Supporting Information

for

DPAGT1 Inhibitors of Capuramycin Analogues and Their Antimigratory Activities of Solid Tumors

Katsuhiko Mitachi,^a Rita G. Kansal,^b Kirk E. Hevener,^a Cody D. Gillman,^c Syed M.

Hussain,^b Hyun Gi Yun,^c Gustavo A. Miranda-Carboni,^d Evan S. Glazer,^b William M. Clemons Jr.,^c and Michio Kurosu^{*a}

^{*a*} Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Av, Memphis, TN 38163, USA

^b Department of Surgery and Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, 910 Madison St, Suite 300, Memphis, TN 38163, USA

^c Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Bld. Pasadena, CA 91125, USA

^d Department of Medicine, Division of Hematology-Oncology, University of Tennessee Health Science Center, 19 S. Manassas Av, Memphis, TN 38163, USA

mkurosu@uthsc.edu

Table of Contents

General ------S2

Experimental ------S3-S41

References ------S42

Copies of 1H and 13C NMR spectra-----S43-S144

General

All chemicals were purchased from commercial sources and used without further purification unless otherwise noted. THF, CH₂Cl₂, and DMF were purified via Innovative Technology's Pure-Solve System. All reactions were performed under an Argon atmosphere. All stirring was performed with an internal magnetic stirrer. Reactions were monitored by TLC using 0.25 mm coated commercial silica gel plates (EMD, Silica Gel 60F₂₅₄). TLC spots were visualized by UV light at 254 nm, or developed with ceric ammonium molybdate or anisaldehyde or copper sulfate or ninhydrin solutions by heating on a hot plate. Reactions were also monitored by using SHIMADZU LCMS-2020 with solvents: A: 0.1% formic acid in water, B: acetonitrile. Flash chromatography was performed with SiliCycle silica gel (Purasil 60 Å, 230-400 Mesh). Proton magnetic resonance (¹H-NMR) spectral data were recorded on 400, and 500 MHz instruments. Carbon magnetic resonance (¹³C-NMR) spectral data were recorded on 100 and 125 MHz instruments. For all NMR spectra, chemical shifts (δH , δC) were quoted in parts per million (ppm), and J values were quoted in Hz. ¹H and ¹³C NMR spectra were calibrated with residual undeuterated solvent (CDCl₃: $\delta H = 7.26$ ppm, $\delta C = 77.16$ ppm; CD₃CN: $\delta H = 1.94$ ppm, $\delta C = 1.32$ ppm; CD₃OD: $\delta H = 3.31$ ppm, $\delta C = 49.00$ ppm; DMSO-d₆: $\delta H = 2.50$ ppm, $\delta C = 39.52$ ppm; D₂O: $\delta H = 4.79$ ppm) as an internal reference. The following abbreviations were used to designate the multiplicities: s = singlet, d = doublet, dd = doubledoublets, t = triplet, q = quartet, quin = quintet, hept = heptet, m = multiplet, br = broad. Infrared (IR) spectra were recorded on a Perkin-Elmer FT1600 spectrometer. HPLC analyses were performed with a Shimadzu LC-20AD HPLC system. HR-MS data were obtained from a Waters Synapt G2-Si (ion mobility mass spectrometer with nanoelectrospray ionization).

(2*R*,5*R*)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(hydroxymethyl)-4-methoxytetrahydrofuran-3-yl acetate (S1). The title compound was synthesized according to the reported procedure¹: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 8.2 Hz, 1H), 7.40 – 7.26 (m, 5H), 5.77 (d, *J* = 6.4 Hz, 1H), 5.75 (d, *J* = 2.6 Hz, 1H), 5.48 (d, *J* = 2.2 Hz, 2H), 5.23 (t, *J* = 5.2 Hz, 1H), 4.71 (s, 2H), 4.23 – 4.17 (m, 2H), 3.99 (dd, *J* = 12.6, 2.0 Hz, 1H), 3.78 (dd, *J* = 12.6, 2.1 Hz, 1H), 3.48 (s, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.59, 162.49, 151.01, 139.77, 137.77, 128.31 (2C), 127.70, 127.67 (2C), 102.21, 90.31, 82.65, 81.20, 72.31, 70.27, 70.01, 61.24, 58.95, 20.81; HRMS (ESI+) *m*/*z* calcd for C₂₀H₂₅N₂O₈ [M + H] 421.1611, found: 421.1641.

(2R,5R)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2-((S)cvano(hvdroxy)methyl)-4-methoxytetrahydrofuran-3-yl acetate (13). To a stirred solution of S1 (1.72 g, 4.09 mmol) and dichloroacetic acid (0.51 mL, 6.14 mmol) in a 10:1 mixture of CH₂Cl₂ and DMSO (18.4 mL) was added DIC (1.28 mL, 8.18 mmol) at 0 °C. After being stirred for 2h, H₂O (0.16 mL), TMSCN (1.02 mL, 8.18 mmol) and Ti(OⁱPr)₄ (2.42 mL, 8.18 mmol) were added to the reaction solution. After being stirred for 8h at r.t., the solution was concentrated *in vacuo*. The crude mixture was suspended to a 4:1 mixture of AcOH and H₂O (50 mL). After being stirred for 13h at r.t., the solution was concentrated in vacuo. The residue was quenched with aq. NaHCO₃, extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 2/1 - 1/2) to afford 0.70 g (38%) of **13** and 0.66 g (36%) of *epi-13*. Data for **13**: ¹H NMR (400 MHz, Chloroform-d) δ 7.39 – 7.27 (m, 5H), 7.21 (d, J = 8.1 Hz, 1H), 5.82 (d, J = 8.1 Hz, 1H), 5.49 (s, 2H), 5.38 (d, J = 6.9 Hz, 1H), 5.35 (dd, J = 5.7, 2.4 Hz, 1H), 4.71 (s, 2H), 4.71 – 4.69 (m, 1H), 4.54 (dd, J = 6.9, 5.7 Hz, 1H), 4.36 (t, J = 2.2 Hz, 1H), 3.39 (s, 3H), 2.19 (s, J = 2.2 Hz, 1 H), 3.39 (s, J3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.20, 161.85, 151.38, 141.95, 137.51, 128.42 (2C), 127.84, 127.66 (2C), 117.13, 103.23, 95.16, 84.08, 78.39, 72.52, 70.47, 70.31, 61.79, 59.23, 20.71; HRMS (ESI+) m/z calcd for C₂₁H₂₄N₃O₈ [M + H] 446.1563, found: 446.1568. Data (2R,5R)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2for ((R)-cyano(hydroxy)methyl)-4-methoxytetrahydrofuran-3-yl acetate (epi-13): ^{1}H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, J = 8.1 Hz, 1H), 7.38 – 7.27 (m, 5H), 5.80 (d, J = 5.5 Hz, 1H), 5.78 (d, J = 8.2 Hz, 1H), 5.50 – 5.43 (m, 3H), 4.82 (d, J = 2.6 Hz, 1H), 4.70 (s, 2H), 4.37 (dd, J = 4.0, 2.6 Hz, 1H), 4.19 (t, J = 5.4 Hz, 1H), 3.44 (s, 3H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.02, 162.37, 151.07, 139.71, 137.50, 128.38 (2C),

127.85, 127.70 (2C), 116.60, 102.71, 90.45, 82.72, 80.66, 72.43, 70.43, 69.12, 60.90, 59.37, 20.73; HRMS (ESI+) *m*/*z* calcd for C₂₁H₂₄N₃O₈ [M + H] 446.1563, found: 446.1580.

(2*R*,3*R*,4*S*,5*S*,6*R*)-2-(Acetoxymethyl)-6-(*p*-tolylthio)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (S2). The title compound was synthesized according to the reported procedure¹: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 5.50 – 5.48 (m, 1H), 5.41 (d, *J* = 1.5 Hz, 1H), 5.32 (dd, *J* = 5.6, 1.7 Hz, 2H), 4.56 (dp, *J* = 8.1, 2.5 Hz, 1H), 4.30 (dd, *J* = 12.2, 5.9 Hz, 1H), 4.10 (dd, *J* = 12.2, 2.4 Hz, 1H), 2.33 (s, 3H), 2.14 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.56, 169.92, 169.81, 169.74, 138.44, 132.58 (2C), 129.93 (2C), 128.72, 85.99, 70.82, 69.34, 69.32, 66.34, 62.46, 21.13, 20.89, 20.72, 20.70, 20.65; HRMS (ESI+) *m/z* calcd for C₂₁H₂₇O₉S [M + H] 455.1376, found: 455.1395.

(2*R*,3*R*,4*S*,5*S*,6*R*)-2-(Hydroxymethyl)-6-(*p*-tolylthio)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (S3). To a stirred solution of S2 (11.1 g, 24.3 mmol) in a 1:4 mixture of THF and MeOH (25 mL) was added ['Bu₂Sn(OH)Cl]₂ (1.39 g, 2.43 mmol). After being stirred for 24h at r.t., the solution was concentrated *in vacuo*. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 2/1 - 1/1) to afford 8.01 g (80%) of S3: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 5.51 (dd, *J* = 3.3, 1.6 Hz, 1H), 5.42 (d, *J* = 1.5 Hz, 1H), 5.38 (dd, *J* = 10.1, 3.3 Hz, 1H), 5.29 (t, *J* = 10.0 Hz, 1H), 4.30 (ddd, *J* = 9.7, 4.2, 2.3 Hz, 1H), 3.69 (dd, *J* = 12.7, 2.5 Hz, 1H), 3.63 (dd, *J* = 12.8, 4.2 Hz, 1H), 2.32 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H), 2.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.78, 169.96, 169.81, 138.43, 132.58 (2C), 129.99 (2C), 128.73, 86.04, 71.62, 70.88, 69.10, 66.51, 61.20, 21.11, 20.87, 20.75, 20.66; HRMS (ESI+) *m*/*z* calcd for C₁₉H₂₅O₈S [M + H] 413.1270, found: 413.1277.

(2*R*,3*R*,4*S*,5*S*,6*R*)-2-((2-Chloroacetoxy)methyl)-6-(*p*-tolylthio)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (14). To a stirred solution of S3 (8.01 g, 19.4 mmol), chloroacetic acid (2.75 g, 29.1 mmol) and DMAP (0.24 g, 1.94 mmol) in CH₂Cl₂ (50 mL) was added

DIC (4.56 mL, 29.1 mmol). After being stirred for 4h at r.t., the reaction mixture was concentrated *in vacuo*. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 3/1 - 2/1) to afford 8.92 g (94%) of **14**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 5.49 (d, *J* = 2.2 Hz, 1H), 5.42 (d, *J* = 1.6 Hz, 1H), 5.32 (d, *J* = 6.4 Hz, 2H), 4.59 – 4.54 (m, 1H), 4.40 (dd, *J* = 12.2, 5.9 Hz, 1H), 4.21 (dd, *J* = 12.1, 2.2 Hz, 1H), 4.03 (d, *J* = 1.1 Hz, 2H), 2.33 (s, 3H), 2.14 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.88, 169.81, 169.78, 166.93, 138.51, 132.48 (2C), 129.98 (2C), 128.56, 85.84, 70.70, 69.19, 69.17, 66.19, 63.95, 40.58, 21.13, 20.87, 20.71, 20.64; HRMS (ESI+) *m/z* calcd for C₂₁H₂₆ClO₉S [M + H] 489.0986, found: 489.1003.

(2R,3S,4S,5R,6R)-2-((1R)-1-((2S,5R)-3-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-4-methoxytetrahydrofuran-2-yl)-2-amino-2oxoethoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S4). To a stirred solution of 15 (0.24 g, 0.29 mmol) in a 9:1 mixture of EtOH and H₂O (2.9 mL) were added HgCl₂ (0.16 g, 0.59 mmol) and acetaldoxime (0.18 mL, 2.9 mmol). After being stirred for 13h at r.t., the reaction mixture was concentrated in vacuo. The residue was quenched with aq. NaHCO₃, extracted with CHCl₃. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (hexanes/EtOAc = 1/2 - CHCl₃/MeOH = 96/4) to afford **S4** (0.21 g, 87%): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 8.2 Hz, 1H), 7.39 – 7.30 (m, 5H), 6.36 (brs, 1H), 6.06 (d, J = 8.0 Hz, 1H), 5.97 (d, J = 4.1 Hz, 1H), 5.76 (brs, 1H), 5.53 - 5.44 (m, 2H), 5.40 - 5.27 (m, 2H), 5.19 (dd, J = 10.0, 3.3 Hz, 1H), 5.11(t, J = 5.8 Hz, 1H), 4.99 (d, J = 2.0 Hz, 1H), 4.70 (s, 2H), 4.68 (d, J = 6.5 Hz, 1H), 4.53(dd, J = 6.1, 2.2 Hz, 1H), 4.42 (d, J = 2.2 Hz, 1H), 4.37 (dd, J = 12.4, 5.3 Hz, 1H), 4.21(dd, J = 12.3, 2.4 Hz, 1H), 4.15 (d, J = 2.4 Hz, 2H), 4.01 (dd, J = 5.6, 4.2 Hz, 1H), 3.46 (s, 1)3H), 2.18 (s, 3H), 2.17 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.22, 170.18, 170.04, 169.67, 169.53, 167.06, 162.40, 150.91, 137.75, 137.58, 128.34, 128.32 (2C), 127.70 (2C), 103.35, 97.10, 88.44, 80.95, 76.39, 72.25, 70.51, 70.33, 69.76, 68.72, 68.68, 64.98, 63.43, 59.03, 40.65, 20.76, 20.67, 20.63 (2C); HRMS (ESI+) m/z calcd for C₃₅H₄₃ClN₃O₁₈ [M + H] 828.2230, found: 828.2246.

(2R,3S,4S,5R,6R)-2-((1R)-1-((2S,5R)-3-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-4-methoxytetrahydrofuran-2-yl)-2-amino-2oxoethoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S5). To a solution of S4 (0.21 g, 0.26 mmol) in a 1:1 mixture of THF and MeOH (2.6 mL) was added thiourea (0.059 g, 0.77 mmol). After being stirred for 11h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was guenched with H_2O_1 , extracted with CHCl₃. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH = 98/2 -97/3 - 96/4) to afford S5 (0.15 g, 75%): ¹H NMR (400 MHz, Chloroform-d) δ 7.59 (d, J = 8.2 Hz, 1H), 7.40 - 7.28 (m, 5H), 6.46 (brs, 1H), 6.10 (d, J = 8.2 Hz, 1H), 5.93 (d, J = 2.7Hz, 1H), 5.88 (brs, 1H), 5.50 (d, J = 9.8 Hz, 1H), 5.46 (d, J = 9.5 Hz, 1H), 5.41 (dd, J = 3.3, 1.8 Hz, 1H), 5.28 – 5.22 (m, 1H), 5.17 (dd, J = 10.1, 3.3 Hz, 1H), 5.01 (dd, J = 7.8, 5.5 Hz, 1H), 4.99 (d, J = 1.9 Hz, 1H), 4.70 (s, 2H), 4.58 (dd, J = 7.9, 2.2 Hz, 1H), 4.43 (d, J = 2.2 Hz, 1H), 4.03 (dd, J = 5.3, 2.6 Hz, 1H), 3.70 (ddd, J = 9.5, 4.7, 2.9 Hz, 1H), 3.60 (dd, J = 5.8, 3.9 Hz, 1H), 3.49 (s, 3H), 3.38 (d, J = 14.3 Hz, 1H), 2.16 (s, 3H), 2.15 (s, 3H),2.09 (s, 3H), 2.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.42, 170.38, 170.18, 170.04, 162.54, 150.77, 137.75, 137.36, 128.32 (2C), 127.73 (2C), 127.70, 103.06, 97.25, 88.88, 81.14, 80.39, 75.76, 72.92, 72.26, 70.25, 69.52, 68.83, 68.75, 65.42, 61.25, 58.98, 20.78, 20.74, 20.66, 20.59; HRMS (ESI+) m/z calcd for C₃₃H₄₂N₃O₁₇ [M + H] 752.2514, found: 752.2522.

3-((Benzyloxy)methyl)-1-((3aR,4R,6R,6aR)-6-(hydroxymethyl)-2,2-

dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)pyrimidine-2,4(1*H*,3*H*)-dione (S6). To a stirred solution of uridine (14.7g, 60 mmol) in DMF (50 mL) were added BOMCl (6.87 mL, 50 mmol) and DBU (11.2 mL, 75 mmol). After being stirred for 6h at 0 °C, the reaction was quenched with 1M aq. HCl, extracted with CHCl₃. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. To a stirred solution of the crude mixture and 2,2-dimethoxypropane (18.4 mL, 150 mmol) in acetone (50 mL) was added TsOH·H₂O (0.95 g, 5.0 mmol). After being stirred for 8h at r.t., the solution was concentrated *in vacuo*. The residue was quenched with aq. NaHCO₃, extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 1/2) to afford 15.8 g (78% for 2 steps) of **S6**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.26 (m, 6H), 5.73 (d, *J* = 8.1 Hz, 1H), 5.56 (d, *J* = 2.6 Hz, 1H), 5.48 (d, *J* = 9.7 Hz, 1H), 5.44 (d, *J* = 9.7 Hz, 1H), 4.97 (dd, *J* = 6.4, 2.7 Hz, 1H), 4.94 (dd, *J* = 9.5, 3.1 Hz, 1H), 4.69 (s, 2H), 4.29 (q, *J* = 3.0 Hz, 1H), 3.91 (dd, *J* = 12.0, 2.5 Hz, 1H), 3.79 (dd, *J* = 12.0, 3.5 Hz, 1H), 1.57 (s, 3H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.50, 151.00, 141.27, 137.70, 128.30 (2C), 127.70, 127.59 (2C), 114.25, 102.01, 96.49, 86.93, 83.83, 80.23, 72.36, 70.32, 62.63, 27.21, 25.22; HRMS (ESI+) *m*/*z* calcd for C₂₀H₂₅N₂O₇ [M + H] 405.1662, found: 405.1681.

(S)-2-((3aR,4R,6R,6aR)-6-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-vl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-vl)-2-hydroxyacetonitrile (20). To a stirred solution of S6 (2.89 g, 7.15 mmol) and dichloroacetic acid (0.88 mL, 10.7 mmol) in a 10:1 mixture of CH₂Cl₂ and DMSO (31.5 mL) was added DIC (2.24 mL, 14.3 mmol) at 0 °C. After being stirred for 2h, H₂O (0.29 mL), TMSCN (1.35 mL, 14.3 mmol) and Ti(OⁱPr)₄ (4.23 mL, 14.3 mmol) were added to the reaction solution. After being stirred for 6h at r.t., the solution was concentrated *in vacuo*. The crude mixture was suspended to a 4:1 mixture of AcOH and H₂O (50 mL). After being stirred for 9h at r.t., the solution was concentrated *in vacuo*. The residue was quenched with aq. NaHCO₃, extracted with EtOAc. The combined organic extracts were dried over Na_2SO_4 and concentrated *in vacuo*. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 2/1 -1/1) to afford 1.18 g (38%) of **20** and 1.03 g (34%) of *epi-20*. Data for **20**: ¹H NMR (400 MHz, Chloroform-d) δ 7.36 – 7.30 (m, 5H), 7.15 (d, J = 8.0 Hz, 1H), 5.80 (d, J = 8.1 Hz, 1H), 5.49 (d, J = 9.8 Hz, 1H), 5.44 (d, J = 9.8 Hz, 1H), 5.35 (d, J = 2.8 Hz, 1H), 5.14 (dd, J = 6.6, 2.8 Hz, 1H), 5.07 (dd, J = 6.6, 3.5 Hz, 1H), 4.72 - 4.68 (m, 3H), 4.40 (dd, J = 3.5, 2.3 Hz, 1H), 1.57 (s, 3H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.91, 151.68, 142.29, 137.52, 128.41 (2C), 127.87, 127.58 (2C), 117.55, 115.20, 102.97, 99.49, 86.78, 82.89, 79.50, 72.60, 70.48, 62.12, 27.09, 25.10; HRMS (ESI+) m/z calcd for C₂₁H₂₄N₃O₇ [M + H] 430.1614, found: 430.1630. Data for (R)-2-((3aR,4R,6R,6aR)-6-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-2-hydroxyacetonitrile (*epi*-20): ^{1}H NMR (400 MHz, Chloroform-d) δ 7.36 – 7.27 (m, 5H), 7.18 (d, J = 8.1 Hz, 1H), 5.77 (d, J = 8.0 Hz, 1H), 5.49 - 5.41 (m, 3H), 5.10 (dd, J = 6.6, 2.9 Hz, 1H), 5.07 (dd, J = 6.5, 2.3Hz, 1H), 4.76 (d, J = 5.3 Hz, 1H), 4.68 (s, 2H), 4.36 (dd, J = 5.3, 2.9 Hz, 1H), 1.58 (s, 3H), 1.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.20, 151.16, 141.86, 137.43, 128.40 (2C), 127.89, 127.67 (2C), 117.41, 114.95, 102.67, 98.31, 87.29, 83.40, 80.68, 72.55, 70.42, 61.78, 27.02, 25.06; HRMS (ESI+) m/z calcd for C₂₁H₂₄N₃O₇ [M + H] 430.1614, found: 430.1633.

(2R,3S,4S,5R,6R)-2-((R)-2-Amino-1-((3aR,4S,6R,6aR)-6-(3-((benzyloxy)methyl)-2,4dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2-oxoethoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S7). To a stirred solution of 21 (0.38 g, 0.49 mmol) in a 9:1 mixture of EtOH and H₂O (4.9 mL) were added HgCl₂ (0.27 g, 0.98 mmol) and acetaldoxime (0.30 mL, 4.9 mmol). After being stirred for 12h at r.t., the reaction mixture was concentrated in vacuo. The residue was quenched with aq. $NaHCO_3$, extracted with $CHCl_3$. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (hexanes/EtOAc = 1/2 - CHCl₃/MeOH = 97/3) to afford S7 (0.36 g, 91%): ¹H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.27 (m, 6H), 6.41 (brs, 1H), 5.86 (d, J = 8.1 Hz, 1H), 5.81 (brs, 1H), 5.70 (d, J = 2.1 Hz, 1H), 5.49 (d, J = 9.9 Hz, 1H), 5.46 (d, J = 9.8 Hz, 1H), 5.33 – 5.26 (m, 2H), 4.98 (dd, J = 6.3, 4.9 Hz, 1H), 4.93 -4.91 (m, 1H), 4.89 (dd, J = 6.3, 2.0 Hz, 1H), 4.69 (s, 2H), 4.41 (d, J = 4.2 Hz, 1H), 4.33(t, J = 4.6 Hz, 1H), 4.28 (dd, J = 12.1, 5.3 Hz, 1H), 4.18 (d, J = 2.5 Hz, 1H), 4.16 - 4.11(m, 2H), 4.10 (s, 2H), 2.14 (s, 3H), 2.05 (s, 3H), 2.00 (s, 3H), 1.57 (s, 3H), 1.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.19, 170.09, 170.01, 169.63, 166.94, 162.40, 150.62, 140.32, 137.80, 128.29 (2C), 127.69, 127.65 (2C), 115.00, 102.60, 97.38, 93.65, 85.88, 84.08, 79.80, 77.63, 72.31, 70.33, 69.80, 69.05, 68.60, 65.36, 63.41, 40.56, 27.32, 25.55, 20.77, 20.67, 20.63; HRMS (ESI+) m/z calcd for C₃₅H₄₃ClN₃O₁₇ [M + H] 812.2281, found: 812.2314.

(2*R*,3*S*,4*S*,5*R*,6*R*)-2-((*R*)-2-Amino-1-((3a*R*,4*S*,6*R*,6a*R*)-6-(3-((benzyloxy)methyl)-2,4dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)-2-oxoethoxy)-6-(hydroxymethyl)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (S8). To a solution of S7 (0.36 g, 0.45 mmol) in a 1:1 mixture of THF and MeOH (4.5 mL) was added thiourea (0.10 g, 1.34 mmol). After being stirred for 11h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was quenched with H₂O, extracted with CHCl₃. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH = 98/2 - 97/3 - 96/4) to afford S8 (0.25 g, 76%): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39

-7.27 (m, 6H), 6.43 (brs, 1H), 5.83 (d, *J* = 8.1 Hz, 1H), 5.74 (brs, 1H), 5.68 (d, *J* = 2.1 Hz, 1H), 5.46 (s, 2H), 5.33 – 5.27 (m, 2H), 5.18 (t, *J* = 9.9 Hz, 1H), 5.08 (dd, *J* = 6.5, 4.5 Hz, 1H), 4.92 – 4.88 (m, 2H), 4.70 (s, 2H), 4.43 (d, *J* = 5.7 Hz, 1H), 4.33 (dd, *J* = 5.7, 4.5 Hz, 1H), 3.89 (dt, *J* = 10.0, 3.8 Hz, 1H), 3.50 (d, *J* = 3.9 Hz, 2H), 2.14 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 1.56 (s, 3H), 1.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.35, 170.16, 170.10, 170.09, 162.46, 150.72, 140.56, 137.69, 128.33 (2C), 127.74, 127.69 (2C), 114.84, 102.50, 97.03, 94.40, 86.72, 84.25, 80.13, 77.92, 72.35, 72.04, 70.23, 69.20, 68.59, 65.87, 61.25, 27.23, 25.41, 20.81, 20.73, 20.69; HRMS (ESI+) *m*/*z* calcd for C₃₃H₄₂N₃O₁₆ [M + H] 736.2565, found: 736.2586.

(2S,3S,4S)-3,4-Diacetoxy-2-((R)-2-amino-1-((3aR,4S,6R,6aR)-6-(2,4-dioxo-3,4dihydropyrimidin-1(2H)-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2oxoethoxy)-3,4-dihydro-2H-pyran-6-carboxylic acid (31). To a stirred solution of 22 (0.17 g, 0.27 mmol) and DMSO (0.19 mL, 2.72 mmol) in a 5:1 mixture of CH₂Cl₂ and Et₃N (1.4 mL) was added SO₃·pyridine (0.43 g, 2.72 mmol). After being stirred for 3h at r.t., the reaction mixture was added H_2O (0.27 mL) and passed through a silica gel pad $(CHCl_3/MeOH = 92/8)$. To a stirred solution of the crude mixture in ^tBuOH (1.0 mL) and 2-methyl-2-butene (0.5 mL) was added a solution of NaClO₂ (0.12 g, 1.36 mmol) and NaH₂PO₄· 2H₂O (0.21 g, 1.36 mmol) in H₂O (1.0 mL). After being stirred for 5h at r.t., the reaction extracted with CHCl₃/MeOH (9/1). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH = 9/1) to afford **31** (0.13 g, 81%): ¹H NMR (400 MHz, Methanol- d_4) δ 7.88 (d, J = 8.1 Hz, 1H), 5.88 (d, J = 3.6 Hz, 1H), 5.84 (d, J = 8.1 Hz, 1H), 5.80 (dd, J = 2.7, 1.5 Hz, 1H), 5.53 (dd, J = 4.5, 2.5 Hz, 1H), 5.41 (ddd, J = 4.7, 3.4, 1.6 Hz, 1H), 5.28 (d, J = 3.3 Hz, 1H), 4.84 (d, J = 1.9 Hz, 1H), 4.77 (dd, J = 6.2, 2.1 Hz, 1H), 4.73 (d, J = 2.1 Hz, 1H), 4.62 (dd, J = 6.1, 3.7 Hz, 1H), 2.07 (s, 3H), 2.03 (s, 3H), 1.53 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, MeOD) δ 172.67, 171.86, 171.50, 168.09, 166.27, 152.17, 148.19, 142.21, 115.19, 104.36, 103.01, 98.08, 93.58, 87.18, 86.07, 82.82, 78.22, 65.27, 65.01, 27.45, 25.47, 20.69, 20.57; HRMS (ESI+) m/z calcd for C₂₃H₂₈N₃O₁₄ [M + H] 570.1571, found: 570.1585.

(2*R*,5*R*)-2-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-5-(hydroxymethyl)-4-methoxytetrahydrofuran-3-yl acetate (S9). The title compound was synthesized according to the reported procedure¹: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.2 Hz, 1H), 7.39 – 7.27 (m, 5H), 5.78 (d, *J* = 3.7 Hz, 1H), 5.75 (d, *J* = 8.1 Hz, 1H), 5.46 (d, *J* = 1.7 Hz, 2H), 5.43 (dd, *J* = 4.7, 3.7 Hz, 1H), 4.69 (s, 2H), 4.10 (s, 2H), 4.02 (dd, *J* = 12.2, 1.7 Hz, 1H), 3.80 (dd, *J* = 12.0, 1.8 Hz, 1H), 3.41 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.85, 162.51, 150.87, 139.88, 137.74, 128.31 (2C), 127.68, 127.66 (2C), 102.22, 91.10, 82.75, 73.84, 72.25, 70.30, 61.30, 20.71; HRMS (ESI+) *m/z* calcd for C₂₀H₂₅N₂O₈ [M + H] 421.1611, found: 421.1630.

(2R,5R)-2-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-5-((S)cyano(hydroxy)methyl)-4-methoxytetrahydrofuran-3-yl acetate (24). To a stirred solution of **S9** (4.14 g, 9.85mmol) and dichloroacetic acid (1.22 mL, 14.8 mmol) in a 10:1 mixture of CH₂Cl₂ and DMSO (42.9 mL) was added DIC (3.08 mL, 19.7 mmol) at 0 °C. After being stirred for 2h, H₂O (0.39 mL), TMSCN (2.46 mL, 19.7 mmol) and Ti(OⁱPr)₄ (5.83 mL, 19.7 mmol) were added to the reaction solution. After being stirred for 8h at r.t., the solution was concentrated in vacuo. The crude mixture was suspended to a 4:1 mixture of AcOH and H₂O (50 mL). After being stirred for 12h at r.t., the solution was concentrated in vacuo. The residue was guenched with aq. NaHCO₃, extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 2/1 - 1/2) to afford 1.84 g (42%) of 24 and 1.87 g (43%) of epi-24. Data for 24: ¹H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.26 (m, 6H), 5.79 (d, J = 8.1 Hz, 1H), 5.53 (d, J = 4.5 Hz, 1H), 5.49 (d, J = 5.4 Hz, 1H), 5.46 (d, J = 1.5 Hz, 2H), 4.70 (s, 2H), 4.64 (d, J = 2.1 Hz, 1H), 4.29 (t, J = 5.5 Hz, 1H), 4.24 (dd, J = 5.3, 1.9 Hz, 1H), 3.41 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.94, 162.18, 151.22, 141.38, 137.47, 128.41 (2C), 128.39, 127.86, 127.69 (2C), 117.53, 102.82, 94.65, 83.19, 73.05, 72.48, 70.45, 61.21, 59.28, 20.62; HRMS (ESI+) m/z calcd for $C_{21}H_{24}N_3O_8$ [M + H] 446.1563, found: 446.1576. Data for (2R,5R)-2-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-5-((R)cyano(hydroxy)methyl)-4-methoxytetrahydrofuran-3-yl acetate (*epi*-24): ¹H NMR $(400 \text{ MHz}, \text{Chloroform-}d) \delta 7.38 - 7.27 \text{ (m, 6H)}, 5.82 \text{ (d, } J = 5.9 \text{ Hz}, 1\text{H}), 5.77 \text{ (d, } J = 8.1 \text{ Hz})$ Hz, 1H), 5.45 (d, J = 3.1 Hz, 2H), 5.39 (t, J = 5.7 Hz, 1H), 4.78 (d, J = 2.8 Hz, 1H), 4.69 (s, 2H), 4.31 – 4.25 (m, 2H), 3.46 (s, 3H), 2.15 (s, 3H): ¹³C NMR (101 MHz, CDCl₃) δ

169.91, 162.39, 151.03, 140.34, 137.37, 128.41 (2C), 127.90, 127.77 (2C), 116.79, 102.81, 91.50, 83.44, 73.02, 72.41, 70.43, 61.44, 58.90, 20.60; HRMS (ESI+) m/z calcd for C₂₁H₂₄N₃O₈ [M + H] 446.1563, found: 446.1569.

(2S,3S,4S,5R,6R)-2-((1S)-((2R,5R)-4-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4dihydropyrimidin-1(2H)-yl)-3-methoxytetrahydrofuran-2-yl)(cyano)methoxy)-6-((2chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S10). To a stirred suspension of 24 (0.72 g, 1.62 mmol), 14 (1.59 g, 3.24 mmol), MS3A (2.2 g) and SrCO₃ (1.20 g, 8.11 mmol) in CH₂Cl₂ (40.5 mL) were added AgBF₄ (0.16 g, 0.81 mmol) and NIS (1.09 g, 4.86 mmol) at 0 °C. After 13h, the reaction mixture was added Et₃N (2.0 mL) and passed through a silica gel pad (hexanes/EtOAc = 1/4). The solution was concentrated in *vacuo*. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 2/1 - 1/2) to afford **S10** (1.05 g, 80%): ¹H NMR (400 MHz, Chloroformd) δ 7.39 – 7.28 (m, 6H), 5.94 (d, J = 12.1 Hz, 1H), 5.94 (s, 1H), 5.49 (d, J = 9.8 Hz, 1H), 5.45 (d, J = 9.8 Hz, 1H), 5.38 - 5.28 (m, 3H), 5.19 (d, J = 3.4 Hz, 1H), 5.17 - 5.16 (m, 1H),4.77 (d, J = 4.3 Hz, 1H), 4.69 (s, 2H), 4.39 - 4.32 (m, 1H), 4.28 (dd, J = 6.2, 4.2 Hz, 1H),4.22 (dd, J = 12.0, 2.5 Hz, 1H), 4.16 - 4.13 (m, 1H), 4.10 (s, 2H), 3.89 (ddd, J = 10.2, 5.4, 3.89)2.4 Hz, 1H), 3.43 (s, 3H), 2.18 (s, 6H), 2.05 (s, 3H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) & 169.79, 169.73, 169.54, 169.51, 166.81, 162.19, 150.76, 138.57, 137.70, 128.32 (2C), 127.72, 127.70 (2C), 114.28, 103.37, 96.10, 90.33, 80.52, 77.61, 72.97, 72.29, 70.36, 70.00, 68.49, 68.01, 65.26, 64.29, 63.51, 59.37, 40.53, 20.70, 20.64, 20.62, 20.56; HRMS (ESI+) m/z calcd for C₃₅H₄₁ClN₃O₁₇ [M + H] 810.2125, found: 810.2144.

(2*R*,3*S*,4*S*,5*R*,6*R*)-2-((1*R*)-1-((2*S*,5*R*)-4-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-3-methoxytetrahydrofuran-2-yl)-2-amino-2oxoethoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (S11). To a stirred solution of S10 (1.05 g, 1.30 mmol) in a 9:1 mixture of EtOH and H₂O (5.0 mL) were added HgCl₂ (0.70 g, 2.59 mmol) and acetaldoxime (0.79 mL, 13.0 mmol). After being stirred for 14h at r.t., the reaction mixture was concentrated *in vacuo*. The residue was quenched with aq. NaHCO₃, extracted with CHCl₃. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (hexanes/EtOAc = 1/2 - CHCl₃/MeOH = 96/4) to afford S11 (0.87 g, 81%): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 8.2 Hz, 1H), 7.38 – 7.30 (m, 5H), 6.03 (d, *J* = 8.2 Hz, 1H), 5.95 (d, *J* = 4.0 Hz, 1H), 5.77 – 5.71 (m, 1H), 5.48 (d, J = 9.5 Hz, 1H), 5.45 (d, J = 9.3 Hz, 1H), 5.39 – 5.37 (m, 1H), 5.35 (d, J = 10.1 Hz, 1H), 5.29 – 5.27 (m, 1H), 5.21 (dd, J = 10.1, 3.3 Hz, 1H), 4.99 – 4.98 (m, 1H), 4.69 (s, 2H), 4.42 (dd, J = 12.3, 5.2 Hz, 1H), 4.38 (s, 2H), 4.25 (dd, J = 12.2, 2.7 Hz, 1H), 4.13 (dd, J = 9.6, 2.3 Hz, 1H), 4.11 (d, J = 1.8 Hz, 2H), 4.04 – 4.01 (m, 1H), 3.40 (s, 1H), 3.39 (s, 3H), 2.17 (s, 3H), 2.16 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.16, 170.06, 169.89, 169.80, 169.61, 166.91, 162.35, 150.77, 138.11, 137.75, 128.36, 128.32 (2C), 127.69 (2C), 103.37, 97.07, 89.01, 81.18, 77.48, 73.01, 72.25, 70.32, 69.99, 68.81, 68.73, 65.20, 63.60, 58.88, 40.59, 21.06, 20.78, 20.67, 20.64; HRMS (ESI+) m/z calcd for C₃₅H₄₃ClN₃O₁₈ [M + H] 828.2230, found: 828.2252.

(2*R*,3*S*,4*S*,5*R*,6*R*)-2-((1*R*)-1-((2*S*,5*R*)-4-Acetoxy-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-3-methoxytetrahydrofuran-2-yl)-2-amino-2-

oxoethoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S12). To a solution of S11 (0.87 g, 1.05 mmol) in a 1:1 mixture of THF and MeOH (3.0 mL) was added thiourea (0.24 g, 3.16 mmol). After being stirred for 14h at 50 $^{\circ}$ C, the reaction mixture was concentrated *in vacuo*. The residue was quenched with H_2O , extracted with CHCl₃. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH = 98/2 - 97/3 - 96/4) to afford S12 (0.61 g, 77%): ¹H NMR (400 MHz, Chloroform-d) δ 7.44 $(d, J = 8.2 \text{ Hz}, 1\text{H}), 7.38 - 7.30 \text{ (m, 5H)}, 6.34 \text{ (brs, 1H)}, 6.02 \text{ (d, } J = 8.2 \text{ Hz}, 1\text{H}), 5.92 \text{ (d, } J = 8.2 \text{ Hz}, 1\text{$ *J* = 3.6 Hz, 1H), 5.72 (brs, 1H), 5.47 (d, *J* = 2.2 Hz, 2H), 5.39 – 5.36 (m, 1H), 5.30 – 5.25 (m, 2H), 4.98 (d, J = 1.8 Hz, 1H), 4.70 (s, 2H), 4.38 (dt, J = 9.4, 3.0 Hz, 2H), 4.07 – 4.02 (m, 1H), 3.93 - 3.88 (m, 1H), 3.68 - 3.64 (m, 2H), 3.41 (d, J = 5.4 Hz, 1H), 3.36 (s, 3H), 2.16 (s, 3H), 2.16 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.51, 170.23, 170.19, 170.02, 169.87, 162.39, 150.74, 138.15, 137.75, 128.34 (2C), 127.71, 127.69 (2C), 103.25, 97.28, 89.41, 81.39, 77.51, 73.21, 72.44, 72.28, 70.31, 68.96, 68.79, 65.59, 61.24, 58.92, 20.80, 20.74, 20.68, 20.67; HRMS (ESI+) m/z calcd for C₃₃H₄₂N₃O₁₇ [M + H] 752.2514, found: 752.2535.

(2*R*,3*S*,4*S*,5*R*,6*R*)-2-((1*R*)-1-((2*S*,5*R*)-4-Acetoxy-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-3-methoxytetrahydrofuran-2-yl)-2-amino-2-oxoethoxy)-6-

(hydroxymethyl)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (26). To a stirred solution of S12 (0.61 g, 0.81 mmol) and AcOH (0.12 mL) in a 1:1 mixture of THF and ⁱPrOH (6.0 mL) was added Pd/C (0.49 g). H₂ gas was introduced and the reaction mixture was stirred under H₂ atmosphere. After being stirred for 5h at r.t., the solution was filtered through Celite and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH = 97/3 - 92/8) to afford 26 (0.39 g, 77%): ¹H NMR (400 MHz, Chloroform-*d*) δ 9.29 (brs, 1H), 7.53 (d, *J* = 8.1 Hz, 1H), 6.93 (brs, 1H), 6.00 (d, *J* = 4.5 Hz, 2H), 5.90 (d, *J* = 8.2 Hz, 1H), 5.54 (dd, *J* = 3.3, 1.7 Hz, 1H), 5.37 (t, *J* = 4.7 Hz, 1H), 5.12 (dd, *J* = 9.9, 3.3 Hz, 1H), 4.97 (d, *J* = 1.6 Hz, 1H), 4.51 (dd, *J* = 12.1, 5.6 Hz, 1H), 4.46 (dd, *J* = 5.7, 1.8 Hz, 1H), 4.41 (d, *J* = 1.8 Hz, 1H), 4.38 (dd, *J* = 12.2, 2.2 Hz, 1H), 4.18 (t, *J* = 5.3 Hz, 1H), 4.02 (ddd, *J* = 7.8, 5.6, 2.0 Hz, 1H), 3.90 (t, *J* = 9.9 Hz, 1H), 3.40 (s, 3H), 2.15 (s, 6H), 2.13 (s, 3H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.25, 171.00, 170.66, 170.41, 163.33, 150.05, 139.56, 103.71, 96.81, 87.36, 81.28, 77.46, 75.50, 73.04, 72.36, 71.12, 68.99, 65.05, 63.24, 58.56, 20.82, 20.81, 20.74, 20.72; HRMS (ESI+) *m*/z calcd for C₂₅H₃₄N₃O₁₆ [M + H] 632.1939, found: 632.1958.

(2S,3S,4S)-3,4-Diacetoxy-2-((1R)-1-((2S,5R)-4-acetoxy-5-(2,4-dioxo-3,4-

dihydropyrimidin-1(2H)-yl)-3-methoxytetrahydrofuran-2-yl)-2-amino-2-oxoethoxy)-3,4-dihydro-2H-pyran-6-carboxylic acid (32). To a stirred solution of 26 (0.39 g, 0.62 mmol) and DMSO (0.44 mL, 6.23 mmol) in a 5:1 mixture of CH₂Cl₂ and Et₃N (3.1 mL) was added SO₃·pyridine (0.99 g, 6.23 mmol). After being stirred for 1h at r.t., the reaction mixture was added H_2O (0.62 mL) and passed through a silica gel pad (CHCl₃/MeOH = 93/7). To a stirred solution of the crude mixture in 'BuOH (2.0 mL) and 2-methyl-2-butene (1.0 mL) was added a solution of NaClO₂ (0.28 g, 3.11 mol) and NaH₂PO₄· 2H₂O (0.49 g, 3.11 mmol) in H₂O (2.0 mL). After being stirred for 2h at r.t., the reaction extracted with CHCl₃/MeOH (9/1). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH = 9/1) to afford **32** (0.30 g, 82%): ¹H NMR (400 MHz, Methanol- d_4) δ 7.80 (d, J = 8.2 Hz, 1H), 5.95 (d, J = 4.9 Hz, 1H), 5.92 (d, J = 8.1 Hz, 1H), 5.80 – 5.78 (m, 1H), 5.70 (dd, J = 4.5, 2.5 Hz, 1H), 5.59 – 5.56 (m, 1H), 5.31 (d, J = 3.2 Hz, 1H), 5.29 (t, J = 5.1 Hz, 1H), 4.80 (d, J = 1.9 Hz, 1H), 4.47 (dd, J = 4.8, 1.8 Hz, 1H), 3.93 (t, J = 5.0 Hz, 1H), 3.40 (s, 3H), 2.08 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H); ¹³C NMR (101 MHz, MeOD) & 173.04, 172.10, 171.63, 171.35, 168.19, 166.08, 152.15, 148.06, 141.34, 104.67, 103.84, 97.92, 88.21, 84.13, 79.65, 76.98, 75.16, 65.37, 65.05, 59.67, 20.77, 20.57, 20.44; HRMS (ESI+) m/z calcd for C₂₃H₂₈N₃O₁₅ [M + H] 586.1520, found: 586.1543.

(4-(4-(4-(Trifluoromethoxy)phenoxy)piperidin-1-yl)phenyl)methanamine (34). The title compound was synthesized according to the reported procedure²: ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.6 Hz, 2H), 6.97 – 6.87 (m, 4H), 4.43 (tt, *J* = 7.7, 3.8 Hz, 1H), 3.79 (s, 2H), 3.49 (ddd, *J* = 11.7, 7.2, 3.7 Hz, 2H), 3.09 (ddd, *J* = 12.2, 8.2, 3.6 Hz, 2H), 2.15 – 2.06 (m, 2H), 1.98 – 1.88 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 150.2, 142.8, 134.6, 128.0 (2C), 122.5 (2C), 116.83 (2C), 116.76 (2C), 72.9, 46.9 (2C), 45.9, 30.4 (2C); HRMS (ESI+) *m*/*z* calcd for C₁₉H₂₂F₃N₂O₂ [M + H] 367.1633, found 367.1628.

3-((Benzyloxy)methyl)-1-((2*R***,5***R***)-5-(hydroxymethyl)-3,4dimethoxytetrahydrofuran-2-yl)pyrimidine-2,4(1***H***,3***H***)-dione (S13). The title compound was synthesized according to the reported procedure¹: ¹H NMR (400 MHz, Chloroform-***d***) \delta 7.81 (d,** *J* **= 8.1 Hz, 1H), 7.39 – 7.23 (m, 5H), 5.74 (d,** *J* **= 4.6 Hz, 2H), 5.73 (d,** *J* **= 6.4 Hz, 2H), 5.47 (d,** *J* **= 1.4 Hz, 2H), 4.71 (s, 2H), 4.17 (dt,** *J* **= 6.9, 2.2 Hz, 1H), 4.08 – 4.03 (m, 2H), 3.91 (dd,** *J* **= 6.8, 4.9 Hz, 1H), 3.80 (dd,** *J* **= 12.3, 2.2 Hz, 1H), 3.59 (s, 3H), 3.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta 162.72, 150.80, 139.99, 137.74, 128.29 (2C), 127.70, 127.63 (2C), 101.61, 90.64, 82.30, 81.06, 76.53, 72.30, 70.19, 60.93, 58.41, 58.15; HRMS (ESI+)** *m***/***z* **calcd for C₁₉H₂₅N₂O₇ [M + H] 393.1662, found 393.1675.**

(2S)-2-((2R,5R)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-hydroxyacetonitrile (25). To a stirred solution of S13 (1.76 g, 4.48 mmol) and dichloroacetic acid (0.55 mL, 6.73 mmol) in a 10:1 mixture of CH₂Cl₂ and DMSO (19.7 mL) was added DIC (1.40 mL, 8.97 mmol) at 0 °C. After being stirred for 3h, H₂O (0.18 mL), TMSCN (0.85 mL, 8.97 mmol) and Ti(OⁱPr)₄ (2.65

mL, 8.97 mmol) were added to the reaction solution. After being stirred for 6h at r.t., the solution was concentrated *in vacuo*. The crude mixture was suspended to a 4:1 mixture of AcOH and H₂O (25 mL). After being stirred for 10h at r.t., the solution was concentrated *in vacuo*. The residue was quenched with aq. NaHCO₃, extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 2/1 - 1/2) to afford 0.73 g (39%) of **25** and 0.73 g (39%) of *epi-25*. Data for **25**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.30 (m, 6H), 5.79 (d, *J* = 8.1 Hz, 1H), 5.48 (s, 2H), 5.47 – 5.44 (m, 1H), 4.71 (s, 2H), 4.63 (d, *J* = 2.1 Hz, 1H), 4.37 (t, *J* = 5.4 Hz, 1H), 4.34 (dd, *J* = 4.0, 2.0 Hz, 1H), 4.02 (dd, *J* = 5.4, 4.0 Hz, 1H), 3.50 (s, 3H), 3.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.14, 151.22, 141.68, 137.54, 128.40 (2C), 127.84, 127.67 (2C), 117.49, 102.76, 94.96, 82.95, 79.40, 77.56, 72.50, 70.39, 61.69, 58.60, 58.44; HRMS (ESI+) *m/z* calcd for C₂₀H₂₄N₃O₇ [M + H] 418.1614, found 418.1633. Data for (**2***R*)-**2**-((**2***R***,5***R*)-**5**-(**3**-((**Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2***H***)-yl)-3,4-**

dimethoxytetrahydrofuran-2-yl)-2-hydroxyacetonitrile (*epi-25*): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.27 (m, 6H), 5.78 (d, *J* = 8.1 Hz, 1H), 5.57 (d, *J* = 6.3 Hz, 1H), 5.47 (d, *J* = 9.7 Hz, 1H), 5.44 (d, *J* = 9.7 Hz, 1H), 4.78 (d, *J* = 2.5 Hz, 1H), 4.70 (s, 2H), 4.34 – 4.30 (m, 2H), 4.12 (dd, *J* = 5.4, 2.9 Hz, 1H), 3.53 (s, 3H), 3.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.26, 151.07, 141.31, 137.41, 128.41, 127.90, 127.71, 116.84, 102.73, 93.60, 83.46, 79.51, 77.23, 72.49, 70.38, 61.91, 58.49, 58.11; HRMS (ESI+) *m/z* calcd for C₂₀H₂₄N₃O₇ [M + H] 418.1614, found 418.1638.

(2S,3S,4S,5R,6R)-2-((1S)-((2R,5R)-5-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)(cyano)methoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-trivl triacetate (S14). To a stirred suspension of 25 (0.20 g, 0.48 mmol), 14 (0.47 g, 0.95 mmol), MS3A (0.60 g) and SrCO₃ (0.35 g, 2.39 mmol) in CH₂Cl₂ (11.9 mL) were added AgBF₄ (0.047 g, 0.24 mmol) and NIS (0.21 g, 0.95 mmol) at 0 °C. After being stirred for 20h, the reaction mixture was added Et₃N (2.0 mL) and passed through a silica gel pad (hexanes/EtOAc = 1/4). The solution was concentrated *in vacuo*. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc = 2/1 - 1/2) to afford **S14** (0.32 g, 87%): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, J = 8.3 Hz, 1H), 7.39 – 7.27 (m, 5H), 6.04 (d, J = 8.3 Hz, 1H), 5.96 (d, J = 2.1 Hz, 1H), 5.49 (d, J = 9.7 Hz, 1H), 5.46 (d, J = 9.7 Hz, 1H), 5.40 (dd, J = 3.4, 2.0 Hz, 1H), 5.29 (t, J = 10.0 Hz, 1H), 5.19 (d, J = 1.9 Hz, 1H), 5.12 (dd, J = 10.1, 3.4 Hz, 1H), 4.77 (d, J = 3.1 Hz, 1H), 4.71 (s, 2H), 4.39 (dd, J = 7.6, 3.1 Hz, 1H), 4.35 – 4.27 (m, 2H), 4.11 (s, 2H), 4.02 - 3.96 (m, 1H), 3.85 (dd, J = 7.7, 5.0 Hz, 1H), 3.77 (dd, J= 10.0, 4.6 Hz, 1H), 3.63 (s, 3H), 3.43 (s, 3H), 2.19 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.76, 169.50, 169.46, 166.84, 162.35, 150.71, 137.75, 137.25, 128.31 (2C), 127.71 (2C), 114.36, 103.02, 95.84, 89.16, 80.49, 80.45, 79.68, 72.28, 70.25, 70.21, 68.50, 67.79, 65.03, 63.44, 62.75, 58.57, 58.08, 40.50, 20.68, 20.63, 20.62, 20.53; HRMS (ESI+) m/z calcd for C₃₄H₄₁ClN₃O₁₆ [M + H] 782.2175, found 782.2197.

(2R,3S,4S,5R,6R)-2-((1R)-2-Amino-1-((2S,5R)-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-oxoethoxy)-6-((2-chloroacetoxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S15). To a stirred solution of S14 (0.32 g, 0.42 mmol) in a 9:1 mixture of EtOH and H₂O (4.2 mL) were added HgCl₂ (0.23 g, 0.83 mmol) and acetaldoxime (0.25 mL, 4.15 mmol). After being stirred for 11h at r.t., the reaction mixture was concentrated *in vacuo*. The residue was quenched with aq. NaHCO₃, extracted with CHCl₃. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (hexanes/EtOAc = 1/2 - CHCl₃/MeOH = 96/4) to afford **S15** (0.29 g, 88%): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, J = 8.2 Hz, 1H), 7.39 – 7.27 (m, 5H), 6.35 (brs, 1H), 6.08 (d, J = 8.1 Hz, 1H), 5.89 (d, J = 1.1 Hz, 1H), 5.83 (brs, 1H), 5.48 (d, J = 9.7 Hz, 1H), 5.45 (d, J = 9.7 Hz, 1H), 5.41 (dd, J = 3.4, 1.9 Hz, 1H), 5.30 (d, J = 10.0 Hz, 1H), 5.17 (dd, J = 10.1, 3.4 Hz, 1H), 5.03 (d, J = 1.9 Hz, 1H), 4.71 (s, 2H),4.48 (dd, J = 8.8, 2.6 Hz, 1H), 4.41 (d, J = 2.6 Hz, 1H), 4.34 (dd, J = 12.2, 5.5 Hz, 1H), 4.27 (dd, J = 12.2, 2.5 Hz, 1H), 4.11 (s, 2H), 3.91 (dd, J = 4.8, 1.1 Hz, 1H), 3.90 - 3.85 (m, 1H), 3.76 (dd, J = 8.7, 4.8 Hz, 1H), 3.63 (s, 3H), 3.38 (s, 3H), 2.17 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H); HRMS (ESI+) m/z calcd for C₃₄H₄₃ClN₃O₁₇ [M + H] 800.2281, found 800.2314.

(2R,3S,4S,5R,6R)-2-((1R)-2-Amino-1-((2S,5R)-5-(3-((benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-oxoethoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (S16). To a solution of S15 (0.29 g, 0.37 mmol) in a 1:1 mixture of THF and MeOH (1.0 mL) was added thiourea (0.065 g, 0.86 mmol). After being stirred for 8h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was quenched with H₂O, extracted with CHCl₃. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude

product was purified by silica gel column chromatography (CHCl₃/MeOH = 98/2 - 97/3 - 96/4) to afford **S16** (0.21 g, 78%): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 8.2 Hz, 1H), 7.40 – 7.28 (m, 5H), 6.43 (brs, 1H), 6.06 (d, *J* = 8.2 Hz, 1H), 5.87 (d, *J* = 1.2 Hz, 1H), 5.84 (brs, 1H), 5.47 (d, *J* = 1.5 Hz, 2H), 5.42 (dd, *J* = 3.4, 1.8 Hz, 1H), 5.29 (t, *J* = 9.9 Hz, 1H), 5.20 (dd, *J* = 10.2, 3.4 Hz, 1H), 5.02 (d, *J* = 1.7 Hz, 1H), 4.71 (s, 2H), 4.48 – 4.43 (m, 2H), 3.91 (dd, *J* = 4.8, 1.3 Hz, 1H), 3.76 (dd, *J* = 8.5, 4.8 Hz, 1H), 3.74 – 3.69 (m, 1H), 3.67 – 3.63 (m, 2H), 3.63 (s, 3H), 3.38 (s, 3H), 2.16 (s, 3H), 2.08 (s, 3H), 2.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.33, 170.18, 170.15, 170.13, 162.57, 150.64, 137.77, 137.44, 128.32 (2C), 127.71 (2C), 102.65, 96.73, 89.00, 80.73, 80.69, 75.21, 72.29, 72.26, 70.16, 68.81, 68.76, 65.49, 61.03, 58.46, 57.73, 20.80, 20.74, 20.67; HRMS (ESI+) *m*/*z* calcd for C₃₂H₄₂N₃O₁₆ [M + H] 724.2565, found 724.2599.

(2*R*,3*S*,4*S*,5*R*,6*R*)-2-((1*R*)-2-Amino-1-((2*S*,5*R*)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-oxoethoxy)-6-

(hydroxymethyl)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (27). To a stirred solution of S16 (0.21 g, 0.29 mmol) and AcOH (0.04 mL) in a 1:1 mixture of THF and ⁱPrOH (2.0 mL) was added Pd/C (0.16 g). H₂ gas was introduced and the reaction mixture was stirred under H₂ atmosphere. After being stirred for 4h at r.t., the solution was filtered through Celite and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH = 97/3 - 92/8) to afford 27 (0.14 g, 82%): ¹H NMR (400 MHz, Chloroform-*d*) δ 9.56 (brs, 1H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.16 (brs, 1H), 6.05 (brs, 1H), 5.94 (s, 1H), 5.91 (d, *J* = 8.1 Hz, 1H), 5.59 – 5.56 (m, 1H), 5.03 (dd, *J* = 9.6, 3.3 Hz, 1H), 4.98 (s, 1H), 4.53 (dd, *J* = 12.1, 4.8 Hz, 1H), 4.49 – 4.44 (m, 2H), 4.34 (d, *J* = 12.0 Hz, 1H), 4.00 (dd, *J* = 8.6, 4.8 Hz, 1H), 3.90 (d, *J* = 5.5 Hz, 1H), 3.87 (d, *J* = 10.0 Hz, 1H), 3.83 – 3.77 (m, 1H), 3.59 (s, 3H), 3.43 (s, 3H), 2.16 (s, 3H), 2.14 (s, 3H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.66, 171.02, 170.90, 170.52, 163.75, 149.93, 138.98, 103.07, 96.65, 87.79, 81.38, 80.68, 76.11, 73.90, 72.11, 71.18, 68.76, 64.67, 62.78, 58.35, 57.46, 20.81 (2C), 20.76; HRMS (ESI+) *m*/*z* calcd for C₂₄H₃₄N₃O₁₅ [M + H] 604.1990, found 604.2014.

(2S,3S,4S)-3,4-Diacetoxy-2-((1R)-2-amino-1-((2S,5R)-5-(2,4-dioxo-3,4-

dihydropyrimidin-1(2H)-yl)-3,4-dimethoxytetrahydrofuran-2-yl)-2-oxoethoxy)-3,4dihydro-2H-pyran-6-carboxylic acid (33). To a stirred solution of 27 (0.14 g, 0.23 mmol) and DMSO (0.17 mL, 2.34 mmol) in a 5:1 mixture of CH₂Cl₂ and Et₃N (1.2 mL) was added SO_3 pyridine (0.39 g, 2.34 mmol). After being stirred for 3h at r.t., the reaction mixture was added H₂O (0.23 mL) and passed through a silica gel pad (CHCl₃/MeOH = 92/8). To a stirred solution of the crude mixture in 'BuOH (1.0 mL) and 2-methyl-2-butene (0.5 mL) was added a solution of NaClO₂ (0.11 g, 1.17 mmol) and NaH₂PO₄·2H₂O (0.18 g, 1.17 mmol) in H_2O (1.0 mL). After being stirred for 5h at r.t., the reaction extracted with CHCl₃/MeOH (9/1). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH = 9/1) to afford **33** (0.11 g, 85%): ¹H NMR (400 MHz, Methanol- d_4) δ 7.78 (d, J = 8.2 Hz, 1H), 5.94 (s, 1H), 5.92 (d, J = 3.2 Hz, 1H), 5.82 (t, J =2.1 Hz, 1H), 5.66 (dd, J = 4.6, 2.5 Hz, 1H), 5.57 (ddd, J = 4.7, 3.2, 1.6 Hz, 1H), 5.31 (d, J = 3.2 Hz, 1H), 4.78 (d, J = 1.9 Hz, 1H), 4.51 (dd, J = 4.4, 1.9 Hz, 1H), 3.87 (t, J = 4.7 Hz, 1H), 3.82 (t, J = 5.0 Hz, 1H), 3.45 (s, 3H), 3.44 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H); ¹³C NMR (101 MHz, MeOD) & 173.20, 172.12, 171.62, 168.06, 166.08, 152.12, 148.47, 141.11, 104.32, 103.83, 98.17, 87.88, 83.90, 83.29, 78.97, 77.77, 65.15, 65.06, 58.88, 58.65, 20.76, 20.58; HRMS (ESI+) m/z calcd for C₂₂H₂₈N₃O₁₄ [M + H] 558.1571, found 558.1595.

HPLC analysis of I-CAP (**3**)

mL/min, UV: 254 nm

Conditions:

column: Kinetex® (C18, 5 μm , 100 Å, 250 x 4.60 mm), solvents: 30:70 MeOH:H2O, flow rate: 1.0 mL/min, UV: 254 nm

HPLC analysis of CPPB (5)

Area % purity: 95.2%

Conditions:

column: Kinetex® (C18, 5 μm , 100 Å, 250 x 4.60 mm), solvents: 30:70 MeOH:H_2O, flow rate: 1.0 mL/min, UV: 254 nm

Area % purity: 98.9%

Conditions:

column: Kinetex® (C18, 5 μm , 100 Å, 250 x 4.60 mm), solvents: 30:70 MeOH:H2O, flow rate: 1.0 mL/min, UV: 254 nm

HPLC analysis of OM-CPPB (7)

Area % purity: 97.1%

Conditions:

column: Kinetex® (C18, 5 μm , 100 Å, 250 x 4.60 mm), solvents: 30:70 MeOH:H_2O, flow rate: 1.0 mL/min, UV: 254 nm

Area % purity: 97.6%

Conditions:

column: Kinetex® (C18, 5 $\mu m,$ 100 Å, 250 x 4.60 mm), solvents: 30:70 MeOH:H_2O, flow rate: 1.0 mL/min, UV: 254 nm

Area % purity: 96.0%

Conditions:

column: Kinetex® (C18, 5 μm , 100 Å, 250 x 4.60 mm), solvents: 30:70 MeOH:H2O, flow rate: 1.0 mL/min, UV: 254 nm

Conditions:

column: Kinetex® (C18, 5 μm, 100 Å, 250 x 4.60 mm), solvents: 30:70 MeOH:H₂O, flow rate: 1.0 mL/min, UV: 254 nm

HPLC analysis of A500359F

Area % purity: 95.5%

Conditions:

column: Kinetex® (C18, 5 μm , 100 Å, 250 x 4.60 mm), solvents: 30:70 MeOH:H2O, flow rate: 1.0 mL/min, UV: 254 nm

Synthesis of CPPB (5) from A500359F

To a stirred solution of A-500359F (11 mg, 0.024 mmol), 34 (26 mg, 0.072 mmol), Glyceroacetonide-Oxyma (16 mg, 0.072 mmol) and NMM (26 mL, 0.24 mmol) in DMF (0.49 mL) was added EDCI (23 mg, 0.12 mmol). After being stirred for 5h at r.t., the reaction mixture was filtered, and diluted with water. The product was extracted with CHCl₃/MeOH (9/1). The combined extracts were derived over Na₂SO₄, and concentrated *in vacuo*. The crude mixture was purified by DOWEX 50Wx4 (MeOH : $NH_4OH = 4 : 1$) followed by reverse-phase HPLC [column: Luna (C₁₈, 10 mm, 100 Å, 250 x 10 mm), solvents: 65:35 MeOH : H₂O, flow rate: 3.0 mL/min, UV: 254 nm, retention time: 18 min] to afford 5 (17 mg, 92%): ¹H NMR (400 MHz, Methanol- d_4) δ 7.86 (d, J = 8.1 Hz, 1H), 7.20 (dd, J = 10.9, 8.6 Hz, 4H), 7.02 (d, J = 9.1 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 5.98 (dd, J = 3.3, 1.0 Hz, 1H), 5.80 (d, J = 4.4 Hz, 1H), 5.76 (d, J = 8.2 Hz, 1H), 5.21 (d, J = 4.6 Hz, 1H), 4.68 (d, J = 2.0 Hz, 1H), 4.54 (dp, J = 7.3, 3.6 Hz, 1H), 4.48 (dd, J = 5.2, 2.0 Hz, 1H), 4.44 (d, J = 14.5 Hz, 1H), 4.39 (t, J = 3.9 Hz, 1H), 4.33 (d, J = 14.6 Hz, 1H), 4.20 (t, J = 144.7 Hz, 1H), 4.06 - 4.03 (m, 1H), 3.66 (t, J = 5.1 Hz, 1H), 3.51 - 3.45 (m, 3H), 3.19 (s, 3H), 3.08 (ddd, J = 12.3, 8.6, 3.4 Hz, 3H), 2.14 – 2.08 (m, 2H), 1.86 (dtd, J = 12.2, 8.3, 3.5 Hz, 3H); ¹³C NMR (101 MHz, MeOD) δ 173.68, 166.16, 163.31, 157.62, 152.18, 152.08, 144.15, 141.83, 130.91, 129.76 (2C), 123.58 (2C), 118.03 (4C), 109.58, 102.74, 100.64, 90.83, 83.32, 80.35, 77.51, 74.27, 74.01, 67.61, 63.48, 58.61, 48.20 (2C), 43.51, 31.47 (2C); HRMS (ESI+) m/z calcd for $C_{36}H_{41}F_{3}N_5O_{13}$ [M + H] 808.2653, found 808.2674.

HPLC analysis of CPPB (5) synthesized from A500359F

Area % purity: 98.3% Conditions:

column: Kinetex® (C18, 5 μ m, 100 Å, 250 x 4.60 mm), solvents: 30:70 MeOH:H₂O, flow rate: 1.0 mL/min, UV: 254 nm

Bacterial strains and growth of bacteria

Mycobacterium smegmatis (ATCC 607) and *E. coli* (ATCC 10798) were obtained from American Type Culture Collection (ATCC). *Mycobacterium avium* 2285, *Myobacterium kansasii* 824, *Mycobacterium abscessus* DJO-44273, and *Mycobacterium tuberculosis* H37Rv were acquired from EBI. A single colony of *Mycobacterium spp.* was obtained on Difco Middlebrook 7H10 nutrient agar enriched with albumin, dextrose, and catalase (ADC). The others were obtained on the recommended agar media. A single colony of *E. coli* were grown on tryptic soy agar for 24h at 37°C in a static incubator and cultured in tryptic soy broth until log phase to be an optical density (OD) of 0.2-0.5. The OD was monitored at 600 and 570 nm using a 96-well microplate reader.

MIC assays

Minimum inhibitory concentrations were determined by broth dilution microplate alamar blue assay or by OD measurement. All compounds were stored in DMSO or water (1 mg/100 μ L concentration). This concentration was used as the stock solution for all MIC studies. Each compound from stock solution was placed in the first well of a sterile 96 well plate and a serial dilution was conducted with the culturing broth (total volume of 10 μ L). The bacterial suspension at log phase (190 μ L) was added to each well (total volume of 200 μ L), and was incubated for 24h at 37 °C. 20 μ L of resazurin (0.02%) was added to each well and incubated for 4h for *Mycobacterium spp*. (National Committee for Clinical Laboratory Standards (NCCLS) method (pink = growth, blue = no visible growth)). The OD measurements were performed for all experiments prior to colorimetric. The MIC values were determined according to the colorimetric assays using resazurin. The absorbance of each well was also measured at 570 and 600 nm via UV-Vis.

MraY assays

MraY assay substrates, Park's nucleotide-*N*^ɛ-C₆-dansylthiourea and neryl phosphate, were chemically synthesized according to the reported procedures.³

Park's nucleotide- N^{ϵ} -C₆-dansylthiourea (2 mM stock solution, 1.88 µL), MgCl₂ (0.5 M, 5 µL), KCl (2 M, 5 µL), Triton X100 (0.5%, 5.63 µL), Tris-HCl buffer (pH 8.0, 50 mM), neryl phosphate (0.1 M, 2.25 µL), and inhibitor molecule (0 - 50 µg/mL in Tris-HCl buffer)

were placed in a 1.5 mL Eppendorf tube. To a stirred reaction mixture, P-60 (10µL) was added (total volume of reaction mixture: 50 µL adjust with Tris-HCl buffer). The reaction mixture was incubated for 2h at room temperature (26 °C) and quenched with CHCl₃ (100µL). Two phases were mixed via vortex and centrifuged at 25,000 xg for 10min. The upper aqueous phase was assayed via reverse-phase HPLC. The water phase (10 µL) was injected into HPLC (solvent: CH₃CN/0.05 M aq. NH₄HCO₃ = 25:75; UV: 350 nm; flow rate: 0.5 mL/min; column: Kinetex 5µm C8, 100 A, 150 x 4.60 mm), and the area of the peak for lipid I-neryl derivative was quantified to obtain the IC₅₀ value. The IC₅₀ values were calculated from plots of the percentage product inhibition versus the inhibitor.

WecA assays

WecA assay substrate, UDP-Glucosamine-C6-FITC was chemically synthesized according to the reported procedures.⁴

UDP-Glucosamine-C6-FITC (2 mM stock solution, 0.56 μ L), MgCl₂ (0.5 M, 4 μ L), β mercaptoethanol (50 mM, 5 μ L), CHAPS (5%, 11.25 μ L), Tris-HCl buffer (pH 8.0, 50 mM), undecaprenyl phosphate (4 mM, 1.4 μ L), and inhibitor molecule (0 - 50 μ g/mL in Tris-HCl buffer) were place in a 1.5 μ L Eppendorf tube. To a stirred reaction mixture, P-60 (10 μ L) was added (total volume of reaction mixture: 50 μ L adjust with Tris-HCl buffer). The reaction mixture was incubated for 2h at 37 °C and quenched with n-butanol (150 μ L). Two phases were mixed via vortex and centrifuged at 10,000 xg for 3min. The upper organic phase was assayed via reverse-phase HPLC. The organic phase (30 μ L) was injected into HPLC (solvent: gradient elution of 85:15 to 95:5 MeOH/0.05 M aq. NH₄HCO₃ over 20min; UV: 485 nm; flow rate: 0.5 ml/ min; column: Kinetex 5 μ m C8, 100 Å, 150 x 4.60 mm), and the area of the peak for C55-P-P-glucosamine-C₆-FITC was quantified to obtain the IC₅₀ value. The IC₅₀ values were calculated from plots of the percentage product inhibition versus the inhibitor concentration.

AglH assays

AglH assays were performed as the procedure described for WecA assays, but used MjAglH and α -dihydroundecaprenyl phosphate (C₅₅-dolichyl phosphate) instead of WecA and undecaprenyl phosphate.⁵

UDP-Glucosamine-C6-FITC (2 mM stock solution, 0.56 μL), MgCl₂ (0.5 M, 4 μL), βmercaptoethanol (50 mM, 5 μL), CHAPS (5%, 11.25 μL), Tris-HCl buffer (pH 8.0, 50 mM), C55-dolichyl phosphate (4 mM, 1.4 μL), and inhibitor molecule (0 - 50 μg/mL in Tris-HCl buffer) were place in a 1.5 mL Eppendorf tube. To a stirred reaction mixture, AglH solution (10 μL) was added (total volume of reaction mixture: 50 μL adjust with Tris-HCl buffer). The reaction mixture was incubated for 2h at 37 °C and quenched with n-butanol (150 μL). Two phases were mixed via vortex and centrifuged at 10,000 xg for 3min. The upper organic phase was assayed via reverse-phase HPLC. The organic phase (30 μL) was injected into HPLC (solvent: gradient elution of 85:15 to 95:5 MeOH/0.05 M aq. NH₄HCO₃ over 20min; UV: 485 nm; flow rate: 0.5 ml/ min; column: Kinetex 5 μm C8, 100 Å, 150 x 4.60 mm), and the area of the peak for C55-P-P-glucosamine-C₆-FITC was quantified to obtain the IC₅₀ value. The IC₅₀ values were calculated from plots of the percentage product inhibition versus the inhibitor concentration.

DPAGT1 assays

DPAGT1 assays were performed as the procedure described for AglH assays, but used DPAGT1.⁶

UDP-Glucosamine-C₆-FITC

UDP-Glucosamine-C₆-FITC (2 mM stock solution, 0.56 μ L), MgCl₂ (0.5 M, 4 μ L), β -mercaptoethanol (50 mM, 5 μ L), CHAPS (20%, 2.5 μ L), Tris-HCl buffer (pH 8.0, 50 mM), C₅₅-dolichyl phosphate (4 mM, 1.68 μ L), and inhibitor molecule (0 - 50 μ g/mL in Tris-HCl buffer) were place in a 1.5 mL Eppendorf tube. To a stirred reaction mixture, DPAGT1 solution (10 μ L) was added (total volume of reaction mixture: 50 μ L adjust with Tris-HCl

buffer). The reaction mixture was incubated for 2h at 37 °C and quenched with n-butanol (150 μ L). Two phases were mixed via vortex and centrifuged at 10,000 xg for 3min. The upper organic phase was assayed via reverse-phase HPLC. The organic phase (30 μ L) was injected into HPLC (solvent: gradient elution of 85:15 to 95:5 MeOH/0.05 M aq. NH₄HCO₃ over 20min.; UV: 485 nm; flow rate: 0.5 mL/ min; column: Kinetex 5 μ m C8, 100 Å, 150 x 4.60 mm), and the area of the peak for C₅₅-P-P-glucosamine-C₆-FITC was quantified to obtain the IC₅₀ value. The IC₅₀ values were calculated from plots of the percentage product inhibition versus the inhibitor concentration.

Scratch assay

A confluent monolayer was formed in 24-well plates. The monolayer was scratched by a sterile 200 μ L pipette tip and washed with PBS to remove cell debris. Complete medium with CPPB (**5**) (0, 0.05, 0.1, 0.2 μ M) were added and scratched areas were photographed with microscope. The scratched cells were incubated at 37 °C, 5% CO₂. After 24h, medium was removed and cells were stained with a 1:1 mixture of crystal violet and PBS for 5min, washed with PBS twice, and photographed with microscope. Wound areas were measured and recovered areas were calculated.

PBS (0h)		•	CF	РРВ 0.05 μМ (0h)		CPF	PB 0.1 μM (0h)			CPPB 0.2	:0 μM (0h)		
						A Contraction of the second								
PBS (24h)			CP	ΡΒ 0.05 μΜ (24h)		CPF	PB 0.1 μM (24h)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	CPPB 0.2	0 μM (24h)		
PBS				CPPB 0.05		- / -		CPPB 0.1µ		- / -		СРРВ 0.2µ		- / -
0h	24h	%closure				%closure		0h		%closure				%closure
0.9224		16.58716		1.1366	0.781			0.9563				1.2142		17.97892
0.9584				1.1389	0.7427			0.9745		14.83838		1.2191	0.9451	22.4756
0.9153				1.1366		26.16576		0.954				1.2142	0.843	
0.9638				1.1707	0.8065	31.10959		0.9922	0.757	23.7049		1.2349	0.9349	24.29347
1.0177	0.5633	44.6497		1.1941	0.7025	41.16908		1.0457	0.7419	29.05231		1.2966	1.1444	11.73839

Figure S1A. Analysis of migration inhibition of PANC-1. PBS (0h) CPPB 0.05 µM (0h) CPPB 0.1 µM (0h)

Figure S1B. Analysis of migration inhibition of PD002.

PBS			CPPB 0.05	μM			СРРВ 0.1µМ			СРРВ 0.2μ	М	
0h	24h	%closure	0h	24h	%closure		0h	24h	%closure	0h	24h	%closure
1.2905	0.5376	58.34173	1.1679	0.5325	54.40534		1.1459	0.8198	28.45798	0.9814	0.7852	19.99185
1.3473	0.4855	63.96497	1.1119	0.6251	43.78092		1.1814	0.701	40.66362	1.0246	0.7978	22.13547
1.3473	0.518	61.55274	1.2686	0.732	42.2986		1.2192	0.7472	38.71391	1.0021	0.8409	16.08622
1.3419	0.3756	72.00984	1.2839	0.6888	46.35096		1.2497	0.5462	56.29351	1.1403	0.925	18.881
1.3137	0.4698	64.23841	1.2864	0.7164	44.3097		1.2209	0.6014	50.74126	1.0993	0.9277	15.60993
			Closure (%)	80- 60- 40- 20- 0- 20-		H the second sec	- ⁰ 2 ¹ m	-				

Figure S1C. Comparisons of migration inhibition of PD002 by treatment with CPPB,
gemcitabine, and tunicamycin in wound healing (scratch) assays.^a

PBS (0h) CPPB 0.20 µM (0h) Gemcitabine 0.20 µM (0h) Tunicamycin 0.20 µM (0h)

^aAll images were acquired at 24h.

PBS (0h)				СРРВ 0.05 µМ	(0h)			CPPB 0.1 μM (0h)		СРРВ 0.20 µМ (0h)				
				A start		and the second					and the				
			A CONTRACT				Carlos and	· · · · · · · · · · · · · · · · · · ·				. 8			
* Alberto	Sta 2		9.7			Series and Series	100								
1 19-1			Part of the second				N. C.			P. W. Ship	Sale St.	1			
an ob			- Carlor	Gird Ch	2			and the set	1	Ar Star	a starter				
			1000			1.1.4	102	M. Margare		19.2.14		1.5	a a an		
Cast in a			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	a provide to	2		No Ch		5. C.		a state a state of the state of	· ····································	1. 18 M. 18 M.		
PBS (24h)				СРРВ 0.05 μМ	(24h)			СРРВ 0.1 μΜ (24	h)		СРРВ 0.20 µM (24h)			
			1					1 and				A	(+) A		
		200 A.				10.00		P. (4 - 18		-					
2.36	10	62		No. of Concession, Name	24	123			1	A 30	A STAR		1		
						1				1. 3.		-			
		2.1.1		T-I		1							1. A.S. 1		
	34				4	20.3		A M		10					
100				Come of the				1.15	÷	<u></u>	HE X				
PBS	(5 <u>62</u>)	18	el Sa	CPPB 0.05	uМ	1. A. 199	19163	CPPB 0.1µ	M	Ari TA, 39 Jak	CPPB 0.2	uM			
0h	24h	%closure		0h		%closure		Oh	24h	%closure	0h	24h	%closure		
1.1202		42.00143		1.2056	0.9621	20.19741		1	0.829	17.1	0.888		8.592342		
1.1896		37.10491		1.3113		21.1012		1.0014		20.70102	0.9326		11.60197		
1.0831		38.10359 40.70494		1.2664		21.99937 19.29937		0.9258		21.99179 21.39891	0.9316		7.471018 12.79726		
1.0242				1.2446				0.915			0.904				
1.0616		44.60249		1.3183		23.45445		0.934		21.40257	0.9924		12.00121		
1.0263	0.6209	39.50112		1.3182	1.069	18.90457		0.9441	0.8015	15.10433	1.0165	0.8904	12.40531		
1.0524		45.29647		1.3117		23.00069		1.0182			1.1768				
1.0346		45.60217		1.3507	1.0049			1.0171			1.2718		10.70137		
1.0952		45.59898 45.99644		1.3037 1.3529		22.49751 24.6951		1.0114		13.90152 17.90304	1.223		8.421225 11.49622		
1.124		43.59855		1.3416		18.29905		0.8307		17.69592	1.3053		10.79445		
1.1259		42.59703		1.116				1.0105		19.70312	1.3029		10.05449		
1.1103	3 0.6506	41.40322		1.0833	0.7789	28.09933		1.1237	0.9513	15.34217	1.3615	5 1.2159	10.69409		
1.1471		40.59803		1.0811		27.90676		1.1739		14.0046	1.3911		7.900223		
1.1523		46.09911 44.79473		1.071 1.1878		23.30532 26.30072		1.1236		15.89534 17.69897	1.4017	1.2909	7.904687		
1.1340		44.79473		1.1048		15.90333		1.2404		15.79901					
1.2443				1.2355		18.59976		1.2645		18.80585					
1.2544		40.40179		1.229	0.9623	21.70057		1.2654		15.49708					
1.2672		41.60354		1.2291	1.0091	17.89928		1.3561		17.00465					
1.2899		37.80138						1.3803		17.90191					
1.3807		42.00043 36.96403						1.4222	1.1491	19.20264					
1.1324	-	39.10279													
1.0863	3 0.6083	44.00258													
1.0895	-														
1.1169		34.90017													
1.1561		42.09843 36.00105													
1.1657	-	43.30445													
1.1609		43.19924													
1.2023		42.90111													
1.1897		43.59923													
1.2856		43.99502 41.69576													
1.203		39.00139													
1.1852	-	42.99696													
1.2289		37.96892													
1.4237	0.8699	38.89864													

Figure S1D. Analysis of migration inhibition of AsPC-1.

Figure S1E. Analysis of migration inhibition of Capan-1.

PBS (0h)				CPPB 0.05 μM (0h)		•••	CPPB 0.1 μM (0h)		СРРВ 0.20 µМ (0h)				
		and a second				A. S. A.									
PBS (24h)	2 4	1.0	CARS A	СРРВ 0.05 μΜ	(24h)	國際和行為	200	СРРВ 0.1 μМ (24	h)	The state of the s	CPPB 0.20 µM (24h)		9 22000.00		
								2	S. S.						
PBS				CPPB 0.05				СРРВ 0.1µ			СРРВ 0.2µ				
0h	24h	%closure			24h	%closure		0h	24h	%closure		24h	%closure		
1.4625				1.5753 1.1492	1.2823			1.9965	1.5094		1.3607		18.60072		
1.1401		39.00535 28.1028		1.1492	0.9745			1.4587 1.1065		20.40173 18.89742	1.1822		4.999154 11.09979		
1.1594		40.29671		1.2096	0.9459	21.8006		1.3102		19.69928	1.2914		13.19498		
1.1334		28.7945		1.4973	1.2308	17.7987		1.3016		24.80025	1.1568		6.388313		
1.2417		32.10115		1.397	1.1749			1.4161		24.39799	1.1508		3.402403		
1.6172				1.0924	0.8302	24.0022		1.4161		14.90398	1.3245		4.794262		
1.2064		26.30139		1.7816	1.4556			1.3186	1.0945		1.1854		6.352286		
1.1487				1.6739	1.2755	23.8007		1.2036		19.69924	1.208	1.1611			
1.1336		34.7036		1.3164	1.0518			1.3646		23.59666	1.1683		5.632115		
1.0483		27.99771		2.1668	1.7248			1.2981		16.60119	1.2234		2.991663		
1.2839		27.20617		1.0901	0.8339			1.2879		22.29987	1.1968		2.774064		
1.1493				1.7889	1.195			1.1809		27.09798	1.2673		3.621873		
1.6869		25.49647		1.5153	1.2077			1.5736		17.69827	1.2416		3.543814		
1.7306	1.3672	20.9985		1.3192	1.0686			1.3702		16.39907					
1.4137	1.0772	23.80279						1.3664		15.20053					
1.5953	1.1135	30.20122													
1.3062	1.0319	20.99985													
1.4962	1.1267	24.6959													
1.7921	1.3781	23.10139													
1.504	1.1551	23.19814													
1.5016															

Figure S1F. Analysis of migration inhibition of SiHa.

PBS (0h)		2	CPPB 0.05 μM	CPPB 0.05 μM (0h)						СРРВ 0.20 µМ (0h)				
	A. K.								-					
PBS (24h)			СРРВ 0.05 µМ (24h)			СРРВ 0.1 µМ (24h)			СРРВ 0.20 µМ (24h)					
PBS			CPPB 0.05				CPPB 0.1μ			СРРВ 0.2µ				
0h	24h	%closure	0h	24h	%closure			24h	%closure	Oh	24h	%closure		
1.5053		29.56221	1.4222		32.09816		2.0629		30.39895	1.6537		29.20119		
1.6171			1.4494		26.10046		1.23		29.09756	1.9951		26.60017		
1.7035			1.6431		30.39985		1.3805		31.90148 34.40358	1.8349 1.8247		27.70178 24.40401		
1.6962 2.2438			1.5439		22.90304 28.09735		1.5635 1.5077		29.80036	1.8247		15.39704		
1.59	-	28.20210	1.935		26.29974		1.6479		25.20177	1.4744		16.60336		
1.3777			1.935		24.80391		1.7368		35.89936	1.4891		20.80451		
1.2339	-	29.2001	1.5398		34.10183		1.5942		30.99987	1.3503		16.89995		
1.2355			1.445		25.59862		1.584		28.09975	1.1726		14.30155		
1.4337			1.5986		29.30064		1.7505		27.70066	1.1176		21.40301		
1.7329			1.5009		34.19948		1.9446		32.50026	1.0392		27.29985		
1.1772		27.0982	1.5985		27.40069		2.3824		31.00235	1.0788		19.40119		
			1.8095		37.4026		2.6203		26.30233	1.1234		22.20046		
			2.0571		28.00058		0.9566		28.20406	1.0235		16.00391		
			2.3298	1.7194	26.19967		0.9293		32.09943	0.9906	0.7836	20.89643		
			2.3297	1.7869	23.29914		1.0234	0.7123	30.39867	0.9532	0.7883	17.29962		
			1.9191	1.3856	27.79949		0.9431	0.6771	28.20486					
			1.8512	1.3347	27.90082		0.9551	0.6113	35.99623					
			1.8085	1.2822	29.10147		1.0398	0.6759	34.99711					
			1.8875	1.2986	31.2									
			1.0256	0.6584	35.80343									
			1.0867	0.7596	30.1003									
			1.0506	0.7564	28.00305									
			0.9818		27.60236									
			1.1131		34.39943									
			0.9354		28.89673									
			1.0654		23.70002									
			0.9039	0.6481	28.29959									

Figure S1G. Analysis of migration inhibition of HCT-116.

Immunofluorescent staining

A confluent monolayer was formed in NuncTM Lab-TekTM II CC2TM chamber slide (8 well, Thermo Scientific, Cat. # 154941PK). Complete medium with CPPB (5, 0 - 20 μ M) was added and incubated at 37 °C, 5% CO2. After 24h (for snail and E-cadherin, 72h for DPAGT1), medium was removed and cells were washed with PBS (3 times), then fixed with 4% paraformaldehyde in PBS for 30min at 4 °C. After washing with 0.2% Tween-20/PBS for 3 times, permeabilized with 0.25% Triton X100 in PBS for 30min at 4 °C. After washing with 0.2% Tween-20/PBS for 3 times, treated with blocking buffer (0.2% Tween-20, 1% NGS, 1% BSA in PBS) for 2h at 4 °C. Then the cells were treated with primary antibody (snail: Snail (C15D3) rabbit mAb (Cell Signaling Technology, Cat. # 3879S), Ecadherin: E-Cadherin (4A2) mouse mAb (Cell Signaling Technology, Cat. # 14472S), DPAGT1: DPAGT1 polyclonal antibody (Invitrogen, Cat. # PA5-72704)) in blocking buffer (0.4% v/v) for overnight at 4 °C. The cells were washed with 0.2% Tween-20/PBS (3 times) and treated with secondary antibody (for snail and DPAGT1: goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 568 (Invitrogen, Cat. # A11011), for E-cadherin: goat anti-mouse IgG (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor Plus 647 (Invitrogen, Cat. # A32728)) in blocking buffer (0.2% v/v) for 2h at r.t. in the dark. After another 3-times washing with 0.2% Tween-20/PBS, the cells were treated with DAPI Fluoromount-G[®] (SouthernBiotech, Cat. # 0100-20) and covered with glass slide for fluorescence microscopy analysis.

Figure S2. Immunofluorescent staining: Effect of a DPAGT1 inhibitor, CPPB, on Snail in pancreatic cancer cells (AsPC-1 and Capan-1).^a

^aFluorescent microscopy images at 40x. The cells $(1 \times 10^{5-6})$ were treated with CPPB (0.05, 0.2, 2.0, and 20 μ M) or PBS for 24h. The cells were treated with Snail (C15D3) rabbit mAb (Cell Signaling Technology), followed by goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa FluorTM 568. DAPI (4',6-diamidino-2-phenylindole), a blue fluorescent DNA dye, was used to mark the nucleus.

Figure S3. Immunofluorescent staining: Effect of a DPAGT1 inhibitor, CPPB, on E-Cadherin in pancreatic cancer cells (AsPC-1 and Capan-1).^a

^aFluorescent microscopy images at 40x. The cells $(1 \times 10^{5-6})$ were treated with CPPB (0.05, 0.2, 2.0, and 20 μ M) or PBS for 24h. The cells were treated with E-Cadherin (4A2) mouse mAb (Cell Signaling Technology), followed by goat anti-mouse IgG (H+L) highly cross-adsorbed secondary antibody, Alexa FluorTM Plus 647. DAPI (4',6-diamidino-2-phenylindole), a blue fluorescent DNA dye, was used to mark the nucleus.

Figure S4. Immunofluorescent staining: The DPAGT1 expression level in the selected cancer cell lines (AsPC-1 and Capan-1) treated with CPPB.^a **A: DPAGT1 (AsPC-1)**

^aFluorescent microscopy images at 40x. The cells $(1 \times 10^{5-6})$ were treated with CPPB (0.05, 0.2, 2.0, and 20 μ M) or PBS for 72h. The cells were treated with DPAGT1 polyclonal antibody (Invitrogen, PA5-72704), followed by goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa FluorTM 568. DAPI (4',6-diamidino-2-phenylindole), a blue fluorescent DNA dye, was used to mark the nucleus.

SDS-PAGE and Western blotting assay

The medium of the cells grown in 10 cm cell culture plate was removed, and the cells were washed once with PBS, and lysed with Pierce RIPA buffer (Thermo Scientific, Cat. #

89901) containing 1x Pierce protease and phosphatase inhibitors (Thermo Scientific, Cat. # 88668). The cell lysate was pelleted down at 15,200 xg at 4 °C for 30min, the cell supernatant was transferred to a fresh Eppendorf tube, and 5 uL of sample was quantitated by using (Quick Start Bradford Dyed Reagent, Biorad, Cat. # 500-0205). 30 µL (1.5 mg total protein /mL) of each protein sample was analyzed by SDS-PAGE (10% gel) followed by Western blotting, and chemiluminescence. Precision Plus Dual Color (Biorad, Cat. # 161-0374) was used as protein standard marker. E-Cadherin (24E10) rabbit mAb (Cell Signaling Technology, Cat. #3195), monoclonal anti-DPAGT1 antibody produced in mouse clone 1G1 (Sigma Aldrich, Cat. #SAB1402754), β-actin (8H10D10) mouse mAb (Cell Signaling Technology, Cat. #3700) and Snail (C15D3) rabbit mAb (Cell Signaling Technology, Cat. #3879) were used as primary antibody. Anti-rabbit IgG, HRP-linked antibody (Cell Signaling Technology, Cat. #7074) or anti-mouse IgG, HRP-linked antibody (Cell Signaling Technology, Cat. #7076) were used as secondary antibody. Clarity Western ECL Substrate (Biorad, Cat. # 170-5060) was used to develop the probe signal, and Classic Blue BX film (MidSci, Ref. # 604 5983) was used for chemiluminescence.

Figure S5. Western blotting assay for selected cancer cell lines (PD002, PANC-1 and HCT-116) treated with CPPB.^a

D: SiHa^e

^aThe relative expression level was quantified by using Image StudioTM Lite quantification software. ^bExposure time: E-Cadherin (5min), DPAGT1 (15min), β -actin (30sec), Snail (2min). ^cExposure time: E-Cadherin (5min), DPAGT1 (15min), β -actin (2sec), Snail (2min). ^dExposure time: E-Cadherin (5min), DPAGT1 (2min), β -actin (10sec), Snail (2min). ^eExposure time: β -actin (5sec), Snail (2min). ^eThe cell lysate for DPAGT1 was prepared by ultracentrifugation (130,000 xg for 1h at 4 °C) and 30 µL of the lysate was analyzed.

Synergistic effect of CPPB with paclitaxel

The synergistic or antagonistic activities of CPPB (**5**) with paclitaxel were assessed *in vitro* via micro dilution broth checkerboard technique. PD002 cells (180 μ L, 1x10⁴/mL) were places in each well of a 96well plate. The cells were treated with a combination of CPPB (0-50 μ M) and paclitaxel (5-0.024 μ M), and cultured at 37 °C for 72h under 5% CO₂. Antiproliferation kinetic of each well were monitored by using an IncuCyte Live-Cell Imaging System (Essen BioScience, Ann Arbor, MI).

Figure S6. Fractional Inhibitory Concentration (FIC) of a combination of CPPB and paclitaxel against a patient-derived pancreatic adenocarcinoma PD002.^a

 Σ FIC^b index for the wells at growth–no growth interface.

	1	2	3	4	5	6	7	8	9	10	11	12	С _А : СРРВ (µМ)
A	0.001953	0.003906	0.007813	0.01563	0.03125	0.06250	0.1250	0.2500	0.5000	1.0000	2.0000	4.0000	0
В	0.002239	0.004192	0.008098	0.01591	0.03154	0.06279	0.1253	0.2503	0.5003	1.0003	2.0003	4.0003	0.01
С	0.003382	0.005335	0.009241	0.01705	0.03268	0.06393	0.1264	0.2514	0.5014	1.0014	2.0014	4.0014	0.05
D	0.004810	0.006763	0.01067	0.01848	0.03411	0.06536	0.1279	0.2529	0.5029	1.0029	2.0029	4.0029	0.1
E	0.007667	0.009621	0.01353	0.02134	0.03696	0.06821	0.1307	0.2557	0.5057	1.006	2.0057	4.0057	0.2
F	0.05910	0.06105	0.06496	0.07277	0.08839	0.1196	0.1821	0.3071	0.5571	1.05714	2.0571	4.0571	2.0
G	0.5734	0.5753	0.5792	0.5871	0.6027	0.6339	0.6964	0.8214	1.0714	1.5714	2.5714	4.5714	20.0
н	1.4305	1.4325	1.4364	1.4442	1.4598	1.4911	1.5536	1.6786	1.9286	2.4286	3.4286	5.4286	50.0
	0.0024	0.0049	0.0098	0.020	0.039	0.078	0.16	0.31	0.63	1.25	2.5	5	С _в : Paclitaxel (μМ)

Highlighted in orange: growth, others: non-growth

^aThe IC₅₀ values of CPPB and paclitaxel against PD002 are 35.0 and 1.25 μ M, respectively. ^b Σ FIC is the sum of fractional inhibitory concentration calculated by the equation Σ FIC = FIC_A + FIC_B = C_A/IC_{50A} + C_B/IC_{50B}. MIC_A and MIC_B: MIC of drugs A and B, C_A and C_B =concentrations of drugs A and B used in combination. In these interaction studies, Σ FIC of less than 0.5 represents synergistic activity.

Computational methods – DPAGT1 inhibitor study

Protein preparation. All molecular modeling and docking studies were performed using the experimental structure of the human GPT (DPAGT1, H129 variant) with bound tunicamycin (PDB 6BW6).⁷ The biological unit was downloaded and prepared using the Protein Preparation Wizard of the Maestro Small Molecule Drug Discovery Suite (Schrödinger, LLC).⁸ Hydrogens were added, when applicable, and protonation and tautomeric states were assigned using the Epic program.⁹ Lone waters were removed and the protein was refined by optimizing H-bond assignments and performing a restrained minimization using MacroModel.¹⁰

Docking site preparation. The docking receptor grid was prepared using Schrödinger's Glide program.^{11, 12} The docking grid was defined as 25 Å region centroid of the bound tunicamycin compound. Van der Waals radius scaling was employed with a scaling factor of 1.0 and partial charge cutoff of 0.25 (default values). No docking constraints or excluded volumes were defined. Hydroxyl and thiol groups within close proximity to the bound tunicamycin compound (≤ 3 Å) were defined as rotatable.

Inhibitor docking. Compounds were built and prepared for docking using the LigPrep program using default settings (Schrödinger, LLC).¹¹ The DPAGT1 inhibitors, non-inhibitors, and weak inhibitor reported herein were docked into the prepared protein using Schrödinger's Glide program using XP (extra precision) settings using the grid described above.¹³

Table S1. DPAGT1 inhibitors of capuramycin analogues possessing antimigratory activities of pancreatic cancer cell lines.

References

- [1] Kurosu, M.; Li, K.; Crick, D. C. Concise synthesis of capuramycin. *Org. Lett.* **2009**, *11*, 2393-2396.
- [2] Kang, S.; Kim, R. Y.; Seo, M. J.; Lee, S.; Kim, Y. M.; Seo, M.; Seo, J. J.; Ko, Y.; Choi, I.; Jang, J.; Nam, J.; Park, S.; Kang, H.; Kim, H. J.; Kim, J.; Ahn, S.; Pethe, K.; Nam, K.; No, Z.; Kim, J. Lead optimization of a novel series of imidazo[1,2-*a*]pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drugresistant anti-tuberculosis agent. *J. Med. Chem.* **2014**, *57*, 5293-5305.
- [3] Siricilla, S.; Mitachi, K.; Skorupinska-Tudek, K.; Swiezewska, E; Kurosu, M. Biosynthesis of a water-soluble lipid I analogue and a convenient assay for translocase I, *Anal. Biochem.* **2014**, *461*, 36-45.
- [4] Mitachi, K.; Siricilla, S.; Yang, D.; Kong, Y.; Skorupinska-Tudek, K.; Swiezewska, E.; Franzblau, S. G.; Kurosu, M. Fluorescence-based assay for polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) and identification of a novel antimycobacterial WecA inhibitors. *Anal. Biochem.* 2016, *512*, 78-90.
- [5] Mitachi, K.; Yun, H-G.; Kurosu, S. M.; Eslamimehr, S.; Lemieux, M. R.; Klaić, L.; Clemons, W. M.; Kurosu, M. Novel FR-900493 analogs that inhibit outgrowth of Clostridium difficile spores. ACS Omega 2018, 3, 1726-1739.
- [6] Mitachi, K.; Kurosu, S. M.; Gillman, C. D.; Yun, H-G.; Clemons, W. M.; Kurosu, M. A practical synthesis of a novel DPAGT1 inhibitor, aminouridyl phenoxypiperidinbenzyl butanamide (APPB) for in vivo studies. *MethodsX* 2019, 6, 2305-2321.
- [7] Dong, Y. Y.; Wang, H.; Pike, A. C. W.; Cochrane, S. A.; Hamedzadeh, S.; Wyszyński, F. J.; Bushell, S. R.; Royer, S. F.; Widdick, D. A.; Sajid, A.; Boshoff, H. I.; Park, Y.; Lucas, R.; Liu, W. M.; Lee, S. S.; Machida, T.; Minall, L.; Mehmood, S.; Belaya, K.; Liu, W. W.; Chu, A.; Shrestha, L.; Mukhopadhyay, S. M. M.; Strain-Damerell, C.; Chalk, R.; Burgess-Brown, N. A.; Bibb, M. J.; Barry III, C. E.; Robinson, C. V.; Beeson, D.; Davis, B. G.; Carpenter, E. P. Structures of DPAGT1 explain glycosylation disease mechanisms and advance TB antibiotic design. *Cell* 2018, *175*, 1045-1058.
- [8] Schrödinger Release 2019-4: Maestro, Schrödinger, LLC, New York, NY, 2019.
- [9] Greenwood, J. R.; Calkins, D.; Sullivan, A. P.; Shelley, J. C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. *J. Comput. Aided Mol. Des.* **2010**, *24*, 591-604.
- [10] Schrödinger Release 2019-4: MacroModel, Schrödinger, LLC, New York, NY, 2019.
- [11] Schrödinger Release 2019-4: LigPrep, Schrödinger, LLC, New York, NY, 2019.
- [12] Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: a new approach for rapid accurate docking and scoring. 1. Method and assessment of docking accuracy. *J. Med. Chem.* 2004, 25, 1739-1749.
- [13]Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. *J. Med. Chem.* 2006, 49, 6177-6196.

S50

S95

S122

