C_{28} Terpenoids from Lamiaceous Plant Perovskia scrophulariifolia: Their Structures and Anti-neuroinflammatory Activity

Naonobu Tanaka, ${ }^{\dagger}$ Kanji Niwa, ${ }^{\dagger}$ Seita Kajihara, ${ }^{\dagger}$ Daisuke Tsuji, ${ }^{\dagger}$ Kohji Itoh, ${ }^{\dagger}$ Nilufar Z. Mamadalieva, ${ }^{\ddagger}$ and Yoshiki Kashiwada* ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
${ }^{*}$ Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan.

Supporting Information

Experimental Section
Scheme S1. Possible biogenetic pathway of perovsfolin A (1).
Figure S1. ECD spectra of perovsfolins A (1) and B (2).
Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of perovsfolin $\mathrm{A}(\mathbf{1})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of perovsfolin $\mathrm{A}(\mathbf{1})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(125 \mathrm{MHz})$.
Figure S4. $\quad{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of perovsfolin $\mathrm{A}(\mathbf{1})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S5. HSQC spectrum of perovsfolin $\mathrm{A}(\mathbf{1})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S6. HMBC spectrum of perovsfolin $\mathrm{A}(\mathbf{1})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S7. ROESY spectrum of perovsfolin A (1) in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S8. ${ }^{1} H$ NMR spectrum of perovsfolin $B(2)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure $\mathrm{S} 9 . \quad{ }^{13} \mathrm{C}$ NMR spectrum of perovsfolin $\mathrm{B}(\mathbf{2})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(125 \mathrm{MHz})$.
Figure S10. $\quad{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of perovsfolin $\mathrm{B}(\mathbf{2})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S 11 . HSQC spectrum of perovsfolin $\mathrm{B}(\mathbf{2})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S 12 . HMBC spectrum of perovsfolin $\mathrm{B}(\mathbf{2})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S13. ROESY spectrum of perovsfolin $\mathrm{B}(\mathbf{2})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of permethylperovsfolin $\mathrm{A}\left(\mathbf{1 a)}\right.$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of terpenoid moiety (1b) of $\mathbf{1}$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of trimethyltanshinol (1d) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of permethylperovsfolin $\mathrm{B}(\mathbf{2 a})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of terpenoid moiety (2b) of $\mathbf{2}$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.
Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of rosmarinic acid permethylate (3a) in CDCl_{3} (500 MHz).
Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $(+)$-trimethyltanshinol ($\mathbf{3 b}$) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.
Figure $\mathrm{S} 21 .{ }^{1} \mathrm{H}$ NMR spectrum of (\pm)-trimethyltanshinol ($\mathbf{3 b}$) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.
Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for perovsfolins $\mathrm{A}(\mathbf{1})$ and $\mathrm{B}(\mathbf{2})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$.
Table S2. Cartesian coordinates, total energies (E), relative energies ($\Delta \mathrm{E}$), and Boltzmann populations for the stable conformers of hexacyclic core moiety (1b: $\left.1 R, 11 R, 7^{\prime} R, 8^{\prime} R\right)$ of perovsforin $\mathrm{A}(\mathbf{1})$.

EXPERIMENTAL SECTION

General Experimental Procedures. Specific rotations were obtained by a JASCO P-2200 digital polarimeter. NMR spectra were measured on a Bruker AVANCE-500 spectrometer using the resonances of $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\left(\delta_{\mathrm{H}} 8.71 ; \delta_{\mathrm{C}} 123.5\right)$ and $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26 ; \delta_{\mathrm{C}} 77.0\right)$ as internal references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts, respectively. IR, UV, and CD spectra were recorded on a JASCO FT/IR-6200, a Hitachi UV-3900H, and a JASCO J-1500 spectrophotometers, respectively. HRESIMS were recorded on a Waters LCT PREMIER 2695.

Extraction and Isolation. The aerial parts of Perovskia scrophulariifolia collected in Uzbekistan were dried and then extracted with MeOH at rt to give the extract (180 g). The extract was partitioned between EtOAc and water. The EtOAc-soluble materials were further partitioned between n-hexane and $90 \% \mathrm{MeOH}$ aq. The $90 \% \mathrm{MeOH}$ aq.-soluble materials (94 g) were subjected to Sephadex LH-20 column chromatography ($\mathrm{MeOH} /$ water, 6:4 to 10:0) to give eight fractions (frs. 1~8). Fr. 5 was applied to a silica gel column $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 99: 1\right.$ to $\left.0: 100\right)$ to give 17 fractions (frs. 5.1~5.17) including methyl rosmarinate ($3,2.8 \mathrm{~g}$) as fr. 5.17. Fr. 5.14 was further separated by Sephadex LH-20 column chromatography ($\mathrm{MeOH} /$ water, 6:4) to afford 10 fractions (frs. 5.14.1~5.14.10). Fr. 5.14.7 was loaded on an ODS column (MeOH/water, 6:4 to 10:0), and purified by reversed-phase HPLC (COSMOSIL 5C ${ }_{18}$-MS-II, 10 i.d. x 250 mm , $\mathrm{MeCN} /$ water, $58: 42$ with 0.1% TFA $)$ to furnish perovsfolins $\mathrm{A}(1,3.7 \mathrm{mg})$ and $\mathrm{B}(2,2.7 \mathrm{mg})$.

Perovsfolin A (1): colorless amorphous solid; $[\alpha]_{\mathrm{D}}+251.1$ (c 0.1, MeOH); UV (MeOH) $\lambda_{\max }$ $249(\varepsilon 14,500), 288(7,000)$, and $335(6,200) \mathrm{nm} ; \mathrm{ECD}(\mathrm{MeOH}) \Delta \varepsilon(\mathrm{nm})+15.2(369),-17.8(296)$, +51.1 (220), and -24.9 (203); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table S1); HRESIMS $m / z 677.2360[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{10} \mathrm{Na}^{+}, 677.2357$).

Perovsfolin B (2): colorless amorphous solid; $[\alpha]_{\mathrm{D}}-190.7$ (c 0.1, MeOH); UV (MeOH) $\lambda_{\max }$ $245(\varepsilon 13,600), 289(7,300)$, and $335(6,900) \mathrm{nm}$; ECD (MeOH) $\Delta \varepsilon(\mathrm{nm})-13.4(367),+13.8(296)$, -43.5 (220), and +34.6 (204); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table S1); HRESIMS $m / z 677.2366[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{10} \mathrm{Na}^{+}, 677.2357$).

Chemical Conversions of Perovsfolins A (1) and B (2). A mixture of perovsfolin A (1, 0.4 $\mathrm{mg}), \mathrm{CH}_{3} \mathrm{I}(60 \mu \mathrm{~L})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{mg})$ in dry acetone $(0.4 \mathrm{~mL})$ was heated at $60{ }^{\circ} \mathrm{C}$ (oil bath) in a screw-capped vial for 5 h with stirring. After removal of inorganic salts by filtration, the filtrate was concentrated under the reduced pressure. The residue was purified by silica gel column chromatography (toluene/EtOAc, 1:0 to 9:1) to give permethylperovsfolin A (1a, 0.4 mg). Permethylpervsfolin A (1a, 0.2 mg) was treated with NaOH in $\mathrm{MeOH} /$ acetone $(2: 1,0.75 \mathrm{~mL})$ at rt for 12 h with stirring. The reaction mixture was neutralized with 1 M HCl and diluted by water.

The solution was extracted with EtOAc, washed successively with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a residue. Purification of the residue by silica gel column chromatography (n-hexane/acetone, 6:4 to $0: 1$) gave a terpenoid ($\mathbf{1 b}$) and a $\mathrm{C}_{6}-\mathrm{C}_{3}(\mathbf{1 c})$ moieties. A solution of $\mathbf{1 c}$ in $\mathrm{MeOH}(0.2 \mathrm{~mL})$ was treated with drops of TMS-CHN $2(0.6 \mathrm{M}$ solution in n hexane), and the mixture was stirred at rt for 0.5 h . The reaction mixture was concentrated to give trimethyltanshinol (1d). The terpenoid moiety (2b) and trimethyltanshinol (2d) were obtained from perovsfolin B (2) according to the same procedure.

Permethylperovsfolin A (1a): colorless amorphous solid; $[\alpha]_{\mathrm{D}}+126.7$ (c 0.02, MeOH); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, J$ in Hz$) \delta_{\mathrm{H}} 7.45(1 \mathrm{H}, \mathrm{s}), 7.31$ and 7.27 (each $\left.1 \mathrm{H}, \mathrm{d}, 8.0\right), 7.14(1 \mathrm{H}, \mathrm{s}), 7.12(1 \mathrm{H}$, d, 2.0), $7.01(1 \mathrm{H}, \mathrm{dd}, 8.2,2.0), 6.95(1 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{d}, 8.2), 6.05(1 \mathrm{H}, \mathrm{d}, 3),. 5.90(1 \mathrm{H}, \mathrm{dd}, 9.3$, 3.8), 4.48 ($1 \mathrm{H}, \mathrm{dt}, 11.1,6.1$), 3.84, 3.75, 3.71, 3.61, and 3.56 (each $3 \mathrm{H}, \mathrm{s}$), 3.43 ($1 \mathrm{H}, \mathrm{dd}, 14.3,3.8$), $3.32(1 \mathrm{H}, \mathrm{dd}, 11.1,3.5), 3.25(1 \mathrm{H}, \mathrm{dd}, 14.3,9.3), 3.23(1 \mathrm{H}, \mathrm{m}), 1.86,1.74,1.45$, and 1.34 (each $1 \mathrm{H}, \mathrm{m}$), 1.23×2 (each $3 \mathrm{H}, \mathrm{d}, 7.0$), 1.15 and 1.03 (each 3H, s); HRESIMS $m / z 733.2990[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{10} \mathrm{Na}^{+}, 733.2983$).

Terpenoid moiety (1b) of 1: colorless amorphous solid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, J\right.$ in Hz$) \delta_{\mathrm{H}} 7.46$ $(1 \mathrm{H}, \mathrm{s}), 7.32$ and 7.27 (each $1 \mathrm{H}, \mathrm{d}, 8.0), 7.12(1 \mathrm{H}, \mathrm{s}), 6.99(1 \mathrm{H}, \mathrm{s}), 6.10(1 \mathrm{H}, \mathrm{d}, 3.0), 4.50(1 \mathrm{H}, \mathrm{dt}$, $11.4,5.7$), $3.78,3.58$, and 3.55 (each $3 \mathrm{H}, \mathrm{s}$), 3.31 (1 H , dd, $11.4,3.0$), $3.26(1 \mathrm{H}$, sept, 7.1$), 1.83$, 1.69, 1.61, and 1.40 (each $1 \mathrm{H}, \mathrm{m}$), 1.25 and 1.24 (each $3 \mathrm{H}, \mathrm{d}, 7.1$), 1.18 and 1.01 (each $3 \mathrm{H}, \mathrm{s}$); HRESIMS $m / z 525.2265[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na}^{+}, 525.2248$); UV (MeOH) $\lambda_{\text {max }} 250(\varepsilon$ 14,400), $287(5,400)$, and $335(6,200) \mathrm{nm} ; \mathrm{CD}(\mathrm{MeOH}) \Delta \varepsilon+14.4$ (368), -5.6 (322), -18.2 (293), -0.7 (260), -7.1 (249), +54.2 (222), -41.6 (203). UV (ε values) and CD ($\Delta \varepsilon$ values) data for 1b were estimated on the basis of its UV absorption at 335 nm by comparing that of $\mathbf{1}$, since a small amount of $\mathbf{1 b}$ was obtained ($<0.1 \mathrm{mg}$).

Trimethyltanshinol (1d): colorless amorphous solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, J\right.$ in Hz) $\delta_{\mathrm{H}} 6.80(1 \mathrm{H}$, d, 8.5), $6.75(1 \mathrm{H}, \mathrm{brs}), 6.74(1 \mathrm{H}, \mathrm{m}), 4.43(1 \mathrm{H}, \mathrm{dd}, 6.6,4.3), 3.87,3.86$, and 3.76 (each $3 \mathrm{H}, \mathrm{s}$), $3.08(1 \mathrm{H}, \mathrm{dd}, 14.1,4.3)$, and $2.92(1 \mathrm{H}, \mathrm{dd}, 14.1,6.6)$; HRESIMS $m / z 263.0872[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}^{+}, 263.0890$).

Permethylperovsfolin B (2a): colorless amorphous solid; $[\alpha]_{\mathrm{D}}-69.2$ (c 0.02, MeOH); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, J$ in Hz) $\delta_{\mathrm{H}} 7.45(1 \mathrm{H}, \mathrm{s}), 7.30$ and 7.26 (each $\left.1 \mathrm{H}, \mathrm{d}, 8.0\right), 7.14(1 \mathrm{H}, \mathrm{d}, 2.0), 7.12$ $(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{dd}, 8.4,2.0), 6.93(1 \mathrm{H}, \mathrm{d}, 8.4), 6.75(1 \mathrm{H}, \mathrm{s}), 6.31(1 \mathrm{H}, \mathrm{d}, 3.2), 5.82(1 \mathrm{H}, \mathrm{dd}$, $10.0,3.9), 4.46(1 \mathrm{H}, \mathrm{dt}, 11.0,5.7), 3.80,3.72,3.71,3.54$, and 3.52 (each $3 \mathrm{H}, \mathrm{s}), 3.46(1 \mathrm{H}, \mathrm{dd}$, $14.0,3.9), 3.31(1 \mathrm{H}, \mathrm{dd}, 11.0,3.2), 3.30(1 \mathrm{H}, \mathrm{dd}, 14.0,10.0), 3.23(1 \mathrm{H}$, sept, 6.9$), 1.23$ and 1.22 (each $3 \mathrm{H}, \mathrm{d}, 6.9$), 1.16 and 0.97 (each $3 \mathrm{H}, \mathrm{s}$); HRESIMS $m / z 733.2977[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{10} \mathrm{Na}^{+}, 733.2983$).

Terpenoid moiety (2b) of 2: colorless amorphous solid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$ data was identical to that of 1b; HRESIMS $m / z 525.2260[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na}^{+}, 525.2248$); UV (MeOH)
$\lambda_{\max } 250(\varepsilon 16,300), 288(5,700)$, and $335(6,900) \mathrm{nm} ; \mathrm{CD}(\mathrm{MeOH}) \Delta \varepsilon-17.6(368),+6.2(323)$, +5.7 (319), +21.9 (293), +0.7 (259), +8.8 (248), -63.5 (222), and +48.2 (204). UV (ε values) and CD ($\Delta \varepsilon$ values) data for $\mathbf{2 b}$ were estimated on the basis of its UV absorption at 335 nm by comparing that of $\mathbf{2}$, since a small amount of $\mathbf{2 b}$ was obtained ($<0.1 \mathrm{mg}$).

Trimethyltanshinol (2d): colorless amorphous solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ data was not obtained due to low sample amount; HRESIMS $m / z 263.0894[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}^{+}, 263.0890$).

Chemical Conversion of Methyl Rosmarinate (3) to (\pm)-Trimethyltanshinol $\{(\pm) \mathbf{3 b}\}$. Methyl rosmarinate $(\mathbf{3}, 690 \mathrm{mg})$ was treated with $\mathrm{CH}_{3} \mathrm{I}(0.44 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~g})$ in dry acetone $(8 \mathrm{~mL})$ and refluxed in an oil bath for 6 h . After filtration and evaporation, the reaction mixture was purified by silica gel column chromatography (toluene/EtOAc, 1:0 to 9:1) to give rosmarinic acid permethylate ($\mathbf{3 a}, 680 \mathrm{mg}$). To a MeOH solution $(15 \mathrm{~mL})$ of $\mathbf{3 a}(610 \mathrm{mg})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(75 \mathrm{mg})$ and stirred at rt for 12 h . The reaction mixture was neutralized with 1 M HCl and diluted by water. The solution was extracted with EtOAc, and the organic layer was washed successively with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a residue. Purification of the residue by silica gel column chromatography (n-hexane/EtOAc, $7: 3$ to $1: 1$) gave trimethyltanshinol ($\mathbf{3 b}, 156 \mathrm{mg}$). To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(8 \mathrm{~mL})$ of $\mathbf{3 b}(100 \mathrm{mg})$ were added Dess-Martin periodinane $(185 \mathrm{mg})$ and $\mathrm{NaHCO}_{3}(175 \mathrm{mg})$ and stirred at rt for 4 h . The reaction mixture was quenched with sat. NaHCO_{3} aq. (1 mL) and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. (1 mL). The aqueous phase was extracted with EtOAc, and the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give the residue. The residue was chromatographed over a silica gel column (n-hexane/EtOAc, $8: 2$) to give an oxidized product (24 mg). A mixture of the product $(24 \mathrm{mg})$ and $\mathrm{NaBH}_{4}(4.4 \mathrm{mg})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was stirred for 1 h in an ice bath $(0$ ${ }^{\circ} \mathrm{C}$). The reaction was quenched with water and evaporated to give a residue. The residue was partitioned with $\mathrm{EtOAc} /$ water, and the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue on a silica gel column (n hexane/EtOAc, $8: 2$ to $7: 3$) afforded (\pm)-3b (2.5 mg).

Rosmarinic acid permethylate (3a): colorless amorphous solid; $[\alpha]_{\mathrm{D}}+42.3$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, J\right.$ in Hz$) \delta_{\mathrm{H}} 7.65(1 \mathrm{H}, \mathrm{d}, 15.8), 7.09(1 \mathrm{H}, \mathrm{dd}, 8.4,1.8), 7.04(1 \mathrm{H}, \mathrm{d}, 1.8), 6.86$ $(1 \mathrm{H}, \mathrm{d}, 8.4), 6.80(3 \mathrm{H}, \mathrm{m}), 6.33(1 \mathrm{H}, \mathrm{d}, 15.8), 5.37(1 \mathrm{H}, \mathrm{dd}, 8.0,4.8), 3.92,3.91,3.86 \times 2$, and 3.75 (each $3 \mathrm{H}, \mathrm{s}$), 3.19 (1 H , dd, 14.3, 4.8), and 3.14 ($1 \mathrm{H}, \mathrm{dd}, 14.3,8.0$); HRESIMS $m / z 453.1526$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{Na}^{+}, 453.1520$).
$(+)$-Trimethyltanshinol (3b): colorless amorphous solid; $[\alpha]_{\mathrm{D}}+11.7\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left\{\right.$ lit. $[\alpha]_{\mathrm{D}}$ $\left.+10.6\left(c 0.67, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}{ }^{15} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ data was identical to that of $\mathbf{1 d}$: HRESIMS m / z $263.0899[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}^{+}, 263.0890$).
(\pm)-Trimethyltanshinol [(\pm)-3b]: colorless amorphous solid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ data was identical to that of 1d: HRESIMS $m / z 263.0886[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}^{+}, 263.0890$).

Chiral HPLC Analyses of Trimethyltanshinols (1d, 2d, and 3b). (+)-Trimethyltanshinol (3b) was subjected to HPLC with a chiral column (YMC Chiral Art Cellulose-SB, 5 mm , i.d. 4.6×250 mm ; n-hexane $/ i$-PrOH, $85: 15$; flow $1.0 \mathrm{~mL} / \mathrm{min}$; UV 254 nm ; temp. $40{ }^{\circ} \mathrm{C}$) to give a peak at t_{R} 14.7 min . The chiral resolution of (\pm) - $\mathbf{3 b}$ with the same condition gave a pair of peaks at $t_{\mathrm{R}} 12.1$ $\min \{(-)-\mathbf{3 b}\}$ and $t_{\mathrm{R}} 14.7 \mathrm{~min}\{(+)-\mathbf{3 b}\}$ in the ratio of ca. 1:1. Similarly, the chiral HPLC analyses of $\mathbf{1 d}$ and $\mathbf{2 d}$ were carried out to show a single peak at $t_{\mathrm{R}} 14.7 \mathrm{~min}$ in each case.

Calculation of ECD Spectrum. A conformational search for the possible stereoisomer ($\mathbf{1 b}$, $1 R, 11 R, 7^{\prime} R, 8^{\prime} R$) of the terpenoid moiety (1b) of perovsfolin $\mathrm{A}(\mathbf{1})$ with the Molecular Mechanics gave stable conformers. Further optimization of the initial conformers (Boltzmann distributions over 1%) by DFT calculations $\{\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d})$, in the presence of MeOH with a polarizable continuum model (PCM) \} gave three stable conformers. The absence of imaginary frequencies of the stable conformers were confirmed by calculations of harmonic vibrational frequencies at the B3LYP/6-31G(d) level in the presence of MeOH with PCM. The stable conformers were subjected to TDDFT calculations \{CAM-B3LYP/6-31+G(d), in the presence of MeOH with a $\operatorname{PCM}\}$. Conversion of the resultant rotatory strengths of the lowest 30 excited states for each conformer with half-bands $(0.25 \mathrm{eV})$ by $\operatorname{SpecDis}(\mathrm{v} 1.61)^{\mathrm{S} 1}$ gave Gaussian-type curves. Finally, the calculated ECD spectra were composed after correction based on the Boltzmann distribution, and red-shifted by 15 nm . The conformational search was run on Spartan 18 program (Wavefunction Inc. Irvine, CA.), while DFT calculations were carried out on Gaussian 09 program, ${ }^{\text {S2 }}$ respectively.

Evaluation of Biological Activity. Perovsfolins A (1) and B (2) were evaluated for their inhibitory effect of IL-1 β production from LPS stimulated microglial cells and their antiproliferative activity against human cancer cell lines (A549, Hela, and MCF7) by identical procedures as described in our previous report. ${ }^{11}$

References

(S1) Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis, Version 1.61, University of Wuerzburg, Germany, 2013.
(S2) Frisch, M. J. et al., Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2010.

Scheme S1. Possible biogenetic pathway of perovsfolin A (1).

$R=$

Figure S1. ECD spectra of perovsfolins A (1) and B (2).

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of perovsfolin $\mathrm{A}(1)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of perovsfolin $\mathrm{A}(\mathbf{1})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(125 \mathrm{MHz})$.

Figure S4. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of perovsfolin $\mathrm{A}(1)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure $\mathrm{S} 5 . \quad \mathrm{HSQC}$ spectrum of perovsfolin $\mathrm{A}(1)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S6. HMBC spectrum of perovsfolin $\mathrm{A}(\mathbf{1})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S7. ROESY spectrum of perovsfolin $A(1)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of perovsfolin $\mathrm{B}(2)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S9. ${ }^{13} \mathrm{C}$ NMR spectrum of perovsfolin $\mathrm{B}(\mathbf{2})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(125 \mathrm{MHz})$.

Figure S10. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of perovsfolin $\mathrm{B}(2)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S11. HSQC spectrum of perovsfolin $\mathrm{B}(2)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S 12 . HMBC spectrum of perovsfolin $\mathrm{B}(2)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S13. ROESY spectrum of perovsfolin $\mathrm{B}(2)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of permethylperovsfolin $\mathrm{A}(\mathbf{1 a})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure $\mathrm{S} 15 . \quad{ }^{1} \mathrm{H}$ NMR spectrum of terpenoid moiety $(\mathbf{1 b})$ of $\mathbf{1}$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of trimethyltanshinol (1d) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of permethylperovsfolin $\mathrm{B}(\mathbf{2 a})$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of terpenoid moiety (2b) of 2 in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(500 \mathrm{MHz})$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of rosmarinic acid permethylate (3a) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $(+)$-trimethyltanshinol ($\mathbf{3 b}$) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm)-trimethyltanshinol ($\mathbf{3 b}$) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for perovsfolins $\mathrm{A}(\mathbf{1})$ and $\mathrm{B}(2)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$.

position	1		2	
	$\delta_{\text {c }}$	$\delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {c }}$	$\delta_{\mathrm{H}}(J$ in Hz)
1	37.2	4.41, dt (11.2, 6.5)	37.1	4.45 , dt (10.9, 6.5)
2	24.3	1.82, m	24.2	1.68, m
		1.70, m		1.68, m
3	35.6	1.52, brt (10.8)	35.6	1.51, m
		1.35, brt (10.8)		1.44, m
4	35.2	-	35.1	-
5	$149.6{ }^{\text {a }}$	-	149.4	-
6	127.7	$7.23{ }^{\text {d }}$	127.7	$7.23{ }^{\text {d }}$
7	128.8	$7.24{ }^{\text {d }}$	128.8	$7.23{ }^{\text {d }}$
8	127.7	-	$127.9^{\text {b }}$	-
9	144.9	-	145.0	-
10	134.9	-	134.9	-
11	96.7	-	96.7	-
12	197.8	-	197.6	-
13	141.1	-	141.2	-
14	139.9	7.27, s	139.8	7.25, s
15	27.4	3.10, sept (6.9)	27.4	3.10, sept (6.7)
16	21.4	1.07, d (6.9)	21.4	1.05, d (6.7)
17	21.2	1.13, d (6.9)	21.3	1.13, d (6.7)
18	31.5	1.05 , s	31.5	0.94, s
19	31.9	1.11, s	31.8	1.11, s
1^{\prime}	$135.3{ }^{\text {a }}$	-	135.1	-
2^{\prime}	108.8	7.33, s	108.7	7.19, s
3^{\prime}	148.5	-	148.4	-
4^{\prime}	147.1	-	$147.1^{\text {c }}$	-
5^{\prime}	107.8	7.43, s	107.8	7.39, s
6^{\prime}	133.8	-	134.0	-
$7{ }^{\prime}$	82.9	6.08, d (3.4)	82.3	6.25, d (2.4)
8^{\prime}	59.9	$3.32{ }^{\text {d }}$	60.5	3.28, dd (10.9, 2.4)
9^{\prime}	174.4	-	173.6	-
10^{\prime}	128.0	-	$128.0^{\text {b }}$	-
11^{\prime}	117.7	7.34, d (1.4)	117.8	7.35, brs
12^{\prime}	147.1	-	$147.2^{\text {c }}$	-
13^{\prime}	146.3	-	146.4	-
14^{\prime}	116.6	7.22, d (8.1)	116.6	$7.23{ }^{\text {d }}$
15^{\prime}	121.0	6.88, dd (8.1, 1.4)	120.9	6.91, brd (7.5)
16^{\prime}	37.0	$3.32{ }^{\text {d }}$	37.0	3.36, dd (14.0, 3.2)
		3.12, dd (14.5, 9.9)		3.21, dd (14.0, 9.5)
17^{\prime}	73.9	5.74, dd (9.9, 3.7)	74.2	5.71, dd (9.5, 3.2)
18^{\prime}	170.4	-	170.4	-
OMe	52.2	3.62, s	52.1	3.61, s

[^0]Table S2. Cartesian coordinates, total energies (E), relative energies ($\Delta \mathrm{E}$), and Boltzmann populations for the stable conformers of terpenoid moiety $\left(\mathbf{1 b}: 1 R, 11 R, 7^{\prime} R, 8^{\prime} R\right)$ of perovsforin A (1).

(Table S2 continued)

C	0.529643	2.952839	-0.11502	C	1.072744	2.974929	-0.08491
O	-3.31933	1.27783	2.757701	O	-3.11565	2.033765	2.456572
C	-3.20011	1.704698	1.489011	C	-2.8085	2.356606	1.188233
C	-2.09119	0.980048	0.742643	C	-1.82709	1.369056	0.56763
O	-3.89545	2.58675	1.010978	O	-3.23977	3.350485	0.627107
C	-4.33181	1.911764	3.572469	C	-4.00815	2.924578	3.163975
H	-2.20067	-0.9502	1.643033	H	-2.49461	-0.45116	1.50758
O	1.855273	4.269935	-1.69124	O	2.625574	4.107461	-1.59572
O	3.455668	2.150278	-2.23032	O	3.832101	1.763198	-2.22974
C	1.01135	5.402995	-1.46546	C	1.996775	5.361523	-1.31501
C	4.62096	2.869937	-1.7868	C	5.098547	2.260492	-1.75945
H	-4.5175	-0.23492	0.848651	H	-3.89903	0.789515	-0.88091
H	-4.05356	-1.89807	0.586251	H	-4.48772	0.533439	0.752909
H	-5.15337	-0.80934	-1.45013	H	-4.50044	-1.93371	0.378057
H	-3.78178	0.284487	-1.54875	H	-5.54943	-1.07911	-0.75223
H	-1.39607	-3.36671	-3.03224	H	-1.94407	-3.43381	-2.82278
H	0.876758	-3.84109	-2.23276	H	0.391159	-3.90744	-2.24416
H	2.63934	-3.50455	-0.66389	H	2.228743	-3.66146	-0.79245
H	-2.78438	-2.06342	-4.15556	H	-3.4435	-1.52355	-3.78988
H	-4.23894	-1.09929	-3.86808	H	-5.01826	-0.97517	-3.18415
H	-2.63696	-0.39063	-3.58314	H	-3.55311	-0.02342	-2.86451
H	-5.07819	-2.99908	-2.41246	H	-5.42993	-3.18748	-1.95131
H	-3.56331	-3.90576	-2.55436	H	-3.9832	-3.74938	-2.78573
H	-4.1953	-3.49718	-0.95544	H	-4.11505	-3.93587	-1.02533
H	3.850848	-2.75152	2.683925	H	4.187307	-2.2018	2.0013
H	5.404593	-4.30899	1.612544	H	4.281395	-4.45825	3.010963
H	3.745946	-4.80934	1.234724	H	2.712123	-3.69954	3.344114
H	4.735117	-3.98615	0.010582	H	2.84366	-4.95452	2.093388
H	6.008056	-1.8589	1.873281	H	5.562139	-3.87547	0.872156
H	4.756918	-0.60662	1.781597	H	4.826476	-2.83788	-0.36449
H	5.280238	-1.44858	0.307011	H	4.196321	-4.47223	-0.07372
H	-0.8483	1.928721	2.299703	H	-0.57038	2.102364	2.229432
H	2.927481	-0.02574	-0.92652	H	2.92264	-0.33828	-1.02525
H	-0.14859	3.770681	0.101997	H	0.542863	3.887203	0.165381
H	-2.07116	1.424987	-0.25519	H	-1.66016	1.732099	-0.45028
H	-4.26136	1.427281	4.545575	H	-4.12741	2.484564	4.153343
H	-4.12915	2.981764	3.658952	H	-3.56539	3.920731	3.235743
H	-5.32002	1.75415	3.133986	H	-4.96985	2.981011	2.64865
H	1.410448	6.19543	-2.09935	H	2.540827	6.099667	-1.90512
H	-0.02347	5.186366	-1.75457	H	0.943997	5.350387	-1.61965
H	1.0474	5.717198	-0.41596	H	2.07459	5.610622	-0.2504
H	5.309927	2.880237	-2.63371	H	5.786908	2.177994	-2.60289
H	4.364192	3.895872	-1.5052	H	5.017636	3.306274	-1.44761
H	5.085976	2.35293	-0.93867	H	5.460946	1.646838	-0.92575

(Table S 2 continued)

(Table S2 continued)

O	-3.08807	3.500004	0.445557
C	-3.91868	3.242353	2.985744
H	-2.56708	-0.28277	1.533285
O	2.792565	3.861148	-1.74733
O	3.872837	1.430808	-2.2792
C	2.23072	5.157415	-1.52185
C	5.164984	1.887575	-1.83835
H	-3.85309	0.873589	-0.96686
H	-4.48159	0.793471	0.670836
H	-4.63362	-1.69096	0.509718
H	-5.62714	-0.87609	-0.69717
H	-2.14198	-3.52945	-2.61212
H	0.175456	-4.06915	-2.01768
H	2.018361	-3.8388	-0.57375
H	-3.57942	-1.71447	-3.67809
H	-5.12972	-1.06097	-3.11555
H	-3.63225	-0.13117	-2.89625
H	-5.60776	-3.12263	-1.66235
H	-4.19325	-3.81796	-2.4522
H	-4.30743	-3.82358	-0.68101
H	3.342648	-3.18798	2.739823
H	4.698398	-4.93235	1.681969
H	2.992583	-5.22235	1.295849
H	4.0835	-4.53167	0.075578
H	5.601278	-2.5766	1.950943
H	4.519034	-1.17743	1.837248
H	4.949769	-2.08786	0.373846
H	-0.51222	2.192957	2.153431
H	2.860557	-0.56423	-0.97955
H	0.706645	3.827142	0.023842
H	-1.58667	1.744129	-0.52382
H	-4.06604	2.865831	3.997279
H	-3.43194	4.220147	3.005179
H	-4.87276	3.311911	2.45787
H	2.806027	5.83833	-2.1499
H	1.175891	5.186142	-1.81812
H	2.331143	5.451737	-0.47079
H	5.843706	1.728638	-2.67866
H	5.13739	2.950401	-1.57956
H	5.50116	1.299517	-0.97583
C	-3.89163	0.242563	-0.06972

[^0]: ${ }^{\text {a }}$ overlapped with the signals of $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$; ${ }^{\text {b.c }}$ signals maybe interchangeable; ${ }^{\mathrm{d}}$ overlapped signal

