recorded on 100 and 125 MHz instruments. For all NMR spectra, chemical shifts $(\delta \mathrm{H}, \delta \mathrm{C})$ were quoted in parts per million (ppm), and J values were quoted in $\mathrm{Hz} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were calibrated with residual undeuterated solvent $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{CN}: \delta \mathrm{H}=1.94\right.$ $\mathrm{ppm}, \delta \mathrm{C}=1.32 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: \delta \mathrm{H}=3.31 \mathrm{ppm}, \delta \mathrm{C}=49.00 \mathrm{ppm} ; \mathrm{DMSO}-\mathrm{d}_{6}: \delta \mathrm{H}=2.50 \mathrm{ppm}$, $\left.\delta \mathrm{C}=39.52 \mathrm{ppm} ; \mathrm{D}_{2} \mathrm{O}: \delta \mathrm{H}=4.79 \mathrm{ppm}\right)$ as an internal reference. The following abbreviations were used to designate the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin = quintet, hept $=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad . Infrared (IR) spectra were recorded on a Perkin-Elmer FT1600 spectrometer. HPLC analyses were performed with a Shimadzu LC-20AD HPLC system. HR-MS data were obtained from a Waters Synapt G2-Si (ion mobility mass spectrometer with nanoelectrospray ionization).

(2R,5R)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2-(hydroxymethyl)-4-methoxytetrahydrofuran-3-yl acetate (S1). The title compound was synthesized according to the reported procedure ${ }^{1}:{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.48$ (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $5.23(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 2 \mathrm{H})$, 3.99 (dd, $J=12.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (dd, $J=12.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (s, 3H), 2.17 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.59,162.49,151.01,139.77,137.77,128.31$ (2C), 127.70, 127.67 (2C), 102.21, $90.31,82.65,81.20,72.31,70.27,70.01,61.24,58.95,20.81$; HRMS (ESI+) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}] 421.1611$, found: 421.1641 .

(2R,5R)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2-((S)-cyano(hydroxy)methyl)-4-methoxytetrahydrofuran-3-yl acetate (13). To a stirred solution of $\mathbf{S 1}(1.72 \mathrm{~g}, 4.09 \mathrm{mmol})$ and dichloroacetic acid ($0.51 \mathrm{~mL}, 6.14 \mathrm{mmol})$ in a $10: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMSO (18.4 mL) was added DIC ($1.28 \mathrm{~mL}, 8.18 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After being stirred for $2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(0.16 \mathrm{~mL})$, $\mathrm{TMSCN}(1.02 \mathrm{~mL}, 8.18 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ $(2.42 \mathrm{~mL}, 8.18 \mathrm{mmol})$ were added to the reaction solution. After being stirred for 8 h at r.t., the solution was concentrated in vacuo. The crude mixture was suspended to a $4: 1$ mixture of AcOH and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. After being stirred for 13 h at r.t., the solution was concentrated in vacuo. The residue was quenched with aq. NaHCO_{3}, extracted with EtOAc. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc $=2 / 1-1 / 2$) to afford $0.70 \mathrm{~g}(38 \%)$ of 13 and $0.66 \mathrm{~g}(36 \%)$ of epi-13. Data for 13: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.49(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.71-$ $4.69(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=6.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.20,161.85,151.38,141.95,137.51,128.42$ (2C), $127.84,127.66$ (2C), 117.13, 103.23, 95.16, 84.08, 78.39, 72.52, 70.47, 70.31, 61.79, 59.23, 20.71; HRMS (ESI+) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}] 446.1563$, found: 446.1568. Data for (2R,5R)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2-$\left((R)\right.$-cyano(hydroxy)methyl)-4-methoxytetrahydrofuran-3-yl acetate (epi-13): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.43(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.70(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{dd}, J=4.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.02,162.37,151.07,139.71,137.50,128.38$ (2C),
127.85, 127.70 (2C), $116.60,102.71,90.45,82.72,80.66,72.43,70.43,69.12,60.90,59.37$, 20.73; HRMS (ESI+) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}] 446.1563$, found: 446.1580.

($2 R, 3 R, 4 S, 5 S, 6 R$)-2-(Acetoxymethyl)-6-(p-tolylthio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S2). The title compound was synthesized according to the reported procedure ${ }^{1}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.37$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $5.50-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=5.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{dp}, J=$ $8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=12.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=12.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 170.56, 169.92, 169.81, 169.74, 138.44, 132.58 (2C), 129.93 (2C), 128.72, 85.99, 70.82, $69.34,69.32,66.34,62.46,21.13,20.89,20.72,20.70,20.65$; HRMS (ESI+) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 455.1376, found: 455.1395.

(2R,3R,4S,5S,6R)-2-(Hydroxymethyl)-6-(p-tolylthio)tetrahydro-2H-pyran-3,4,5-triyl triacetate ($\mathbf{S 3}$). To a stirred solution of $\mathbf{S} \mathbf{2}(11.1 \mathrm{~g}, 24.3 \mathrm{mmol})$ in a 1:4 mixture of THF and $\mathrm{MeOH}(25 \mathrm{~mL})$ was added $\left[{ }^{t} \mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OH}) \mathrm{Cl}\right]_{2}(1.39 \mathrm{~g}, 2.43 \mathrm{mmol})$. After being stirred for 24 h at r.t., the solution was concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc $=2 / 1-1 / 1$) to afford $8.01 \mathrm{~g}(80 \%)$ of S3: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $5.51(\mathrm{dd}, J=3.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.29(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=9.7,4.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=12.7,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63$ (dd, $J=12.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.32 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H), 2.02 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.78,169.96,169.81,138.43$, 132.58 (2C), 129.99 (2C), $128.73,86.04,71.62,70.88,69.10,66.51,61.20,21.11,20.87,20.75,20.66$; HRMS (ESI+) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}] 413.1270$, found: 413.1277.

($2 R, 3 R, 4 S, 5 S, 6 R)$-2-((2-Chloroacetoxy)methyl)-6-(p-tolylthio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (14). To a stirred solution of $\mathbf{S 3}(8.01 \mathrm{~g}, 19.4 \mathrm{mmol})$, chloroacetic acid $(2.75 \mathrm{~g}, 29.1 \mathrm{mmol})$ and DMAP $(0.24 \mathrm{~g}, 1.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added

DIC ($4.56 \mathrm{~mL}, 29.1 \mathrm{mmol}$). After being stirred for 4 h at r.t., the reaction mixture was concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc $=3 / 1-2 / 1$) to afford $8.92 \mathrm{~g}(94 \%)$ of $\mathbf{1 4}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{dd}$, $J=12.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.88$, 169.81, 169.78, 166.93, 138.51, 132.48 (2C), 129.98 (2C), 128.56, 85.84, 70.70, 69.19, 69.17, 66.19, 63.95, 40.58, 21.13, 20.87, 20.71, 20.64; HRMS (ESI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClO}_{9} S$ [M + H] 489.0986, found: 489.1003.

(2R,3S,4S,5R,6R)-2-((1R)-1-((2S,5R)-3-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-4-methoxytetrahydrofuran-2-yl)-2-amino-2-oxoethoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S4). To a stirred solution of $\mathbf{1 5}(0.24 \mathrm{~g}, 0.29 \mathrm{mmol})$ in a 9:1 mixture of EtOH and $\mathrm{H}_{2} \mathrm{O}$ $(2.9 \mathrm{~mL})$ were added $\mathrm{HgCl}_{2}(0.16 \mathrm{~g}, 0.59 \mathrm{mmol})$ and acetaldoxime ($0.18 \mathrm{~mL}, 2.9 \mathrm{mmol}$). After being stirred for 13 h at r.t., the reaction mixture was concentrated in vacuo. The residue was quenched with aq. NaHCO_{3}, extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (hexanes/EtOAc $=1 / 2-\mathrm{CHCl}_{3} / \mathrm{MeOH}=96 / 4$) to afford S4 ($0.21 \mathrm{~g}, 87 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.53$ (d, J=8.2 Hz, 1H), $7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.36(\mathrm{brs}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (brs, 1H), $5.53-5.44(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (t, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (dd, $J=6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=12.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (dd, $J=12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=5.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}$, $3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.22,170.18,170.04,169.67,169.53,167.06,162.40,150.91,137.75,137.58,128.34$, 128.32 (2C), 127.70 (2C), 103.35, $97.10,88.44,80.95,76.39,72.25,70.51,70.33,69.76$, 68.72, 68.68, 64.98, 63.43, 59.03, 40.65, 20.76, 20.67, 20.63 (2C); HRMS (ESI+) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{ClN}_{3} \mathrm{O}_{18}[\mathrm{M}+\mathrm{H}]$ 828.2230, found: 828.2246.

(2R,3S,4S,5R,6R)-2-((1R)-1-((2S,5R)-3-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-4-methoxytetrahydrofuran-2-yl)-2-amino-2-
oxoethoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S5). To a solution of $\mathbf{S 4}(0.21 \mathrm{~g}, 0.26 \mathrm{mmol})$ in a $1: 1$ mixture of THF and $\mathrm{MeOH}(2.6 \mathrm{~mL})$ was added thiourea ($0.059 \mathrm{~g}, 0.77 \mathrm{mmol}$). After being stirred for 11 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated in vacuo. The residue was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=98 / 2\right.$ $97 / 3$ - 96/4) to afford $\mathbf{S 5}(0.15 \mathrm{~g}, 75 \%)$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.59$ (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.46$ (brs, 1 H$), 6.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.88(\mathrm{brs}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=$ $3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dd, $J=7.8$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{dd}, J=7.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=5.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=9.5,4.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (dd, $J=5.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, $2.09(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.42,170.38,170.18,170.04$, 162.54, 150.77, 137.75, 137.36, 128.32 (2C), 127.73 (2C), 127.70, 103.06, 97.25, 88.88, 81.14, 80.39, 75.76, 72.92, 72.26, 70.25, 69.52, 68.83, 68.75, 65.42, 61.25, 58.98, 20.78, 20.74, 20.66, 20.59; HRMS (ESI+) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{17}[\mathrm{M}+\mathrm{H}] 752.2514$, found: 752.2522 .

3-((Benzyloxy)methyl)-1-((3aR,4R,6R,6aR)-6-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)pyrimidine-2,4(1H,3H)-dione (S6). To a stirred solution of uridine ($14.7 \mathrm{~g}, 60 \mathrm{mmol}$) in DMF (50 mL) were added $\mathrm{BOMCl}(6.87$ $\mathrm{mL}, 50 \mathrm{mmol})$ and DBU $(11.2 \mathrm{~mL}, 75 \mathrm{mmol})$. After being stirred for 6 h at $0^{\circ} \mathrm{C}$, the reaction was quenched with 1 M aq. HCl , extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. To a stirred solution of the crude mixture and 2,2-dimethoxypropane ($18.4 \mathrm{~mL}, 150 \mathrm{mmol}$) in acetone (50 mL) was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.95 \mathrm{~g}, 5.0 \mathrm{mmol})$. After being stirred for 8 h at r.t., the solution was concentrated in vacuo. The residue was quenched with aq. NaHCO_{3}, extracted with EtOAc. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 1/2)
to afford $15.8 \mathrm{~g}(78 \%$ for 2 steps $)$ of S6: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.37-7.26$ (m, 6H), $5.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=6.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=9.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}$, $2 \mathrm{H}), 4.29$ ($\mathrm{q}, ~ J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (dd, $J=12.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.79(\mathrm{dd}, J=12.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.50,151.00$, 141.27, 137.70, 128.30 (2C), 127.70, 127.59 (2C), 114.25, 102.01, 96.49, 86.93, 83.83, 80.23, 72.36, 70.32, 62.63, 27.21, 25.22; HRMS (ESI+) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]$ 405.1662, found: 405.1681.

(S)-2-((3aR,4R,6R,6aR)-6-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin$\mathbf{1 (2 H})$-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2-hydroxyacetonitrile (20). To a stirred solution of $\mathbf{S 6}(2.89 \mathrm{~g}, 7.15 \mathrm{mmol})$ and dichloroacetic acid $(0.88 \mathrm{~mL}, 10.7$ $\mathrm{mmol})$ in a $10: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMSO $(31.5 \mathrm{~mL})$ was added DIC $(2.24 \mathrm{~mL}, 14.3$ $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for $2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(0.29 \mathrm{~mL})$, TMSCN $(1.35 \mathrm{~mL}, 14.3 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(4.23 \mathrm{~mL}, 14.3 \mathrm{mmol})$ were added to the reaction solution. After being stirred for 6 h at r.t., the solution was concentrated in vacuo. The crude mixture was suspended to a $4: 1$ mixture of AcOH and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. After being stirred for 9 h at r.t., the solution was concentrated in vacuo. The residue was quenched with aq. NaHCO_{3}, extracted with EtOAc. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 2/1$1 / 1)$ to afford $1.18 \mathrm{~g}(38 \%)$ of 20 and $1.03 \mathrm{~g}(34 \%)$ of $\boldsymbol{e p i} \mathbf{- 2 0}$. Data for 20: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (dd, $J=6.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=6.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.68(\mathrm{~m}, 3 \mathrm{H}), 4.40(\mathrm{dd}, J=3.5$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.91$, 151.68, $142.29,137.52,128.41$ (2C), 127.87, 127.58 (2C), 117.55, 115.20, 102.97, 99.49, 86.78, $82.89,79.50,72.60,70.48,62.12,27.09,25.10$; HRMS (ESI+) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7}$ [$\mathrm{M}+\mathrm{H}$] 430.1614, found: 430.1630. Data for (R)-2-((3aR,4R,6R,6aR)-6-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2-hydroxyacetonitrile (epi-20): ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.41(\mathrm{~m}, 3 \mathrm{H}), 5.10(\mathrm{dd}, J=6.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=6.5,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{dd}, J=5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.20,151.16,141.86,137.43,128.40$ (2C), $127.89,127.67$ (2C), 117.41, 114.95, 102.67, 98.31, 87.29, 83.40, 80.68, 72.55, 70.42, 61.78, 27.02, 25.06; HRMS (ESI+) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}] 430.1614$, found: 430.1633 .

($2 R, 3 S, 4 S, 5 R, 6 R)-2-((R)-2-A m i n o-1-((3 a R, 4 S, 6 R, 6 a R)-6-(3-((b e n z y l o x y) m e t h y l)-2,4-$ dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2-oxoethoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S7). To a stirred solution of $21(0.38 \mathrm{~g}, 0.49 \mathrm{mmol})$ in a 9:1 mixture of EtOH and $\mathrm{H}_{2} \mathrm{O}(4.9 \mathrm{~mL})$ were added $\mathrm{HgCl}_{2}(0.27 \mathrm{~g}, 0.98 \mathrm{mmol})$ and acetaldoxime $(0.30 \mathrm{~mL}, 4.9$ $\mathrm{mmol})$. After being stirred for 12 h at r.t., the reaction mixture was concentrated in vacuo. The residue was quenched with aq. NaHCO_{3}, extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (hexanes/EtOAc $=1 / 2-\mathrm{CHCl}_{3} / \mathrm{MeOH}=97 / 3$) to afford $\mathbf{S 7}$ ($0.36 \mathrm{~g}, 91 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.38-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.41$ (brs, 1H), 5.86 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (brs, 1H), $5.70(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=6.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ $-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ $(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=12.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.11$ $(\mathrm{m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.19,170.09,170.01,169.63,166.94,162.40,150.62$, $140.32,137.80,128.29$ (2C), 127.69, 127.65 (2C), 115.00, 102.60, 97.38, 93.65, 85.88, $84.08,79.80,77.63,72.31,70.33,69.80,69.05,68.60,65.36,63.41,40.56,27.32,25.55$, 20.77, 20.67, 20.63; HRMS (ESI+) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{ClN}_{3} \mathrm{O}_{17}[\mathrm{M}+\mathrm{H}] 812.2281$, found: 812.2314 .

($2 R, 3 S, 4 S, 5 R, 6 R)$-2-((R)-2-Amino-1-((3aR,4S,6R,6aR)-6-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2-oxoethoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S8). To a solution of $\mathbf{S 7}(0.36 \mathrm{~g}, 0.45 \mathrm{mmol})$ in a $1: 1$ mixture of THF and $\mathrm{MeOH}(4.5 \mathrm{~mL})$ was added thiourea ($0.10 \mathrm{~g}, 1.34 \mathrm{mmol}$). After being stirred for 11 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated in vacuo. The residue was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=\right.$ 98/2-97/3-96/4) to afford S8 ($0.25 \mathrm{~g}, 76 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.39$
$-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.43(\mathrm{brs}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{brs}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 5.33-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=6.5,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=5.7,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{dt}, J=10.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$, $2.01(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.35,170.16$, $170.10,170.09,162.46,150.72,140.56,137.69,128.33$ (2C), 127.74, 127.69 (2C), 114.84, $102.50,97.03,94.40,86.72,84.25,80.13,77.92,72.35,72.04,70.23,69.20,68.59,65.87$, 61.25, 27.23, 25.41, 20.81, 20.73, 20.69; HRMS (ESI+) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{16}[\mathrm{M}+$ H] 736.2565, found: 736.2586.

(2S,3S,4S)-3,4-Diacetoxy-2-((R)-2-amino-1-((3aR,4S,6R,6aR)-6-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2-dimethyltetrahydrofuro[3,4- $d][1,3]$ dioxol-4-yl)-2-oxoethoxy)-3,4-dihydro-2H-pyran-6-carboxylic acid (31). To a stirred solution of 22 $(0.17 \mathrm{~g}, 0.27 \mathrm{mmol})$ and DMSO $(0.19 \mathrm{~mL}, 2.72 \mathrm{mmol})$ in a $5: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL})$ was added $\mathrm{SO}_{3} \cdot$ pyridine $(0.43 \mathrm{~g}, 2.72 \mathrm{mmol})$. After being stirred for 3 h at r.t., the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}(0.27 \mathrm{~mL})$ and passed through a silica gel pad $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=92 / 8\right)$. To a stirred solution of the crude mixture in ${ }^{t} \mathrm{BuOH}(1.0 \mathrm{~mL})$ and 2-methyl-2-butene $(0.5 \mathrm{~mL})$ was added a solution of $\mathrm{NaClO}_{2}(0.12 \mathrm{~g}, 1.36 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.21 \mathrm{~g}, 1.36 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$. After being stirred for 5 h at r.t., the reaction extracted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9 / 1)$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=9 / 1\right)$ to afford $31(0.13 \mathrm{~g}, 81 \%)$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{ddd}, J=4.7$, $3.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=6.2,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=6.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, $1.53(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 172.67,171.86,171.50,168.09$, 166.27, 152.17, 148.19, 142.21, 115.19, 104.36, 103.01, 98.08, 93.58, 87.18, 86.07, 82.82, 78.22, 65.27, 65.01, 27.45, 25.47, 20.69, 20.57; HRMS (ESI+) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{14}$ [M + H] 570.1571, found: 570.1585.

S9
(2R,5R)-2-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-5-(hydroxymethyl)-4-methoxytetrahydrofuran-3-yl acetate (S9). The title compound was synthesized according to the reported procedure ${ }^{1}:{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.78(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.46(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{dd}, J=4.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H})$, $4.02(\mathrm{dd}, J=12.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.85,162.51,150.87,139.88,137.74,128.31$ (2C), $127.68,127.66$ (2C), 102.22, $91.10,82.75,73.84,72.25,70.30,61.30,20.71$; HRMS (ESI+) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]$ 421.1611, found: 421.1630.

24

epi-24
(2R,5R)-2-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-5-((S)-cyano(hydroxy)methyl)-4-methoxytetrahydrofuran-3-yl acetate (24). To a stirred solution of $\mathbf{S 9}(4.14 \mathrm{~g}, 9.85 \mathrm{mmol})$ and dichloroacetic acid $(1.22 \mathrm{~mL}, 14.8 \mathrm{mmol})$ in a $10: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMSO $(42.9 \mathrm{~mL})$ was added DIC $(3.08 \mathrm{~mL}, 19.7 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for $2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(0.39 \mathrm{~mL})$, TMSCN $(2.46 \mathrm{~mL}, 19.7 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ $(5.83 \mathrm{~mL}, 19.7 \mathrm{mmol})$ were added to the reaction solution. After being stirred for 8 h at r.t., the solution was concentrated in vacuo. The crude mixture was suspended to a $4: 1$ mixture of AcOH and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. After being stirred for 12 h at r.t., the solution was concentrated in vacuo. The residue was quenched with aq. NaHCO_{3}, extracted with EtOAc. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc $=2 / 1-1 / 2$) to afford $1.84 \mathrm{~g}(42 \%)$ of $\mathbf{2 4}$ and $1.87 \mathrm{~g}(43 \%)$ of epi-24. Data for $\mathbf{2 4}:{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.38-7.26(\mathrm{~m}, 6 \mathrm{H}), 5.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.49(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.94,162.18,151.22,141.38,137.47,128.41$ (2C), 128.39, 127.86, 127.69 (2C), 117.53, 102.82, 94.65, 83.19, 73.05, 72.48, 70.45, 61.21, 59.28, 20.62; HRMS (ESI+) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}] 446.1563$, found: 446.1576. Data for (2R,5R)-2-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-5-((R)-cyano(hydroxy)methyl)-4-methoxytetrahydrofuran-3-yl acetate (epi-24): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.38-7.27(\mathrm{~m}, 6 \mathrm{H}), 5.82(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ $(\mathrm{s}, 2 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.91, 162.39, 151.03, 140.34, 137.37, 128.41 (2C), 127.90, 127.77 (2C), 116.79, 102.81, 91.50, 83.44, 73.02, 72.41, 70.43, 61.44, 58.90, 20.60; HRMS (ESI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}] 446.1563$, found: 446.1569 .

(2S,3S,4S,5R,6R)-2-((1S)-((2R,5R)-4-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-methoxytetrahydrofuran-2-yl)(cyano)methoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S10). To a stirred suspension of $\mathbf{2 4}(0.72 \mathrm{~g}, 1.62 \mathrm{mmol}), \mathbf{1 4}(1.59 \mathrm{~g}, 3.24 \mathrm{mmol})$, MS3A $(2.2 \mathrm{~g})$ and SrCO_{3} $(1.20 \mathrm{~g}, 8.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.5 \mathrm{~mL})$ were added $\mathrm{AgBF}_{4}(0.16 \mathrm{~g}, 0.81 \mathrm{mmol})$ and NIS $(1.09 \mathrm{~g}, 4.86 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 13 h , the reaction mixture was added $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL})$ and passed through a silica gel pad (hexanes/EtOAc $=1 / 4$). The solution was concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc $=2 / 1-1 / 2$) to afford $\mathbf{S 1 0}(1.05 \mathrm{~g}, 80 \%)$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.39-7.28(\mathrm{~m}, 6 \mathrm{H}), 5.94(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.45(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.28(\mathrm{~m}, 3 \mathrm{H}), 5.19(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.16(\mathrm{~m}, 1 \mathrm{H})$, 4.77 (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.39-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=6.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.22 (dd, $J=12.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.13$ (m, 1H), 4.10 (s, 2H), 3.89 (ddd, $J=10.2,5.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.79,169.73,169.54,169.51,166.81,162.19,150.76,138.57,137.70,128.32$ (2C), 127.72, 127.70 (2C), 114.28, 103.37, 96.10, 90.33, 80.52, 77.61, 72.97, 72.29, 70.36, 70.00, 68.49, 68.01, 65.26, 64.29, 63.51, 59.37, 40.53, 20.70, 20.64, 20.62, 20.56; HRMS (ESI+) m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{ClN}_{3} \mathrm{O}_{17}[\mathrm{M}+\mathrm{H}]$ 810.2125, found: 810.2144.

(2R,3S,4S,5R,6R)-2-((1R)-1-((2S,5R)-4-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-methoxytetrahydrofuran-2-yl)-2-amino-2-oxoethoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S11). To a stirred solution of $\mathbf{S 1 0}(1.05 \mathrm{~g}, 1.30 \mathrm{mmol})$ in a 9:1 mixture of EtOH and $\mathrm{H}_{2} \mathrm{O}$ $(5.0 \mathrm{~mL})$ were added $\mathrm{HgCl}_{2}(0.70 \mathrm{~g}, 2.59 \mathrm{mmol})$ and acetaldoxime $(0.79 \mathrm{~mL}, 13.0 \mathrm{mmol})$. After being stirred for 14 h at r.t., the reaction mixture was concentrated in vacuo. The residue was quenched with aq. NaHCO_{3}, extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (hexanes/EtOAc $=1 / 2-\mathrm{CHCl}_{3} / \mathrm{MeOH}=96 / 4$) to afford S11 ($0.87 \mathrm{~g}, 81 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.43$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.71(\mathrm{~m}, 1 \mathrm{H})$,
$5.48(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.29-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~s}$, $2 \mathrm{H}), 4.42(\mathrm{dd}, J=12.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=12.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}$, $J=9.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}$, $3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.16,170.06,169.89,169.80,169.61,166.91,162.35,150.77,138.11,137.75,128.36$, 128.32 (2C), 127.69 (2C), 103.37, 97.07, 89.01, 81.18, 77.48, 73.01, 72.25, 70.32, 69.99, $68.81,68.73,65.20,63.60,58.88,40.59,21.06,20.78,20.67,20.64$; HRMS (ESI+) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{ClN}_{3} \mathrm{O}_{18}[\mathrm{M}+\mathrm{H}]$ 828.2230, found: 828.2252.

($2 R, 3 S, 4 S, 5 R, 6 R)$-2-((1R)-1-((2S,5R)-4-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-methoxytetrahydrofuran-2-yl)-2-amino-2-oxoethoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S12). To a solution of $\mathbf{S 1 1}(0.87 \mathrm{~g}, 1.05 \mathrm{mmol})$ in a $1: 1$ mixture of THF and $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added thiourea ($0.24 \mathrm{~g}, 3.16 \mathrm{mmol}$). After being stirred for 14 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated in vacuo. The residue was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=\right.$ 98/2-97/3-96/4) to afford S12 ($0.61 \mathrm{~g}, 77 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.44$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.34(\mathrm{brs}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{brs}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.39-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.25$ (m, 2H), $4.98(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{dt}, J=9.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-4.02$ $(\mathrm{m}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.51, 170.23, 170.19, 170.02, 169.87, 162.39, 150.74, 138.15, 137.75, 128.34 (2C), 127.71, 127.69 (2C), 103.25, 97.28, 89.41, 81.39, 77.51, 73.21, 72.44, 72.28, 70.31, 68.96, 68.79, $65.59,61.24,58.92,20.80,20.74,20.68,20.67$; HRMS (ESI+) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{17}$ $[\mathrm{M}+\mathrm{H}] 752.2514$, found: 752.2535 .

($2 R, 3 S, 4 S, 5 R, 6 R)$-2-((1R)-1-((2S,5R)-4-Acetoxy-5-(2,4-dioxo-3,4-dihydropyrimidin$\mathbf{1 (2 H)}$-yl)-3-methoxytetrahydrofuran-2-yl)-2-amino-2-oxoethoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (26). To a stirred solution of $\mathbf{S 1 2}(0.61 \mathrm{~g}, 0.81 \mathrm{mmol})$ and $\mathrm{AcOH}(0.12 \mathrm{~mL})$ in a $1: 1$ mixture of THF and ${ }^{i} \mathrm{PrOH}(6.0$ $\mathrm{mL})$ was added $\mathrm{Pd} / \mathrm{C}(0.49 \mathrm{~g}) . \mathrm{H}_{2}$ gas was introduced and the reaction mixture was stirred under H_{2} atmosphere. After being stirred for 5 h at r.t., the solution was filtered through Celite and concentrated in vacuo. The crude product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=97 / 3-92 / 8\right)$ to afford $26(0.39 \mathrm{~g}, 77 \%)$: ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 9.29$ (brs, 1H), 7.53 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.93 (brs, 1H), 6.00 (d, J $=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=3.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{dd}, J=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=12.1,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46$ (dd, $J=5.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=12.2,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (ddd, $J=7.8,5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.40(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.25$, $171.00,170.66,170.41,163.33,150.05,139.56,103.71,96.81,87.36,81.28,77.46,75.50$, $73.04,72.36,71.12,68.99,65.05,63.24,58.56,20.82,20.81,20.74,20.72$; HRMS (ESI+) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{16}[\mathrm{M}+\mathrm{H}]$ 632.1939, found: 632.1958.

(2S,3S,4S)-3,4-Diacetoxy-2-((1R)-1-((2S,5R)-4-acetoxy-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-methoxytetrahydrofuran-2-yl)-2-amino-2-oxoethoxy)-3,4-dihydro-2H-pyran-6-carboxylic acid (32). To a stirred solution of 26 ($0.39 \mathrm{~g}, 0.62$ $\mathrm{mmol})$ and DMSO $(0.44 \mathrm{~mL}, 6.23 \mathrm{mmol})$ in a $5: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}(3.1 \mathrm{~mL})$ was added SO_{3}. pyridine $(0.99 \mathrm{~g}, 6.23 \mathrm{mmol})$. After being stirred for 1 h at r.t., the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}(0.62 \mathrm{~mL})$ and passed through a silica gel pad $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=\right.$ $93 / 7)$. To a stirred solution of the crude mixture in ${ }^{t} \mathrm{BuOH}(2.0 \mathrm{~mL})$ and 2-methyl-2-butene $(1.0 \mathrm{~mL})$ was added a solution of $\mathrm{NaClO}_{2}(0.28 \mathrm{~g}, 3.11 \mathrm{~mol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.49 \mathrm{~g}$, $3.11 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. After being stirred for 2 h at r.t., the reaction extracted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9 / 1)$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=9 / 1\right)$ to afford $32(0.30 \mathrm{~g}, 82 \%):{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Methanol- d_{4}) $\delta 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.80-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 173.04,172.10,171.63,171.35,168.19,166.08,152.15,148.06$, 141.34, 104.67, 103.84, 97.92, 88.21, 84.13, 79.65, 76.98, 75.16, 65.37, 65.05, 59.67, 20.77, 20.57, 20.44; HRMS (ESI+) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{15}[\mathrm{M}+\mathrm{H}] 586.1520$, found: 586.1543 .

34
(4-(4-(4-(Trifluoromethoxy)phenoxy)piperidin-1-yl)phenyl)methanamine (34). The title compound was synthesized according to the reported procedure ${ }^{2}:{ }^{1} \mathrm{H} N \mathrm{NR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 4 \mathrm{H}), 4.43(\mathrm{tt}$, $J=7.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 2H), 3.49 (ddd, $J=11.7,7.2,3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.09 (ddd, $J=12.2$, 8.2, 3.6 Hz, 2H), 2.15-2.06 (m, 2H), $1.98-1.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,150.2,142.8,134.6,128.0$ (2C), 122.5 (2C), 116.83 (2C), 116.76 (2C), 72.9, 46.9 (2C), 45.9, 30.4 (2C); HRMS (ESI+) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}] 367.1633$, found 367.1628 .

3-((Benzyloxy)methyl)-1-((2R,5R)-5-(hydroxymethyl)-3,4-
dimethoxytetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (S13). The title compound was synthesized according to the reported procedure ${ }^{1}:{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.74(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.73 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{dt}, J=6.9,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{dd}, J=6.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=12.3,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.72,150.80,139.99$, 137.74, 128.29 (2C), 127.70, 127.63 (2C), 101.61, 90.64, 82.30, 81.06, 76.53, 72.30, 70.19, 60.93, 58.41, 58.15; HRMS (ESI+) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]$ 393.1662, found 393.1675.

(2S)-2-((2R,5R)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-hydroxyacetonitrile (25). To a stirred solution of $\mathbf{S 1 3}(1.76 \mathrm{~g}, 4.48 \mathrm{mmol})$ and dichloroacetic acid $(0.55 \mathrm{~mL}, 6.73 \mathrm{mmol})$ in a $10: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMSO (19.7 mL) was added DIC $(1.40 \mathrm{~mL}, 8.97 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for $3 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(0.18 \mathrm{~mL})$, $\mathrm{TMSCN}(0.85 \mathrm{~mL}, 8.97 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(2.65$
$\mathrm{mL}, 8.97 \mathrm{mmol}$) were added to the reaction solution. After being stirred for 6 h at r.t., the solution was concentrated in vacuo. The crude mixture was suspended to a $4: 1$ mixture of AcOH and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. After being stirred for 10 h at r.t., the solution was concentrated in vacuo. The residue was quenched with aq. NaHCO_{3}, extracted with EtOAc. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc $=2 / 1-1 / 2$) to afford $0.73 \mathrm{~g}(39 \%)$ of $\mathbf{2 5}$ and $0.73 \mathrm{~g}(39 \%)$ of epi-25. Data for 25: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.39-7.30(\mathrm{~m}, 6 \mathrm{H}), 5.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 5.47-5.44$ $(\mathrm{m}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=4.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}) $\delta 162.14,151.22,141.68,137.54,128.40$ (2C), 127.84, 127.67 (2C), 117.49, 102.76, 94.96, 82.95, 79.40, 77.56, 72.50, 70.39, 61.69, 58.60, 58.44; HRMS (ESI+) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}] 418.1614$, found 418.1633. Data for (2R)-2-($\left.\mathbf{(2 R , 5 R}\right)-5-(\mathbf{3 -}$
((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-hydroxyacetonitrile (epi-25): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.38-7.27(\mathrm{~m}, 6 \mathrm{H}), 5.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.47(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H})$, $4.34-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{dd}, J=5.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.26,151.07,141.31,137.41,128.41,127.90,127.71,116.84$, 102.73, 93.60, 83.46, 79.51, 77.23, 72.49, 70.38, 61.91, 58.49, 58.11; HRMS (ESI+) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}] 418.1614$, found 418.1638.

(2S,3S,4S,5R,6R)-2-((1S)-((2R,5R)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)(cyano)methoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S14). To a stirred suspension of $25(0.20 \mathrm{~g}, 0.48 \mathrm{mmol}), \mathbf{1 4}(0.47 \mathrm{~g}, 0.95 \mathrm{mmol})$, MS3A $(0.60 \mathrm{~g})$ and $\mathrm{SrCO}_{3}(0.35 \mathrm{~g}, 2.39 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.9 \mathrm{~mL})$ were added $\mathrm{AgBF}_{4}(0.047 \mathrm{~g}, 0.24 \mathrm{mmol})$ and NIS $(0.21 \mathrm{~g}, 0.95 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 20 h , the reaction mixture was added $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL})$ and passed through a silica gel pad (hexanes $/ E t O A c=1 / 4$). The solution was concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc $=2 / 1-1 / 2$) to afford $\mathbf{S 1 4}(0.32 \mathrm{~g}, 87 \%)$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}$, $J=3.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=10.1$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=7.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-$ $4.27(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J$ $=10.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.76,169.50,169.46,166.84,162.35,150.71,137.75,137.25$,
128.31 (2C), 127.71 (2C), 114.36, 103.02, 95.84, 89.16, 80.49, 80.45, 79.68, 72.28, 70.25, $70.21,68.50,67.79,65.03,63.44,62.75,58.57,58.08,40.50,20.68,20.63,20.62,20.53$; HRMS (ESI+) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{ClN}_{3} \mathrm{O}_{16}[\mathrm{M}+\mathrm{H}] 782.2175$, found 782.2197.

(2R,3S,4S,5R,6R)-2-((1R)-2-Amino-1-((2S,5R)-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-oxoethoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S15). To a stirred solution of $\mathbf{S 1 4}(0.32 \mathrm{~g}, 0.42 \mathrm{mmol})$ in a $9: 1$ mixture of EtOH and $\mathrm{H}_{2} \mathrm{O}(4.2 \mathrm{~mL})$ were added $\mathrm{HgCl}_{2}(0.23 \mathrm{~g}, 0.83 \mathrm{mmol})$ and acetaldoxime $(0.25 \mathrm{~mL}, 4.15 \mathrm{mmol})$. After being stirred for 11 h at r.t., the reaction mixture was concentrated in vacuo. The residue was quenched with aq. NaHCO_{3}, extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (hexanes/EtOAc $=1 / 2-\mathrm{CHCl}_{3} / \mathrm{MeOH}=96 / 4$) to afford S15 (0.29 g, 88\%): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.59$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 $7.27(\mathrm{~m}, 5 \mathrm{H}), 6.35(\mathrm{brs}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (brs, $1 \mathrm{H}), 5.48(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=3.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H})$, $4.48(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=12.2,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.27(\mathrm{dd}, J=12.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{dd}, J=4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}$, $1 \mathrm{H}), 3.76(\mathrm{dd}, J=8.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, 2.03 (s, 3H); HRMS (ESI+) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{ClN}_{3} \mathrm{O}_{17}[\mathrm{M}+\mathrm{H}] 800.2281$, found 800.2314 .

(2R,3S,4S,5R,6R)-2-((1R)-2-Amino-1-((2S,5R)-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-oxoethoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S16). To a solution of $\mathbf{S 1 5}(0.29 \mathrm{~g}, 0.37 \mathrm{mmol})$ in a $1: 1$ mixture of THF and $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added thiourea ($0.065 \mathrm{~g}, 0.86 \mathrm{mmol}$). After being stirred for 8 h at $50{ }^{\circ} \mathrm{C}$, the reaction mixture was concentrated in vacuo. The residue was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude
product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=98 / 2\right.$ - 97/3 96/4) to afford $\mathbf{S 1 6}$ ($0.21 \mathrm{~g}, 78 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.61$ (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.43(\mathrm{brs}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, 1 H), 5.84 (brs, 1H), 5.47 (d, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.42$ (dd, $J=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.48-4.43$ $(\mathrm{m}, 2 \mathrm{H}), 3.91(\mathrm{dd}, J=4.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.67-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.33,170.18,170.15,170.13,162.57,150.64,137.77,137.44$, 128.32 (2C), 127.71 (2C), 102.65, $96.73,89.00,80.73,80.69,75.21,72.29,72.26,70.16$, $68.81,68.76,65.49,61.03,58.46,57.73,20.80,20.74,20.67$; HRMS (ESI +) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{16}[\mathrm{M}+\mathrm{H}] 724.2565$, found 724.2599 .

(2R,3S,4S,5R,6R)-2-((1R)-2-Amino-1-((2S,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin$1(2 H)$-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-oxoethoxy)-6-
(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (27). To a stirred solution of $\mathbf{S 1 6}(0.21 \mathrm{~g}, 0.29 \mathrm{mmol})$ and $\mathrm{AcOH}(0.04 \mathrm{~mL})$ in a $1: 1$ mixture of THF and ${ }^{i} \mathrm{PrOH}(2.0$ mL) was added $\mathrm{Pd} / \mathrm{C}(0.16 \mathrm{~g}) . \mathrm{H}_{2}$ gas was introduced and the reaction mixture was stirred under H_{2} atmosphere. After being stirred for 4 h at r.t., the solution was filtered through Celite and concentrated in vacuo. The crude product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=97 / 3-92 / 8\right)$ to afford $27(0.14 \mathrm{~g}, 82 \%)$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.56$ (brs, 1H), 7.62 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (brs, 1H), 6.05 (brs, $1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=9.6,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=12.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.66,171.02,170.90,170.52,163.75,149.93,138.98,103.07$, $96.65,87.79,81.38,80.68,76.11,73.90,72.11,71.18,68.76,64.67,62.78,58.35,57.46$, 20.81 (2C), 20.76; HRMS (ESI+) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{15}[\mathrm{M}+\mathrm{H}] 604.1990$, found 604.2014 .

(2S,3S,4S)-3,4-Diacetoxy-2-((1R)-2-amino-1-((2S,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-oxoethoxy)-3,4-dihydro-2H-pyran-6-carboxylic acid (33). To a stirred solution of 27 ($0.14 \mathrm{~g}, 0.23 \mathrm{mmol}$) and DMSO ($0.17 \mathrm{~mL}, 2.34 \mathrm{mmol})$ in a $5: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~mL})$ was added SO_{3}-pyridine $(0.39 \mathrm{~g}, 2.34 \mathrm{mmol})$. After being stirred for 3 h at r.t., the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}(0.23 \mathrm{~mL})$ and passed through a silica gel pad $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=92 / 8\right)$. To a stirred solution of the crude mixture in ${ }^{t} \mathrm{BuOH}(1.0 \mathrm{~mL})$ and 2-methyl-2-butene $(0.5 \mathrm{~mL})$ was added a solution of $\mathrm{NaClO}_{2}(0.11 \mathrm{~g}, 1.17 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.18 \mathrm{~g}, 1.17$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$. After being stirred for 5 h at r.t., the reaction extracted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9 / 1)$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=9 / 1\right)$ to afford $33(0.11 \mathrm{~g}, 85 \%)$: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Methanol- d_{4}) $\delta 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{t}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=4.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{ddd}, J=4.7,3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 173.20,172.12,171.62,168.06,166.08,152.12,148.47,141.11$, $104.32,103.83,98.17,87.88,83.90,83.29,78.97,77.77,65.15,65.06,58.88,58.65,20.76$, 20.58; HRMS (ESI+) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{14}[\mathrm{M}+\mathrm{H}] 558.1571$, found 558.1595.

HPLC analysis of I-CAP (3)

Area \% purity: 97.7%
Conditions:
column: Kinetex ${ }^{\circledR}\left(\mathrm{C} 18,5 \mu \mathrm{~m}, 100 \AA, 250 \mathrm{x} 4.60 \mathrm{~mm}\right.$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 mL/min, UV: 254 nm

HPLC analysis of DM-CAP (4)

Area \% purity: 97.8%
Conditions:
column: Kinetex® (C18, $5 \mu \mathrm{~m}, 100 \AA, 250 \mathrm{x} 4.60 \mathrm{~mm}$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}$

HPLC analysis of CPPB (5)

Area \% purity: 95.2\%
Conditions:
column: Kinetex® (C18, $5 \mu \mathrm{~m}, 100 \AA, 250 \mathrm{x} 4.60 \mathrm{~mm}$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}$

HPLC analysis of I-CPPB (6)

Area \% purity: 98.9%
Conditions:
column: Kinetex® (C18, $5 \mu \mathrm{~m}, 100 \AA, 250 \mathrm{x} 4.60 \mathrm{~mm}$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 mL/min, UV: 254 nm

HPLC analysis of OM-CPPB (7)

Area \% purity: 97.1%
Conditions:
column: Kinetex® (C18, $5 \mu \mathrm{~m}, 100 \AA, 250 \times 4.60 \mathrm{~mm}$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 mL/min, UV: 254 nm

HPLC analysis of DM-CPPB (8)

Area \% purity: 97.6\%
Conditions:
column: Kinetex ${ }^{\circledR}\left(\mathrm{C} 18,5 \mu \mathrm{~m}, 100 \AA, 250 \mathrm{x} 4.60 \mathrm{~mm}\right.$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 mL/min, UV: 254 nm

HPLC analysis of CPPA (9)

Area \% purity: 96.0%
Conditions:
column: Kinetex® (C18, $5 \mu \mathrm{~m}, 100 \AA, 250 \mathrm{x} 4.60 \mathrm{~mm}$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}$

HPLC analysis of I-CPPA (10)

Area \% purity: 97.9\%
Conditions:
column: Kinetex® (C18, $5 \mu \mathrm{~m}, 100 \AA, 250 \mathrm{x} 4.60 \mathrm{~mm}$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}$

HPLC analysis of A500359F

Area \% purity: 95.5\%
Conditions:
column: Kinetex® (C18, $5 \mu \mathrm{~m}, 100 \AA, 250 \mathrm{x} 4.60 \mathrm{~mm}$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}$

Synthesis of CPPB (5) from A500359F

To a stirred solution of A-500359F ($11 \mathrm{mg}, 0.024 \mathrm{mmol}$), 34 ($26 \mathrm{mg}, 0.072 \mathrm{mmol}$), Glyceroacetonide-Oxyma ($16 \mathrm{mg}, 0.072 \mathrm{mmol}$) and NMM ($26 \mathrm{~mL}, 0.24 \mathrm{mmol}$) in DMF $(0.49 \mathrm{~mL})$ was added EDCI ($23 \mathrm{mg}, 0.12 \mathrm{mmol}$). After being stirred for 5 h at r.t., the reaction mixture was filtered, and diluted with water. The product was extracted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9 / 1)$. The combined extracts were derived over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude mixture was purified by DOWEX $50 \mathrm{Wx} 4\left(\mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}=4: 1\right)$ followed by reverse-phase HPLC [column: Luna ($\mathrm{C}_{18}, 10 \mathrm{~mm}, 100 \AA, 250 \times 10 \mathrm{~mm}$), solvents: $65: 35 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: $3.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}$, retention time: 18 min] to afford $5(17 \mathrm{mg}, 92 \%)$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.20 (dd, $J=10.9,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.98$ (dd, $J=3.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dp}, J=7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 3 \mathrm{H}), 3.19(\mathrm{~s}$, $3 \mathrm{H}), 3.08$ (ddd, $J=12.3,8.6,3.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.86$ (dtd, $J=12.2,8.3,3.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 173.68,166.16,163.31,157.62,152.18,152.08$, $144.15,141.83,130.91,129.76$ (2C), 123.58 (2C), 118.03 (4C), 109.58, 102.74, 100.64, 90.83, 83.32, 80.35, 77.51, 74.27, 74.01, 67.61, 63.48, 58.61, 48.20 (2C), 43.51, 31.47 (2C); HRMS (ESI+) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]$ 808.2653, found 808.2674.

HPLC analysis of CPPB (5) synthesized from A500359F

Area \% purity: 98.3\%
Conditions:
column: Kinetex® (C18, $5 \mu \mathrm{~m}, 100 \AA, 250 \mathrm{x} 4.60 \mathrm{~mm}$), solvents: $30: 70 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}$

Bacterial strains and growth of bacteria

Mycobacterium smegmatis (ATCC 607) and E. coli (ATCC 10798) were obtained from American Type Culture Collection (ATCC). Mycobacterium avium 2285, Myobacterium kansasii 824, Mycobacterium abscessus DJO-44273, and Mycobacterium tuberculosis H37Rv were acquired from EBI. A single colony of Mycobacterium spp. was obtained on Difco Middlebrook 7H10 nutrient agar enriched with albumin, dextrose, and catalase (ADC). The others were obtained on the recommended agar media. A single colony of E. coli were grown on tryptic soy agar for 24 h at $37^{\circ} \mathrm{C}$ in a static incubator and cultured in tryptic soy broth until log phase to be an optical density (OD) of 0.2-0.5. The OD was monitored at 600 and 570 nm using a $96-$ well microplate reader.

MIC assays

Minimum inhibitory concentrations were determined by broth dilution microplate alamar blue assay or by OD measurement. All compounds were stored in DMSO or water (1 $\mathrm{mg} / 100 \mu \mathrm{~L}$ concentration). This concentration was used as the stock solution for all MIC studies. Each compound from stock solution was placed in the first well of a sterile 96 well plate and a serial dilution was conducted with the culturing broth (total volume of $10 \mu \mathrm{~L}$). The bacterial suspension at \log phase $(190 \mu \mathrm{~L})$ was added to each well (total volume of $200 \mu \mathrm{~L}$), and was incubated for 24 h at $37^{\circ} \mathrm{C} .20 \mu \mathrm{~L}$ of resazurin (0.02%) was added to each well and incubated for 4 h for Mycobacterium spp. (National Committee for Clinical Laboratory Standards (NCCLS) method (pink = growth, blue = no visible growth)). The OD measurements were performed for all experiments prior to colorimetric. The MIC values were determined according to the colorimetric assays using resazurin. The absorbance of each well was also measured at 570 and 600 nm via UV-Vis.

MraY assays

MraY assay substrates, Park's nucleotide- N^{ε} - C_{6}-dansylthiourea and neryl phosphate, were chemically synthesized according to the reported procedures. ${ }^{3}$

Park's nucleotide- N^{ε} - C_{6}-dansylthiourea (2 mM stock solution, $1.88 \mu \mathrm{~L}$), $\mathrm{MgCl}_{2}(0.5 \mathrm{M}, 5$ $\mu \mathrm{L}), \mathrm{KCl}(2 \mathrm{M}, 5 \mu \mathrm{~L})$, Triton X100 ($0.5 \%, 5.63 \mu \mathrm{~L}$), Tris-HCl buffer ($\mathrm{pH} 8.0,50 \mathrm{mM}$), neryl phosphate ($0.1 \mathrm{M}, 2.25 \mu \mathrm{~L}$), and inhibitor molecule ($0-50 \mu \mathrm{~g} / \mathrm{mL}$ in Tris- HCl buffer)
were placed in a 1.5 mL Eppendorf tube. To a stirred reaction mixture, P-60 $(10 \mu \mathrm{~L})$ was added (total volume of reaction mixture: $50 \mu \mathrm{~L}$ adjust with Tris- HCl buffer). The reaction mixture was incubated for 2 h at room temperature $\left(26{ }^{\circ} \mathrm{C}\right.$) and quenched with CHCl_{3} $(100 \mu \mathrm{~L})$. Two phases were mixed via vortex and centrifuged at $25,000 \mathrm{xg}$ for 10 min . The upper aqueous phase was assayed via reverse-phase HPLC. The water phase ($10 \mu \mathrm{~L}$) was injected into HPLC (solvent: $\mathrm{CH}_{3} \mathrm{CN} / 0.05 \mathrm{M}$ aq. $\mathrm{NH}_{4} \mathrm{HCO}_{3}=25: 75$; UV: 350 nm ; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; column: Kinetex $5 \mu \mathrm{~m} \mathrm{C8}, 100 \mathrm{~A}, 150 \times 4.60 \mathrm{~mm}$), and the area of the peak for lipid I-neryl derivative was quantified to obtain the IC_{50} value. The IC_{50} values were calculated from plots of the percentage product inhibition versus the inhibitor.

WecA assays

WecA assay substrate, UDP-Glucosamine-C6-FITC was chemically synthesized according to the reported procedures. ${ }^{4}$

UDP-Glucosamine-C6-FITC (2 mM stock solution, $0.56 \mu \mathrm{~L}$), $\mathrm{MgCl}_{2}(0.5 \mathrm{M}, 4 \mu \mathrm{~L}), \beta$ mercaptoethanol ($50 \mathrm{mM}, 5 \mu \mathrm{~L}$), CHAPS ($5 \%, 11.25 \mu \mathrm{~L}$), Tris-HCl buffer ($\mathrm{pH} 8.0,50$ mM), undecaprenyl phosphate ($4 \mathrm{mM}, 1.4 \mu \mathrm{~L}$), and inhibitor molecule ($0-50 \mu \mathrm{~g} / \mathrm{mL}$ in Tris- HCl buffer) were place in a $1.5 \mu \mathrm{~L}$ Eppendorf tube. To a stirred reaction mixture, P$60(10 \mu \mathrm{~L})$ was added (total volume of reaction mixture: $50 \mu \mathrm{~L}$ adjust with Tris- HCl buffer). The reaction mixture was incubated for 2 h at $37^{\circ} \mathrm{C}$ and quenched with n -butanol ($150 \mu \mathrm{~L}$). Two phases were mixed via vortex and centrifuged at $10,000 \mathrm{xg}$ for 3 min . The upper organic phase was assayed via reverse-phase HPLC. The organic phase ($30 \mu \mathrm{~L}$) was injected into HPLC (solvent: gradient elution of $85: 15$ to $95: 5 \mathrm{MeOH} / 0.05 \mathrm{M}$ aq. $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ over 20 min ; UV: 485 nm ; flow rate: $0.5 \mathrm{ml} / \mathrm{min}$; column: Kinetex $5 \mu \mathrm{~m} \mathrm{C} 8$, $100 \AA$ Å, $150 \times 4.60 \mathrm{~mm}$), and the area of the peak for C55-P-P-glucosamine-C ${ }_{6}$-FITC was quantified to obtain the IC_{50} value. The IC_{50} values were calculated from plots of the percentage product inhibition versus the inhibitor concentration.

AglH assays

AglH assays were performed as the procedure described for WecA assays, but used MjAglH and α-dihydroundecaprenyl phosphate (C55-dolichyl phosphate) instead of WecA and undecaprenyl phosphate. ${ }^{5}$

UDP-Glucosamine-C6-FITC (2 mM stock solution, $0.56 \mu \mathrm{~L}$), $\mathrm{MgCl}_{2}(0.5 \mathrm{M}, 4 \mu \mathrm{~L}$), β mercaptoethanol ($50 \mathrm{mM}, 5 \mu \mathrm{~L}$), CHAPS ($5 \%, 11.25 \mu \mathrm{~L}$), Tris-HCl buffer ($\mathrm{pH} 8.0,50$ mM), C55-dolichyl phosphate ($4 \mathrm{mM}, 1.4 \mu \mathrm{~L}$), and inhibitor molecule ($0-50 \mu \mathrm{~g} / \mathrm{mL}$ in Tris- HCl buffer) were place in a 1.5 mL Eppendorf tube. To a stirred reaction mixture, AglH solution ($10 \mu \mathrm{~L}$) was added (total volume of reaction mixture: $50 \mu \mathrm{~L}$ adjust with Tris- HCl buffer). The reaction mixture was incubated for 2 h at $37^{\circ} \mathrm{C}$ and quenched with n-butanol ($150 \mu \mathrm{~L}$). Two phases were mixed via vortex and centrifuged at $10,000 \mathrm{xg}$ for 3 min . The upper organic phase was assayed via reverse-phase HPLC. The organic phase ($30 \mu \mathrm{~L}$) was injected into HPLC (solvent: gradient elution of 85:15 to $95: 5 \mathrm{MeOH} / 0.05 \mathrm{M}$ aq. $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ over 20 min ; UV: 485 nm ; flow rate: $0.5 \mathrm{ml} / \mathrm{min}$; column: Kinetex $5 \mu \mathrm{~m} \mathrm{C8}$, $100 \AA, 150 \times 4.60 \mathrm{~mm}$), and the area of the peak for C55-P-P-glucosamine-C ${ }_{6}$-FITC was quantified to obtain the IC_{50} value. The IC_{50} values were calculated from plots of the percentage product inhibition versus the inhibitor concentration.

DPAGT1 assays

DPAGT1 assays were performed as the procedure described for AglH assays, but used DPAGT1. ${ }^{6}$

UDP-Glucosamine-C $\mathbf{6}_{6}$-FITC
UDP-Glucosamine-C ${ }_{6}$-FITC (2 mM stock solution, $0.56 \mu \mathrm{~L}$), $\mathrm{MgCl}_{2}(0.5 \mathrm{M}, 4 \mu \mathrm{~L}), \beta$ mercaptoethanol ($50 \mathrm{mM}, 5 \mu \mathrm{~L}$), CHAPS ($20 \%, 2.5 \mu \mathrm{~L}$), Tris-HCl buffer ($\mathrm{pH} 8.0,50 \mathrm{mM}$), C_{55}-dolichyl phosphate ($4 \mathrm{mM}, 1.68 \mu \mathrm{~L}$), and inhibitor molecule ($0-50 \mu \mathrm{~g} / \mathrm{mL}$ in TrisHCl buffer) were place in a 1.5 mL Eppendorf tube. To a stirred reaction mixture, DPAGT1 solution ($10 \mu \mathrm{~L}$) was added (total volume of reaction mixture: $50 \mu \mathrm{~L}$ adjust with Tris- HCl
buffer). The reaction mixture was incubated for 2 h at $37{ }^{\circ} \mathrm{C}$ and quenched with n-butanol $(150 \mu \mathrm{~L})$. Two phases were mixed via vortex and centrifuged at $10,000 \mathrm{xg}$ for 3 min . The upper organic phase was assayed via reverse-phase HPLC. The organic phase ($30 \mu \mathrm{~L}$) was injected into HPLC (solvent: gradient elution of $85: 15$ to $95: 5 \mathrm{MeOH} / 0.05 \mathrm{M}$ aq. $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ over 20min.; UV: 485 nm ; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; column: Kinetex $5 \mu \mathrm{~m}$ C8, $100 \AA, 150 \times 4.60 \mathrm{~mm}$), and the area of the peak for C_{55}-P-P-glucosamine-C C_{6}-FITC was quantified to obtain the IC_{50} value. The IC_{50} values were calculated from plots of the percentage product inhibition versus the inhibitor concentration.

Scratch assay

A confluent monolayer was formed in 24 -well plates. The monolayer was scratched by a sterile $200 \mu \mathrm{~L}$ pipette tip and washed with PBS to remove cell debris. Complete medium with CPPB (5) $(0,0.05,0.1,0.2 \mu \mathrm{M})$ were added and scratched areas were photographed with microscope. The scratched cells were incubated at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. After 24 h , medium was removed and cells were stained with a 1:1 mixture of crystal violet and PBS for 5min, washed with PBS twice, and photographed with microscope. Wound areas were measured and recovered areas were calculated.

Figure S1A. Analysis of migration inhibition of PANC-1.

Figure S1B. Analysis of migration inhibition of PD002.

Figure S1C. Comparisons of migration inhibition of PD002 by treatment with CPPB, gemcitabine, and tunicamycin in wound healing (scratch) assays. ${ }^{\text {a }}$

${ }^{\mathrm{a}} \mathrm{All}$ images were acquired at 24 h .

Figure S1D. Analysis of migration inhibition of AsPC-1.

Figure S1E. Analysis of migration inhibition of Capan-1.

PBS (0h)			CPPB $0.05 \mu \mathrm{M}$ (Oh)				CPPB 0.1 MM (0h)				CPPB $0.20 \mu \mathrm{M}$ (0h)		
PBS (24h)									h)				
PBS			CPPB $0.05 \mu \mathrm{M}$				CPPB $0.1 \mu \mathrm{M}$				CPPB $0.2 \mu \mathrm{M}$		
	24h	\%closure	Oh	4h	\%closure			Oh	24h	\%closure	Oh	24h	\%closure
1.4625	1.1071	24.30085	1.5753	1.2823	18.59963			1.9965	1.5094	24.3977	1.3607	1.1076	18.60072
1.1401	0.6954	39.00535	1.1492	0.9745	15.20188			1.4587	1.1611	20.40173	1.1822	1.1231	4.999154
1.2529	0.9008	28.1028	1.377	1.1498	16.49964			1.1065	0.8974	18.89742	1.0793	0.9595	11.09979
1.1594	0.6922	40.29671	1.2096	0.9459	21.8006			1.3102	1.0521	19.69928	1.2914	1.121	13.19498
1.236	0.8801	28.7945	1.4973	1.2308	17.7987			1.3016	0.9788	24.80025	1.1568	1.0829	6.388313
1.2417	0.8431	32.10115	1.397	1.1749	15.89835			1.4161	1.0706	24.39799	1.2403	1.1981	3.402403
1.6172	1.1191	30.80015	1.0924	0.8302	24.0022			1.4164	1.2053	14.90398	1.3245	1.261	4.794262
1.2064	0.8891	26.30139	1.7816	1.4556	18.29816			1.3186	1.0945	16.9953	1.1854	1.1101	6.352286
1.1487	0.8179	28.79777	1.6739	1.2755	23.8007			1.2036	0.9665	19.69924	1.208	1.1611	3.88245
1.1336	0.7402	34.7036	1.3164	1.0518	20.10027			1.3646	1.0426	23.59666	1.1683	1.1025	5.632115
1.0483	0.7548	27.99771	2.1668	1.7248	20.39874			1.2981	1.0826	16.60119	1.2234	1.1868	2.991663
1.2839	0.9346	27.20617	1.0901	0.8339	23.50243			1.2879	1.0007	22.29987	1.1968	1.1636	2.774064
1.1493	0.87	24.30175	1.7889	1.195	33.19917			1.1809	0.8609	27.09798	1.2673	1.2214	3.621873
1.6869	1.2568	25.49647	1.5153	1.2077	20.29961			1.5736	1.2951	17.69827	1.2416	1.1976	3.543814
1.7306	1.3672	20.9985	1.3192	1.0686	18.99636			1.3702	1.1455	16.39907			
1.4137	1.0772	23.80279						1.3664	1.1587	15.20053			
1.5953	1.1135	30.20122											
1.3062	1.0319	20.99985											
1.4962	1.1267	24.6959											
1.7921	1.3781	23.10139											
1.504	1.1551	23.19814											
1.5016	1.0737	28.49627											

Figure S1F. Analysis of migration inhibition of SiHa.

Figure S1G. Analysis of migration inhibition of HCT-116.

PBS (0h)			CPPB $0.05 \mu \mathrm{M}$ (0h)		CPPB 0.1 M (0h)			CPPB $0.20 \mu \mathrm{M}$ (0h)		
PBS (24h)			CPPB $0.05 \mu \mathrm{M}$ (24h)		CPPB $0.1 \mu \mathrm{M}$ (24h)			CPPB 0.20 M (24h)		
PBS			CPPB $0.05 \mu \mathrm{M}$		CPPB $0.1 \mu \mathrm{M}$			CPPB $0.2 \mu \mathrm{M}$		
Oh	24h	\%closure	Oh 24h	\%closure	Oh	24h	\%closure	Oh	24h	\%closure
1.5053	1.0603	29.56221	1.42220 .9657	32.09816	2.0629	1.4358	30.39895	1.6537	1.1708	29.20119
1.6171	1.174	27.4009	1.44941 .0711	26.10046	1.23	0.8721	29.09756	1.9951	1.4644	26.60017
1.7035	1.1152	34.53478	1.64311 .1436	30.39985	1.3805	0.9401	31.90148	1.8349	1.3266	27.70178
1.6962	1.1195	33.99953	1.54391 .1903	22.90304	1.5635	1.0256	34.40358	1.8247	1.3794	24.40401
2.2438	1.611	28.20216	1.71761 .235	28.09735	1.5077	1.0584	29.80036	1.5477	1.3094	15.39704
1.59	1.1607	27	1.9351 .4261	26.29974	1.6479	1.2326	25.20177	1.4744	1.2296	16.60336
1.3777	0.9093	33.99869	1.4917 1.1217	24.80391	1.7368	1.1133	35.89936	1.4891	1.1793	20.80451
1.2339	0.8736	29.2001	1.5398 1.0147	34.10183	1.5942	1.1	30.99987	1.3503	1.1221	16.89995
1.2266	0.8549	30.30328	1.4451 .0751	25.59862	1.584	1.1389	28.09975	1.1726	1.0049	14.30155
1.4337	0.9692	32.39869	1.59861 .1302	29.30064	1.7505	1.2656	27.70066	1.1176	0.8784	21.40301
1.7329	1.2078	30.30181	1.50090 .9876	34.19948	1.9446	1.3126	32.50026	1.0392	0.7555	27.29985
1.1772	0.8582	27.0982	1.59851 .1605	27.40069	2.3824	1.6438	31.00235	1.0788	0.8695	19.40119
			1.80951 .1327	37.4026	2.6203	1.9311	26.30233	1.1234	0.874	22.20046
			$2.0571 \quad 1.4811$	28.00058	0.9566	0.6868	28.20406	1.0235	0.8597	16.00391
			2.32981 .7194	26.19967	0.9293	0.631	32.09943	0.9906	0.7836	20.89643
			2.32971 .7869	23.29914	1.0234	0.7123	30.39867	0.9532	0.7883	17.29962
			$1.9191 \quad 1.3856$	27.79949	0.9431	0.6771	28.20486			
			$1.8512 \quad 1.3347$	27.90082	0.9551	0.6113	35.99623			
			1.80851 .2822	29.10147	1.0398	0.6759	34.99711			
			1.88751 .2986	31.2						
			1.02560 .6584	35.80343						
			$1.0867 \quad 0.7596$	30.1003						
			$1.0506 \quad 0.7564$	28.00305						
			$0.9818 \quad 0.7108$	27.60236						
			$1.1131 \quad 0.7302$	34.39943						
			$0.9354 \quad 0.6651$	28.89673						
			$1.0654 \quad 0.8129$	23.70002						
			$0.9039 \quad 0.6481$	28.29959						

Immunofluorescent staining

A confluent monolayer was formed in Nunc ${ }^{\text {TM }}$ Lab-Tek $^{\text {TM }}$ II CC2 ${ }^{\text {TM }}$ chamber slide (8 well, Thermo Scientific, Cat. \# 154941PK). Complete medium with CPPB (5, 0-20 $\mu \mathrm{M}$) was added and incubated at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. After 24h (for snail and E-cadherin, 72h for DPAGT1), medium was removed and cells were washed with PBS (3 times), then fixed with 4% paraformaldehyde in PBS for 30 min at $4^{\circ} \mathrm{C}$. After washing with 0.2% Tween20/PBS for 3 times, permeabilized with 0.25% Triton X100 in PBS for 30 min at $4^{\circ} \mathrm{C}$. After washing with 0.2% Tween-20/PBS for 3 times, treated with blocking buffer (0.2% Tween$20,1 \%$ NGS, 1% BSA in PBS) for 2 h at $4^{\circ} \mathrm{C}$. Then the cells were treated with primary antibody (snail: Snail (C15D3) rabbit mAb (Cell Signaling Technology, Cat. \# 3879S), Ecadherin: E-Cadherin (4A2) mouse mAb (Cell Signaling Technology, Cat. \# 14472S), DPAGT1: DPAGT1 polyclonal antibody (Invitrogen, Cat. \# PA5-72704)) in blocking buffer ($0.4 \% \mathrm{v} / \mathrm{v}$) for overnight at $4^{\circ} \mathrm{C}$. The cells were washed with 0.2% Tween-20/PBS (3 times) and treated with secondary antibody (for snail and DPAGT1: goat anti-rabbit IgG $(\mathrm{H}+\mathrm{L})$ cross-adsorbed secondary antibody, Alexa Fluor 568 (Invitrogen, Cat. \# A11011), for E-cadherin: goat anti-mouse IgG (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor Plus 647 (Invitrogen, Cat. \# A32728)) in blocking buffer ($0.2 \% \mathrm{v} / \mathrm{v}$) for 2 h at r.t. in the dark. After another 3-times washing with 0.2% Tween-20/PBS, the cells were treated with DAPI Fluoromount- G^{\circledR} (SouthernBiotech, Cat. \# 0100-20) and covered with glass slide for fluorescence microscopy analysis.

Figure S2. Immunofluorescent staining: Effect of a DPAGT1 inhibitor, CPPB, on Snail in pancreatic cancer cells (AsPC-1 and Capan-1). ${ }^{\text {a }}$
A: Snail (AsPC-1)

${ }^{\text {a }}$ Fluorescent microscopy images at 40 x . The cells $\left(1 \times 10^{5-6}\right)$ were treated with CPPB $(0.05$, $0.2,2.0$, and $20 \mu \mathrm{M}$) or PBS for 24 h . The cells were treated with Snail (C15D3) rabbit mAb (Cell Signaling Technology), followed by goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor ${ }^{\text {TM }} 568$. DAPI (4',6-diamidino-2-phenylindole), a blue fluorescent DNA dye, was used to mark the nucleus.

Figure S3. Immunofluorescent staining: Effect of a DPAGT1 inhibitor, CPPB, on ECadherin in pancreatic cancer cells (AsPC-1 and Capan-1). ${ }^{\text {a }}$

A: E-Cadherin (AsPC-1)

${ }^{\text {a }}$ Fluorescent microscopy images at 40 x . The cells $\left(1 \times 10^{5-6}\right)$ were treated with CPPB $(0.05$, $0.2,2.0$, and $20 \mu \mathrm{M}$) or PBS for 24 h . The cells were treated with E-Cadherin (4A2) mouse mAb (Cell Signaling Technology), followed by goat anti-mouse $\operatorname{IgG}(\mathrm{H}+\mathrm{L})$ highly crossadsorbed secondary antibody, Alexa Fluor ${ }^{\text {TM }}$ Plus 647. DAPI (4',6-diamidino-2phenylindole), a blue fluorescent DNA dye, was used to mark the nucleus.

Figure S4. Immunofluorescent staining: The DPAGT1 expression level in the selected cancer cell lines (AsPC-1 and Capan-1) treated with CPPB. ${ }^{\text {a }}$
A: DPAGT1 (AsPC-1)

${ }^{\text {a }}$ Fluorescent microscopy images at 40 x . The cells $\left(1 \times 10^{5-6}\right)$ were treated with CPPB $(0.05$, $0.2,2.0$, and $20 \mu \mathrm{M}$) or PBS for 72 h . The cells were treated with DPAGT1 polyclonal antibody (Invitrogen, PA5-72704), followed by goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor ${ }^{\text {TM }} 568$. DAPI (4',6-diamidino-2-phenylindole), a blue fluorescent DNA dye, was used to mark the nucleus.

SDS-PAGE and Western blotting assay

The medium of the cells grown in 10 cm cell culture plate was removed, and the cells were washed once with PBS, and lysed with Pierce RIPA buffer (Thermo Scientific, Cat. \#
89901) containing 1x Pierce protease and phosphatase inhibitors (Thermo Scientific, Cat. \# 88668). The cell lysate was pelleted down at $15,200 \mathrm{xg}$ at $4^{\circ} \mathrm{C}$ for 30 min , the cell supernatant was transferred to a fresh Eppendorf tube, and 5 uL of sample was quantitated by using (Quick Start Bradford Dyed Reagent, Biorad, Cat. \# 500-0205). $30 \mu \mathrm{~L}$ (1.5 mg total protein $/ \mathrm{mL}$) of each protein sample was analyzed by SDS-PAGE (10% gel) followed by Western blotting, and chemiluminescence. Precision Plus Dual Color (Biorad, Cat. \# 161-0374) was used as protein standard marker. E-Cadherin (24E10) rabbit mAb (Cell Signaling Technology, Cat. \#3195), monoclonal anti-DPAGT1 antibody produced in mouse clone 1G1 (Sigma Aldrich, Cat. \#SAB1402754), β-actin (8H10D10) mouse mAb (Cell Signaling Technology, Cat. \#3700) and Snail (C15D3) rabbit mAb (Cell Signaling Technology, Cat. \#3879) were used as primary antibody. Anti-rabbit IgG, HRP-linked antibody (Cell Signaling Technology, Cat. \#7074) or anti-mouse IgG, HRP-linked antibody (Cell Signaling Technology, Cat. \#7076) were used as secondary antibody. Clarity Western ECL Substrate (Biorad, Cat. \# 170-5060) was used to develop the probe signal, and Classic Blue BX film (MidSci, Ref. \# 604 5983) was used for chemiluminescence.

Figure S5. Western blotting assay for selected cancer cell lines (PD002, PANC-1 and HCT-116) treated with CPPB. ${ }^{\text {a }}$

A: PD002 ${ }^{\text {b }}$

B: PANC-1 ${ }^{\text {c }}$

C: HCT-116 ${ }^{\text {d,f }}$

D: $\mathbf{S i H a}^{\mathrm{e}}$

${ }^{\text {a }}$ The relative expression level was quantified by using Image Studio ${ }^{\text {TM }}$ Lite quantification software. ${ }^{\text {b }}$ Exposure time: E-Cadherin (5min), DPAGT1 (15min), β-actin (30sec), Snail (2min). ${ }^{c}$ Exposure time: E-Cadherin (5min), DPAGT1 (15min), β-actin (2 sec), Snail (2min). ${ }^{d}$ Exposure time: E-Cadherin (5min), DPAGT1 (2min), β-actin (10sec), Snail (2min). ${ }^{e}$ Exposure time: β-actin (5sec), Snail (2min). ${ }^{\text {e }}$ The cell lysate for DPAGT1 was prepared by ultracentrifugation (130,000 xg for 1 h at $4^{\circ} \mathrm{C}$) and $30 \mu \mathrm{~L}$ of the lysate was analyzed.

Synergistic effect of CPPB with paclitaxel

The synergistic or antagonistic activities of CPPB (5) with paclitaxel were assessed in vitro via micro dilution broth checkerboard technique. PD002 cells ($180 \mu \mathrm{~L}, 1 \times 10^{4} / \mathrm{mL}$) were places in each well of a 96well plate. The cells were treated with a combination of CPPB $(0-50 \mu \mathrm{M})$ and paclitaxel $(5-0.024 \mu \mathrm{M})$, and cultured at $37{ }^{\circ} \mathrm{C}$ for 72 h under $5 \% \mathrm{CO}_{2}$. Antiproliferation kinetic of each well were monitored by using an IncuCyte Live-Cell Imaging System (Essen BioScience, Ann Arbor, MI).

Figure S6. Fractional Inhibitory Concentration (FIC) of a combination of CPPB and paclitaxel against a patient-derived pancreatic adenocarcinoma PD002. ${ }^{\text {a }}$
$\Sigma \mathrm{FIC}^{\mathrm{b}}$ index for the wells at growth-no growth interface.

	1	2	3	4	5	6	7	8	9	10	11	12	$\mathrm{C}_{\mathrm{A}}: \operatorname{CPPB}(\mu \mathrm{M})$
A	0.00195	0.00390	0.007813	0.01563	0.03125	0.06250	0.1250	0.2500	0.5000	1.0000	2.0000	4.0000	0
B	0.002239	0.004192	0.008098	0.01591	0.03154	0.06279	0.1253	0.2503	0.5003	1.0003	2.0003	4.0003	0.01
C	0.003382	0.005335	0.009241	0.01705	0.03268	0.06393	0.1264	0.2514	0.5014	1.0014	2.0014	4.0014	0.05
D	0.004810	0.006763	0.01067	0.01848	0.03411	0.06536	0.1279	0.2529	0.5029	1.0029	2.0029	4.0029	0.1
E	0.007667	0.009621	0.01353	0.02134	0.03696	0.06821	0.1307	0.2557	0.5057	1.006	2.0057	4.0057	0.2
F	0.05910	0.06105	0.06496	0.07277	0.08839	0.1196	0.1821	0.3071	0.5571	1.05714	2.0571	4.0571	2.0
G	0.5734	0.5753	0.5792	0.5871	0.6027	0.6339	0.6964	0.8214	1.0714	1.5714	2.5714	4.5714	20.0
H	1.4305	1.4325	1.4364	1.4442	1.4598	1.4911	1.5536	1.6786	1.9286	2.4286	3.4286	5.4286	50.0
	0.0024	0.0049	0.0098	0.020	0.039	0.078	0.16	0.31	0.63	1.25	2.5	5	C_{B} : Paclitaxel ($\mu \mathrm{M}$)

Highlighted in orange: growth, others: non-growth
${ }^{\text {a }}$ The IC_{50} values of CPPB and paclitaxel against PD002 are 35.0 and $1.25 \mu \mathrm{M}$, respectively. ${ }^{\mathrm{b}} \Sigma$ FIC is the sum of fractional inhibitory concentration calculated by the equation $\Sigma \mathrm{FIC}=$ $\mathrm{FIC}_{\mathrm{A}}+\mathrm{FIC}_{\mathrm{B}}=\mathrm{C}_{\mathrm{A}} / \mathrm{IC}_{50 \mathrm{~A}}+\mathrm{C}_{\mathrm{B}} / \mathrm{IC}_{50 \mathrm{~B}} . \mathrm{MIC}_{\mathrm{A}}$ and $\mathrm{MIC}_{\mathrm{B}}$: MIC of drugs A and B, C_{A} and
$C_{B}=$ concentrations of drugs A and B used in combination. In these interaction studies, Σ FIC of less than 0.5 represents synergistic activity.

CPPB $0 \mu \mathrm{M}$, Paclitaxel $0.63 \mu \mathrm{M}$

CPPB $2.0 \mu \mathrm{M}$, Paclitaxel $0.0024 \mu \mathrm{M}$

CPPB $50 \mu \mathrm{M}$, Paclitaxel $0.0024 \mu \mathrm{M}$

Computational methods - DPAGT1 inhibitor study

Protein preparation. All molecular modeling and docking studies were performed using the experimental structure of the human GPT (DPAGT1, H129 variant) with bound tunicamycin (PDB 6BW6). ${ }^{7}$ The biological unit was downloaded and prepared using the Protein Preparation Wizard of the Maestro Small Molecule Drug Discovery Suite (Schrödinger, LLC). ${ }^{8}$ Hydrogens were added, when applicable, and protonation and tautomeric states were assigned using the Epic program. ${ }^{9}$ Lone waters were removed and the protein was refined by optimizing H -bond assignments and performing a restrained minimization using MacroModel. ${ }^{10}$
Docking site preparation. The docking receptor grid was prepared using Schrödinger's Glide program. ${ }^{11,12}$ The docking grid was defined as $25 \AA$ region centroid of the bound tunicamycin compound. Van der Waals radius scaling was employed with a scaling factor of 1.0 and partial charge cutoff of 0.25 (default values). No docking constraints or excluded volumes were defined. Hydroxyl and thiol groups within close proximity to the bound tunicamycin compound ($\leq 3 \AA$) were defined as rotatable.
Inhibitor docking. Compounds were built and prepared for docking using the LigPrep program using default settings (Schrödinger, LLC). ${ }^{11}$ The DPAGT1 inhibitors, noninhibitors, and weak inhibitor reported herein were docked into the prepared protein using Schrödinger's Glide program using XP (extra precision) settings using the grid described above. ${ }^{13}$

Table S1. DPAGT1 inhibitors of capuramycin analogues possessing antimigratory activities of pancreatic cancer cell lines.

References

[1] Kurosu, M.; Li, K.; Crick, D. C. Concise synthesis of capuramycin. Org. Lett. 2009, 11, 2393-2396.
[2] Kang, S.; Kim, R. Y.; Seo, M. J.; Lee, S.; Kim, Y. M.; Seo, M.; Seo, J. J.; Ko, Y.; Choi, I.; Jang, J.; Nam, J.; Park, S.; Kang, H.; Kim, H. J.; Kim, J.; Ahn, S.; Pethe, K.; Nam, K.; No, Z.; Kim, J. Lead optimization of a novel series of imidazo[1,2-a]pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drugresistant anti-tuberculosis agent. J. Med. Chem. 2014, 57, 5293-5305.
[3] Siricilla, S.; Mitachi, K.; Skorupinska-Tudek, K.; Swiezewska, E; Kurosu, M. Biosynthesis of a water-soluble lipid I analogue and a convenient assay for translocase I, Anal. Biochem. 2014, 461, 36-45.
[4] Mitachi, K.; Siricilla, S.; Yang, D.; Kong, Y.; Skorupinska-Tudek, K.; Swiezewska, E.; Franzblau, S. G.; Kurosu, M. Fluorescence-based assay for polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) and identification of a novel antimycobacterial WecA inhibitors. Anal. Biochem. 2016, 512, 78-90.
[5] Mitachi, K.; Yun, H-G.; Kurosu, S. M.; Eslamimehr, S.; Lemieux, M. R.; Klaić, L.; Clemons, W. M.; Kurosu, M. Novel FR-900493 analogs that inhibit outgrowth of Clostridium difficile spores. ACS Omega 2018, 3, 1726-1739.
[6] Mitachi, K.; Kurosu, S. M.; Gillman, C. D.; Yun, H-G.; Clemons, W. M.; Kurosu, M. A practical synthesis of a novel DPAGT1 inhibitor, aminouridyl phenoxypiperidinbenzyl butanamide (APPB) for in vivo studies. MethodsX 2019, 6 , 2305-2321.
[7] Dong, Y. Y.; Wang, H.; Pike, A. C. W.; Cochrane, S. A.; Hamedzadeh, S.; Wyszyński, F. J.; Bushell, S. R.; Royer, S. F.; Widdick, D. A.; Sajid, A.; Boshoff, H. I.; Park, Y.; Lucas, R.; Liu, W. M.; Lee, S. S.; Machida, T.; Minall, L.; Mehmood, S.; Belaya, K.; Liu, W. W.; Chu, A.; Shrestha, L.; Mukhopadhyay, S. M. M.; Strain-Damerell, C.; Chalk, R.; Burgess-Brown, N. A.; Bibb, M. J.; Barry III, C. E.; Robinson, C. V.; Beeson, D.; Davis, B. G.; Carpenter, E. P. Structures of DPAGT1 explain glycosylation disease mechanisms and advance TB antibiotic design. Cell 2018, 175, 1045-1058.
[8] Schrödinger Release 2019-4: Maestro, Schrödinger, LLC, New York, NY, 2019.
[9] Greenwood, J. R.; Calkins, D.; Sullivan, A. P.; Shelley, J. C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 2010, 24, 591604.
[10] Schrödinger Release 2019-4: MacroModel, Schrödinger, LLC, New York, NY, 2019. [11] Schrödinger Release 2019-4: LigPrep, Schrödinger, LLC, New York, NY, 2019.
[12] Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: a new approach for rapid accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 25, 1739-1749.
[13]Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177-6196.

