C₂₈ Terpenoids from Lamiaceous Plant *Perovskia scrophulariifolia*: Their Structures and Anti-neuroinflammatory Activity

Naonobu Tanaka,[†] Kanji Niwa,[†] Seita Kajihara,[†] Daisuke Tsuji,[†] Kohji Itoh,[†] Nilufar Z. Mamadalieva,[‡] and Yoshiki Kashiwada^{*,†}

[†]Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan

[‡]Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan.

Supporting Information

Experimental Section

- Scheme S1. Possible biogenetic pathway of perovsfolin A (1).
- Figure S1. ECD spectra of perovsfolins A (1) and B (2).
- Figure S2. ¹H NMR spectrum of perovsfolin A (1) in C_5D_5N (500 MHz).
- Figure S3. 13 C NMR spectrum of perovsfolin A (1) in C₅D₅N (125 MHz).
- Figure S4. ¹H-¹H COSY spectrum of perovsfolin A (1) in C₅D₅N (500 MHz).
- Figure S5. HSQC spectrum of perovsfolin A (1) in C_5D_5N (500 MHz).
- Figure S6. HMBC spectrum of perovsfolin A (1) in C_5D_5N (500 MHz).
- Figure S7. ROESY spectrum of perovsfolin A (1) in C_5D_5N (500 MHz).
- Figure S8. ¹H NMR spectrum of perovsfolin B (2) in C_5D_5N (500 MHz).
- Figure S9. 13 C NMR spectrum of perovsfolin B (2) in C₅D₅N (125 MHz).
- Figure S10. ¹H-¹H COSY spectrum of perovsfolin B (2) in C₅D₅N (500 MHz).
- Figure S11. HSQC spectrum of perovsfolin B (2) in C₅D₅N (500 MHz).
- Figure S12. HMBC spectrum of perovsfolin B (2) in C_5D_5N (500 MHz).
- Figure S13. ROESY spectrum of perovsfolin B (2) in C₅D₅N (500 MHz).
- Figure S14. ¹H NMR spectrum of permethylperovsfolin A (1a) in C₅D₅N (500 MHz).
- Figure S15. ¹H NMR spectrum of terpenoid moiety (1b) of 1 in C_5D_5N (500 MHz).
- Figure S16. ¹H NMR spectrum of trimethyltanshinol (1d) in CDCl₃ (500 MHz).

- Figure S17. ¹H NMR spectrum of permethylperovsfolin B (2a) in C₅D₅N (500 MHz).
- Figure S18. ¹H NMR spectrum of terpenoid moiety (**2b**) of **2** in C_5D_5N (500 MHz).
- Figure S19. ¹H NMR spectrum of rosmarinic acid permethylate (**3a**) in CDCl₃ (500 MHz).
- Figure S20. ¹H NMR spectrum of (+)-trimethyltanshinol (**3b**) in CDCl₃ (500 MHz).
- Figure S21. ¹H NMR spectrum of (±)-trimethyltanshinol (**3b**) in CDCl₃ (500 MHz).
- Table S1. ¹H and ¹³C NMR data for perovsfolins A (1) and B (2) in C_5D_5N .
- Table S2. Cartesian coordinates, total energies (E), relative energies (ΔE), and Boltzmann populations for the stable conformers of hexacyclic core moiety (**1b**: $1R, 11R, 7^{2}R, 8^{2}R$) of perovsforin A (**1**).

EXPERIMENTAL SECTION

General Experimental Procedures. Specific rotations were obtained by a JASCO P-2200 digital polarimeter. NMR spectra were measured on a Bruker AVANCE-500 spectrometer using the resonances of C₅D₅N ($\delta_{\rm H}$ 8.71; $\delta_{\rm C}$ 123.5) and CDCl₃ ($\delta_{\rm H}$ 7.26; $\delta_{\rm C}$ 77.0) as internal references for ¹H and ¹³C NMR chemical shifts, respectively. IR, UV, and CD spectra were recorded on a JASCO FT/IR-6200, a Hitachi UV-3900H, and a JASCO J-1500 spectrophotometers, respectively. HRESIMS were recorded on a Waters LCT PREMIER 2695.

Extraction and Isolation. The aerial parts of *Perovskia scrophulariifolia* collected in Uzbekistan were dried and then extracted with MeOH at rt to give the extract (180 g). The extract was partitioned between EtOAc and water. The EtOAc-soluble materials were further partitioned between *n*-hexane and 90% MeOH aq. The 90% MeOH aq.-soluble materials (94 g) were subjected to Sephadex LH-20 column chromatography (MeOH/water, 6:4 to 10:0) to give eight fractions (frs. 1~8). Fr. 5 was applied to a silica gel column (CHCl₃/MeOH, 99:1 to 0:100) to give 17 fractions (frs. 5.1~5.17) including methyl rosmarinate (**3**, 2.8 g) as fr. 5.17. Fr. 5.14 was further separated by Sephadex LH-20 column chromatography (MeOH/water, 6:4) to afford 10 fractions (frs. 5.14.1~5.14.10). Fr. 5.14.7 was loaded on an ODS column (MeOH/water, 6:4 to 10:0), and purified by reversed-phase HPLC (COSMOSIL 5C₁₈-MS-II, 10 i.d. x 250 mm, MeCN/water, 58:42 with 0.1% TFA) to furnish perovsfolins A (**1**, 3.7 mg) and B (**2**, 2.7 mg).

Perovsfolin A (1): colorless amorphous solid; $[\alpha]_D$ +251.1 (*c* 0.1, MeOH); UV (MeOH) λ_{max} 249 (ε 14,500), 288 (7,000), and 335 (6,200) nm; ECD (MeOH) Δε (nm) +15.2 (369), -17.8 (296), +51.1 (220), and -24.9 (203); ¹H and ¹³C NMR (Table S1); HRESIMS *m/z* 677.2360 [M+Na]⁺ (calcd for C₃₈H₃₈O₁₀Na⁺, 677.2357).

Perovsfolin B (2): colorless amorphous solid; [α]_D –190.7 (*c* 0.1, MeOH); UV (MeOH) λ_{max} 245 (ε 13,600), 289 (7,300), and 335 (6,900) nm; ECD (MeOH) Δε (nm) –13.4 (367), +13.8 (296), –43.5 (220), and +34.6 (204); ¹H and ¹³C NMR (Table S1); HRESIMS *m*/*z* 677.2366 [M+Na]⁺ (calcd for C₃₈H₃₈O₁₀Na⁺, 677.2357).

Chemical Conversions of Perovsfolins A (1) and B (2). A mixture of perovsfolin A (1, 0.4 mg), CH₃I (60 μ L), and K₂CO₃ (60 mg) in dry acetone (0.4 mL) was heated at 60 °C (oil bath) in a screw-capped vial for 5 h with stirring. After removal of inorganic salts by filtration, the filtrate was concentrated under the reduced pressure. The residue was purified by silica gel column chromatography (toluene/EtOAc, 1:0 to 9:1) to give permethylperovsfolin A (1a, 0.4 mg). Permethylpervsfolin A (1a, 0.2 mg) was treated with NaOH in MeOH/acetone (2:1, 0.75 mL) at rt for 12 h with stirring. The reaction mixture was neutralized with 1M HCl and diluted by water.

The solution was extracted with EtOAc, washed successively with water and brine, dried over Na_2SO_4 , and concentrated to give a residue. Purification of the residue by silica gel column chromatography (*n*-hexane/acetone, 6:4 to 0:1) gave a terpenoid (**1b**) and a C₆-C₃ (**1c**) moieties. A solution of **1c** in MeOH (0.2 mL) was treated with drops of TMS-CHN₂ (0.6 M solution in *n*-hexane), and the mixture was stirred at rt for 0.5 h. The reaction mixture was concentrated to give trimethyltanshinol (**1d**). The terpenoid moiety (**2b**) and trimethyltanshinol (**2d**) were obtained from perovsfolin B (**2**) according to the same procedure.

Permethylperovsfolin A (*1a*): colorless amorphous solid; $[\alpha]_D$ +126.7 (*c* 0.02, MeOH); ¹H NMR (C₅D₅N, *J* in Hz) δ_H 7.45 (1H, s), 7.31 and 7.27 (each 1H, d, 8.0), 7.14 (1H, s), 7.12 (1H, d, 2.0), 7.01 (1H, dd, 8.2, 2.0), 6.95 (1H, s), 6.95 (1H, d, 8.2), 6.05 (1H, d, 3.), 5.90 (1H, dd, 9.3, 3.8), 4.48 (1H, dt, 11.1, 6.1), 3.84, 3.75, 3.71, 3.61, and 3.56 (each 3H, s), 3.43 (1H, dd, 14.3, 3.8), 3.32 (1H, dd, 11.1, 3.5), 3.25 (1H, dd, 14.3, 9.3), 3.23 (1H, m), 1.86, 1.74, 1.45, and 1.34 (each 1H, m), 1.23 x 2 (each 3H, d, 7.0), 1.15 and 1.03 (each 3H, s); HRESIMS *m/z* 733.2990 [M+Na]⁺ (calcd for C₄₂H₄₆O₁₀Na⁺, 733.2983).

Terpenoid moiety (**1b**) of **1**: colorless amorphous solid; ¹H NMR (C₃D₅N, *J* in Hz) $\delta_{\rm H}$ 7.46 (1H, s), 7.32 and 7.27 (each 1H, d, 8.0), 7.12 (1H, s), 6.99 (1H, s), 6.10 (1H, d, 3.0), 4.50 (1H, dt, 11.4, 5.7), 3.78, 3.58, and 3.55 (each 3H, s), 3.31 (1H, dd, 11.4, 3.0), 3.26 (1H, sept, 7.1), 1.83, 1.69, 1.61, and 1.40 (each 1H, m), 1.25 and 1.24 (each 3H, d, 7.1), 1.18 and 1.01 (each 3H, s); HRESIMS *m*/*z* 525.2265 [M+Na]⁺ (calcd for C₃₁H₃₄O₆Na⁺, 525.2248); UV (MeOH) λ_{max} 250 (ϵ 14,400), 287 (5,400), and 335 (6,200) nm; CD (MeOH) $\Delta \epsilon$ +14.4 (368), -5.6 (322), -18.2 (293), -0.7 (260), -7.1 (249), +54.2 (222), -41.6 (203). UV (ϵ values) and CD ($\Delta \epsilon$ values) data for **1b** were estimated on the basis of its UV absorption at 335 nm by comparing that of **1**, since a small amount of **1b** was obtained (< 0.1 mg).

Trimethyltanshinol (**1***d*): colorless amorphous solid; ¹H NMR (CDCl₃, *J* in Hz) $\delta_{\rm H}$ 6.80 (1H, d, 8.5), 6.75 (1H, brs), 6.74 (1H, m), 4.43 (1H, dd, 6.6, 4.3), 3.87, 3.86, and 3.76 (each 3H, s), 3.08 (1H, dd, 14.1, 4.3), and 2.92 (1H, dd, 14.1, 6.6); HRESIMS *m*/*z* 263.0872 [M+Na]⁺ (calcd for C₁₂H₁₆O₅Na⁺, 263.0890).

Permethylperovsfolin B (2a): colorless amorphous solid; $[\alpha]_D$ –69.2 (*c* 0.02, MeOH); ¹H NMR (C₅D₅N, *J* in Hz) δ_H 7.45 (1H, s), 7.30 and 7.26 (each 1H, d, 8.0), 7.14 (1H, d, 2.0), 7.12 (1H, s), 7.03 (1H, dd, 8.4, 2.0), 6.93 (1H, d, 8.4), 6.75 (1H, s), 6.31 (1H, d, 3.2), 5.82 (1H, dd, 10.0, 3.9), 4.46 (1H, dt, 11.0, 5.7), 3.80, 3.72, 3.71, 3.54, and 3.52 (each 3H, s), 3.46 (1H, dd, 14.0, 3.9), 3.31 (1H, dd, 11.0, 3.2), 3.30 (1H, dd, 14.0, 10.0), 3.23 (1H, sept, 6.9), 1.23 and 1.22 (each 3H, d, 6.9), 1.16 and 0.97 (each 3H, s); HRESIMS *m/z* 733.2977 [M+Na]⁺ (calcd for C₄₂H₄₆O₁₀Na⁺, 733.2983).

Terpenoid moiety (**2b**) of **2**: colorless amorphous solid; ¹H NMR (C_5D_5N) data was identical to that of **1b**; HRESIMS *m/z* 525.2260 [M+Na]⁺ (calcd for $C_{31}H_{34}O_6Na^+$, 525.2248); UV (MeOH)

 λ_{max} 250 (ϵ 16,300), 288 (5,700), and 335 (6,900) nm; CD (MeOH) $\Delta\epsilon$ –17.6 (368), +6.2 (323), +5.7 (319), +21.9 (293), +0.7 (259), +8.8 (248), -63.5 (222), and +48.2 (204). UV (ϵ values) and CD ($\Delta\epsilon$ values) data for **2b** were estimated on the basis of its UV absorption at 335 nm by comparing that of **2**, since a small amount of **2b** was obtained (< 0.1 mg).

Trimethyltanshinol (2d): colorless amorphous solid; ¹H NMR (CDCl₃) data was not obtained due to low sample amount; HRESIMS m/z 263.0894 [M+Na]⁺ (calcd for C₁₂H₁₆O₅Na⁺, 263.0890).

Chemical Conversion of Methyl Rosmarinate (3) to (\pm) -Trimethyltanshinol {(\pm)-3b}. Methyl rosmarinate (3, 690 mg) was treated with CH₃I (0.44 mL) and K₂CO₃ (1.0 g) in dry acetone (8 mL) and refluxed in an oil bath for 6 h. After filtration and evaporation, the reaction mixture was purified by silica gel column chromatography (toluene/EtOAc, 1:0 to 9:1) to give rosmarinic acid permethylate (3a, 680 mg). To a MeOH solution (15 mL) of 3a (610 mg) was added K₂CO₃ (75 mg) and stirred at rt for 12 h. The reaction mixture was neutralized with 1M HCl and diluted by water. The solution was extracted with EtOAc, and the organic layer was washed successively with water and brine, dried over Na₂SO₄, and concentrated to give a residue. Purification of the residue by silica gel column chromatography (*n*-hexane/EtOAc, 7:3 to 1:1) gave trimethyltanshinol (**3b**, 156 mg). To a CH₂Cl₂ solution (8 mL) of **3b** (100 mg) were added Dess-Martin periodinane (185 mg) and NaHCO₃ (175 mg) and stirred at rt for 4 h. The reaction mixture was quenched with sat. NaHCO₃ aq. (1 mL) and sat. Na₂S₂O₃ aq. (1 mL). The aqueous phase was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure to give the residue. The residue was chromatographed over a silica gel column (n-hexane/EtOAc, 8:2) to give an oxidized product (24 mg). A mixture of the product (24 mg) and NaBH₄ (4.4 mg) in MeOH (1 mL) was stirred for 1 h in an ice bath (0 °C). The reaction was quenched with water and evaporated to give a residue. The residue was partitioned with EtOAc/water, and the organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. Purification of the residue on a silica gel column (nhexane/EtOAc, 8:2 to 7:3) afforded (\pm) -3b (2.5 mg).

Rosmarinic acid permethylate (*3a*): colorless amorphous solid; $[\alpha]_D + 42.3$ (*c* 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, *J* in Hz) δ_H 7.65 (1H, d, 15.8), 7.09 (1H, dd, 8.4, 1.8), 7.04 (1H, d, 1.8), 6.86 (1H, d, 8.4), 6.80 (3H, m), 6.33 (1H, d, 15.8), 5.37 (1H, dd, 8.0, 4.8), 3.92, 3.91, 3.86 × 2, and 3.75 (each 3H, s), 3.19 (1H, dd, 14.3, 4.8), and 3.14 (1H, dd, 14.3, 8.0); HRESIMS *m/z* 453.1526 [M+Na]⁺ (calcd for C₂₃H₂₆O₈Na⁺, 453.1520).

(+)-*Trimethyltanshinol* (**3b**): colorless amorphous solid; $[\alpha]_D + 11.7 (c \ 0.3, CH_2Cl_2) \{ lit. [\alpha]_D + 10.6 (c \ 0.67, CH_2Cl_2) \}^{15}$; ¹H NMR (CDCl₃) data was identical to that of **1d**: HRESIMS *m/z* 263.0899 [M+Na]⁺ (calcd for C₁₂H₁₆O₅Na⁺, 263.0890).

(±)-*Trimethyltanshinol* [(±)-**3b**]: colorless amorphous solid; ¹H NMR (CDCl₃) data was identical to that of **1d**: HRESIMS m/z 263.0886 [M+Na]⁺ (calcd for C₁₂H₁₆O₅Na⁺, 263.0890).

Chiral HPLC Analyses of Trimethyltanshinols (1d, 2d, and 3b). (+)-Trimethyltanshinol (**3b**) was subjected to HPLC with a chiral column (YMC Chiral Art Cellulose-SB, 5 mm, i.d. 4.6 x 250 mm; *n*-hexane/*i*-PrOH, 85:15; flow 1.0 mL/min; UV 254 nm; temp. 40 °C) to give a peak at $t_{\rm R}$ 14.7 min. The chiral resolution of (±)-**3b** with the same condition gave a pair of peaks at $t_{\rm R}$ 12.1 min {(-)-**3b**} and $t_{\rm R}$ 14.7 min {(+)-**3b**} in the ratio of ca. 1:1. Similarly, the chiral HPLC analyses of **1d** and **2d** were carried out to show a single peak at $t_{\rm R}$ 14.7 min in each case.

Calculation of ECD Spectrum. A conformational search for the possible stereoisomer (**1b**, 1R,11R,7'R,8'R) of the terpenoid moiety (**1b**) of perovsfolin A (**1**) with the Molecular Mechanics gave stable conformers. Further optimization of the initial conformers (Boltzmann distributions over 1%) by DFT calculations {B3LYP/6-31G(d), in the presence of MeOH with a polarizable continuum model (PCM)} gave three stable conformers. The absence of imaginary frequencies of the stable conformers were confirmed by calculations of harmonic vibrational frequencies at the B3LYP/6-31G(d) level in the presence of MeOH with PCM. The stable conformers were subjected to TDDFT calculations {CAM-B3LYP/6-31+G(d), in the presence of MeOH with a PCM}. Conversion of the resultant rotatory strengths of the lowest 30 excited states for each conformer with half-bands (0.25 eV) by SpecDis (v1.61)^{S1} gave Gaussian-type curves. Finally, the calculated ECD spectra were composed after correction based on the Boltzmann distribution, and red-shifted by 15 nm. The conformational search was run on Spartan 18 program (Wavefunction Inc. Irvine, CA.), while DFT calculations were carried out on Gaussian 09 program,^{S2} respectively.

Evaluation of Biological Activity. Perovsfolins A (1) and B (2) were evaluated for their inhibitory effect of IL-1 β production from LPS stimulated microglial cells and their antiproliferative activity against human cancer cell lines (A549, Hela, and MCF7) by identical procedures as described in our previous report.¹¹

References

(S1) Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis, Version 1.61, University of Wuerzburg, Germany, 2013.

(S2) Frisch, M. J. et al., Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2010.

Figure S1. ECD spectra of perovsfolins A (1) and B (2).

Figure S2. ¹H NMR spectrum of perovsfolin A (1) in C₅D₅N (500 MHz).

Figure S3. 13 C NMR spectrum of perovsfolin A (1) in C₅D₅N (125 MHz).

Figure S4. 1 H- 1 H COSY spectrum of perovsfolin A (1) in C₅D₅N (500 MHz).

Figure S5. HSQC spectrum of perovsfolin A (1) in C_5D_5N (500 MHz).

Figure S6. HMBC spectrum of perovsfolin A (1) in C_5D_5N (500 MHz).

Figure S7. ROESY spectrum of perovsfolin A (1) in C_5D_5N (500 MHz).

Figure S9. 13 C NMR spectrum of perovsfolin B (2) in C₅D₅N (125 MHz).

Figure S10. 1 H- 1 H COSY spectrum of perovsfolin B (**2**) in C₅D₅N (500 MHz).

Figure S11. HSQC spectrum of perovsfolin B (2) in C₅D₅N (500 MHz).

Figure S12. HMBC spectrum of perovsfolin B (2) in C₅D₅N (500 MHz).

Figure S13. ROESY spectrum of perovsfolin B (2) in C₅D₅N (500 MHz).

Figure S14. ¹H NMR spectrum of permethylperovsfolin A (1a) in C₅D₅N (500 MHz).

Figure S15. ¹H NMR spectrum of terpenoid moiety (1b) of 1 in C_5D_5N (500 MHz).

Figure S16. ¹H NMR spectrum of trimethyltanshinol (1d) in CDCl₃ (500 MHz).

Figure S17. ¹H NMR spectrum of permethylperovsfolin B (2a) in C₅D₅N (500 MHz).

¹H NMR spectrum of terpenoid moiety (**2b**) of **2** in C₅D₅N (500 MHz). Figure S18.

Figure S19. ¹H NMR spectrum of rosmarinic acid permethylate (**3a**) in CDCl₃ (500 MHz).

Figure S20. ¹H NMR spectrum of (+)-trimethyltanshinol (**3b**) in CDCl₃ (500 MHz).

Figure S21. ¹H NMR spectrum of (±)-trimethyltanshinol (**3b**) in CDCl₃ (500 MHz).

		1		2
position	δ _C	$\delta_{\rm H}$ (<i>J</i> in Hz)	δ _C	$\delta_{\rm H} (J \text{ in Hz})$
1	37.2	4.41, dt (11.2, 6.5)	37.1	4.45, dt (10.9, 6.5)
2	24.3	1.82, m	24.2	1.68, m
		1.70, m		1.68, m
3	35.6	1.52, brt (10.8)	35.6	1.51, m
		1.35, brt (10.8)		1.44, m
4	35.2	_	35.1	_
5	149.6ª	_	149.4	_
6	127.7	7.23 ^d	127.7	7.23 ^d
7	128.8	7.24 ^d	128.8	7.23 ^d
8	127.7	_	127.9 ^b	_
9	144.9	_	145.0	_
10	134.9	_	134.9	_
11	96.7	_	96.7	_
12	197.8	_	197.6	_
13	141.1	_	141.2	_
14	139.9	7.27, s	139.8	7.25, s
15	27.4	3.10, sept (6.9)	27.4	3.10, sept (6.7)
16	21.4	1.07, d (6.9)	21.4	1.05, d (6.7)
17	21.2	1.13, d (6.9)	21.3	1.13, d (6.7)
18	31.5	1.05, s	31.5	0.94, s
19	31.9	1.11, s	31.8	1.11, s
1′	135.3ª	_	135.1	_
2'	108.8	7.33, s	108.7	7.19, s
3'	148.5	_	148.4	_
4′	147.1	_	147.1°	_
5'	107.8	7.43, s	107.8	7.39, s
6'	133.8	_	134.0	_
7′	82.9	6.08, d (3.4)	82.3	6.25, d (2.4)
8′	59.9	3.32 ^d	60.5	3.28, dd (10.9, 2.4)
9′	174.4	_	173.6	_
10′	128.0	_	128.0 ^b	_
11′	117.7	7.34, d (1.4)	117.8	7.35, brs
12'	147.1	_	147.2°	_
13'	146.3	_	146.4	_
14′	116.6	7.22, d (8.1)	116.6	7.23 ^d
15'	121.0	6.88, dd (8.1, 1.4)	120.9	6.91, brd (7.5)
16′	37.0	3.32 ^d	37.0	3.36, dd (14.0, 3.2)
		3.12, dd (14.5, 9.9)		3.21, dd (14.0, 9.5)
17′	73.9	5.74, dd (9.9, 3.7)	74.2	5.71, dd (9.5, 3.2)
18′	170.4	-	170.4	_
OMe	52.2	3.62, s	52.1	3.61, s
		signals of C-D-N: ^{b,c} signals mayb		

Table S1. ¹H and ¹³C NMR data for perovsfolins A (1) and B (2) in C_5D_5N .

 a overlapped with the signals of C_{5}D_{5}N; $^{\mathrm{b,c}}$ signals maybe interchangeable; $^{\mathrm{d}}$ overlapped signal

Table S2. Cartesian coordinates, total energies (E), relative energies (Δ E), and Boltzmann populations for the stable conformers of terpenoid moiety (**1b**: 1*R*,11*R*,7'*R*,8'*R*) of perovsforin A (**1**).

E (Hartree) ΔE (kcal/mol)	conformer 2 0.77						
population (%)		0 66.7				18.2	
		coordinates				coordinates	
symbol	Х	Y	Z	symbol	Х	Y	Z
С	-3.83421	-0.86921	0.273986	С	-3.879	0.085039	-0.03997
С	-4.08412	-0.71989	-1.22143	С	-4.50022	-1.23111	-0.46812
С	-3.30749	-1.78365	-2.02475	С	-3.74075	-1.86035	-1.64656
С	-1.88712	-1.97442	-1.45641	С	-2.23742	-1.92368	-1.31263
С	-1.40472	-1.31411	-0.2931	С	-1.604	-1.11173	-0.32069
С	-2.37224	-0.55541	0.639045	С	-2.43527	-0.07066	0.48163
С	-1.03229	-2.8528	-2.14827	С	-1.47635	-2.86234	-2.02904
С	0.25687	-3.11397	-1.71369	С	-0.15573	-3.13073	-1.71501
С	0.769332	-2.42546	-0.60482	С	0.457744	-2.43112	-0.67074
С	-0.04333	-1.48501	0.057689	С	-0.24165	-1.38742	-0.02432
С	2.102139	-2.74163	-0.10472	С	1.77148	-2.86494	-0.20905
С	2.659578	-2.22979	1.023624	С	2.3876	-2.42988	0.919692
С	1.882388	-1.22576	1.77391	С	1.719538	-1.36225	1.679345
С	0.692855	-0.56822	1.036006	С	0.621753	-0.56234	0.932471
С	-3.22814	-1.30985	-3.49654	С	-3.94886	-1.04079	-2.94553
С	-4.07804	-3.1282	-1.98031	С	-4.33932	-3.27135	-1.86794
С	3.998461	-2.66244	1.599725	С	3.667394	-3.02086	1.487414
С	4.491297	-4.02018	1.07999	С	3.353275	-4.09705	2.550784
С	5.072306	-1.57407	1.377057	С	4.611667	-3.58098	0.412393
О	2.185484	-0.85542	2.904694	Ο	2.065536	-1.02583	2.808296
С	-0.71074	1.250335	1.454084	С	-0.4802	1.43312	1.370772
О	-0.16729	0.036553	1.999772	Ο	-0.15352	0.141144	1.896821
С	0.360416	1.712219	0.499615	С	0.683962	1.756747	0.471769
С	1.207136	0.646109	0.231064	С	1.328838	0.570514	0.15523
С	2.255026	0.789154	-0.67802	С	2.396163	0.568051	-0.74355
С	2.450246	2.023762	-1.29649	С	2.810996	1.775684	-1.30438
С	1.586195	3.114938	-1.02216	С	2.15033	2.989044	-0.98131

(Table S2 continued)

С	0.529643	2.952839	-0.11502	С	1.072744	2.974929	-0.08491
0	-3.31933	1.27783	2.757701	0	-3.11565	2.033765	2.456572
С	-3.20011	1.704698	1.489011	С	-2.8085	2.356606	1.188233
С	-2.09119	0.980048	0.742643	С	-1.82709	1.369056	0.56763
0	-3.89545	2.58675	1.010978	0	-3.23977	3.350485	0.627107
С	-4.33181	1.911764	3.572469	С	-4.00815	2.924578	3.163975
Н	-2.20067	-0.9502	1.643033	Н	-2.49461	-0.45116	1.50758
0	1.855273	4.269935	-1.69124	0	2.625574	4.107461	-1.59572
0	3.455668	2.150278	-2.23032	0	3.832101	1.763198	-2.22974
С	1.01135	5.402995	-1.46546	С	1.996775	5.361523	-1.31501
С	4.62096	2.869937	-1.7868	С	5.098547	2.260492	-1.75945
Н	-4.5175	-0.23492	0.848651	Н	-3.89903	0.789515	-0.88091
Н	-4.05356	-1.89807	0.586251	Н	-4.48772	0.533439	0.752909
Н	-5.15337	-0.80934	-1.45013	Н	-4.50044	-1.93371	0.378057
Н	-3.78178	0.284487	-1.54875	Н	-5.54943	-1.07911	-0.75223
Н	-1.39607	-3.36671	-3.03224	Н	-1.94407	-3.43381	-2.82278
Н	0.876758	-3.84109	-2.23276	Н	0.391159	-3.90744	-2.24416
Н	2.63934	-3.50455	-0.66389	Н	2.228743	-3.66146	-0.79245
Н	-2.78438	-2.06342	-4.15556	Н	-3.4435	-1.52355	-3.78988
Н	-4.23894	-1.09929	-3.86808	Н	-5.01826	-0.97517	-3.18415
Н	-2.63696	-0.39063	-3.58314	Н	-3.55311	-0.02342	-2.86451
Н	-5.07819	-2.99908	-2.41246	Н	-5.42993	-3.18748	-1.95131
Н	-3.56331	-3.90576	-2.55436	Н	-3.9832	-3.74938	-2.78573
Н	-4.1953	-3.49718	-0.95544	Н	-4.11505	-3.93587	-1.02533
Н	3.850848	-2.75152	2.683925	Н	4.187307	-2.2018	2.0013
Н	5.404593	-4.30899	1.612544	Н	4.281395	-4.45825	3.010963
Н	3.745946	-4.80934	1.234724	Н	2.712123	-3.69954	3.344114
Н	4.735117	-3.98615	0.010582	Н	2.84366	-4.95452	2.093388
Н	6.008056	-1.8589	1.873281	Н	5.562139	-3.87547	0.872156
Н	4.756918	-0.60662	1.781597	Н	4.826476	-2.83788	-0.36449
Н	5.280238	-1.44858	0.307011	Н	4.196321	-4.47223	-0.07372
Н	-0.8483	1.928721	2.299703	Н	-0.57038	2.102364	2.229432
Н	2.927481	-0.02574	-0.92652	Н	2.92264	-0.33828	-1.02525
Н	-0.14859	3.770681	0.101997	Н	0.542863	3.887203	0.165381
Н	-2.07116	1.424987	-0.25519	Н	-1.66016	1.732099	-0.45028
Н	-4.26136	1.427281	4.545575	Н	-4.12741	2.484564	4.153343
Н	-4.12915	2.981764	3.658952	Н	-3.56539	3.920731	3.235743
Н	-5.32002	1.75415	3.133986	Н	-4.96985	2.981011	2.64865
Н	1.410448	6.19543	-2.09935	Н	2.540827	6.099667	-1.90512
Н	-0.02347	5.186366	-1.75457	Н	0.943997	5.350387	-1.61965
Н	1.0474	5.717198	-0.41596	Н	2.07459	5.610622	-0.2504
Н	5.309927	2.880237	-2.63371	Н	5.786908	2.177994	-2.60289
Н	4.364192	3.895872	-1.5052	Н	5.017636	3.306274	-1.44761
Н	5.085976	2.35293	-0.93867	Н	5.460946	1.646838	-0.92575

(Table S2 continued)

	*	conformer 3	S T
E (Hartree)	-1	653.16181096	
ΔE (kcal/mol)		0.93	
population (%)		14.0	
		coordinates	
symbol	Х	Y	Z
C	-3.89163	0.242563	-0.06972
С	-4.58948	-1.06467	-0.39342
С	-3.86687	-1.8357	-1.50907
С	-2.36262	-1.92997	-1.18434
С	-1.68843	-1.08968	-0.24383
С	-2.46901	0.037628	0.489633
С	-1.64522	-2.93588	-1.85264
С	-0.33546	-3.24307	-1.52884
С	0.311239	-2.51759	-0.52308
С	-0.33959	-1.41137	0.067288
С	1.604482	-2.98826	-0.03719
С	2.242048	-2.52555	1.067973
С	1.607622	-1.40351	1.781522
С	0.559216	-0.58222	0.987993
С	-4.06068	-1.1384	-2.87938
С	-4.51971	-3.23815	-1.58328
С	3.509919	-3.12218	1.656568
С	3.831341	-4.53288	1.143615
С	4.7149	-2.17944	1.44165
0	1.931721	-1.0595	2.9141
С	-0.44517	1.482036	1.32672
0	-0.1864	0.201231	1.913115
С	0.739821	1.708018	0.425245
С	1.323338	0.477321	0.163633
С	2.38478	0.380168	-0.73668
С	2.858928	1.538362	-1.35206
С	2.263422	2.797497	-1.08211
С	1.189296	2.878722	-0.18498
0	-3.06219	2.272745	2.340074
С	-2.71952	2.514182	1.062743
		1.44515	0.50916

(Table S2 continued)

Ο	-3.08807	3.500004	0.445557
С	-3.91868	3.242353	2.985744
Н	-2.56708	-0.28277	1.533285
0	2.792565	3.861148	-1.74733
0	3.872837	1.430808	-2.2792
С	2.23072	5.157415	-1.52185
С	5.164984	1.887575	-1.83835
Н	-3.85309	0.873589	-0.96686
Н	-4.48159	0.793471	0.670836
Н	-4.63362	-1.69096	0.509718
Н	-5.62714	-0.87609	-0.69717
Н	-2.14198	-3.52945	-2.61212
Н	0.175456	-4.06915	-2.01768
Н	2.018361	-3.8388	-0.57375
Н	-3.57942	-1.71447	-3.67809
Н	-5.12972	-1.06097	-3.11555
Н	-3.63225	-0.13117	-2.89625
Н	-5.60776	-3.12263	-1.66235
Н	-4.19325	-3.81796	-2.4522
Н	-4.30743	-3.82358	-0.68101
Н	3.342648	-3.18798	2.739823
Н	4.698398	-4.93235	1.681969
Н	2.992583	-5.22235	1.295849
Н	4.0835	-4.53167	0.075578
Н	5.601278	-2.5766	1.950943
Н	4.519034	-1.17743	1.837248
Н	4.949769	-2.08786	0.373846
Н	-0.51222	2.192957	2.153431
Н	2.860557	-0.56423	-0.97955
Н	0.706645	3.827142	0.023842
Н	-1.58667	1.744129	-0.52382
Н	-4.06604	2.865831	3.997279
Н	-3.43194	4.220147	3.005179
Н	-4.87276	3.311911	2.45787
Н	2.806027	5.83833	-2.1499
Н	1.175891	5.186142	-1.81812
Н	2.331143	5.451737	-0.47079
Н	5.843706	1.728638	-2.67866
Н	5.13739	2.950401	-1.57956
Н	5.50116	1.299517	-0.97583
С	-3.89163	0.242563	-0.06972