Enantioselective Total Syntheses of Pentacyclic Homoproaporphine Alkaloids

Liu-Yang Pu, Fan Yang, Ji-Qiang Chen, Ying Xiong, Huai-Yu Bin, Jian-Hua Xie*, Qi-Lin Zhou,* State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
Email: jhxie@nankai.edu.cn; qlzhou@nankai.edu.cn

Table of Contents

A) General Information S2
B) Synthesis of Enone Intermediate (+)-11 S3
C) Synthesis of Ketone Intermediate (+)-10 S9
D) Synthesis of Intermediate (-)-9 and Pentacyclic Homoproaporphine Alkaloids S13
E) NMR Spectra of New Compounds and Pentacyclic Homoproaporphine Alkaloids S22
F) HPLC Charts for (-)-13 S45

A) General Information

All reactions and manipulations which are sensitive to moisture or air were performed under inert atmosphere of argon. All chemicals were purchased from J\&K, TCI and Aldrich, and were used as received. Tianjin. Petroleum ether (PE) refers to the fraction boiling in the $60-90^{\circ} \mathrm{C}$ range. Anhydrous THF, $\mathrm{Et}_{2} \mathrm{O}$ was distilled from sodium benzophenone ketyl. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, DMSO and $i \mathrm{PrOH}$ were distilled from calcium hydride. NMR spectra were recorded on a Bruker AV 400 spectrometer at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR $), 101 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR). Chemical shifts were reported in ppm relative to internal TMS for ${ }^{1} \mathrm{H}$ NMR data, deuterated solvent for ${ }^{13} \mathrm{C}$ NMR data, respectively. Data are presented in the following space: chemical shift, multiplicity, coupling constant in hertz (Hz), and signal area integration in natural numbers. Optical rotations were determined using a Perkin Elmer 341 polarimeter. HRMS were recorded on APEXII and ZAB-HS spectrometer. High-resolution mass spectra were recorded on an IonSpec FT-ICR mass spectrometer. HPLC analyses were determined using a Hewlett Packard Model HP 1100 Series chromatography.

B) Synthesis of Enone Intermediate (+)-11

Enone intermediate (+)-11 was synthesized from tricyclic benzofuran (-)-8 by the following procedure.

Tricyclic benzofuran (-)-8 was synthesized according to our previously developed method in five steps in around 70% overall yields and 93% ee on a multi-gram scale from commercially available 7-bromo-1,4-dioxaspiro[4.5]decan-8-one and 2-iodo-6-methoxyphenol. ${ }^{1}$

Synthesis of compound (-)-13

To a solution of compound (-)-8 (8.60 g, 24.7 mmol$)$ in 100 mL MeCN was added NBS (4.76 g , 25.9 mmol) slowly in small portions at room temperature, and the resulting mixture was stirred for 1 h to complete the reaction. Then saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$ was added to quench the reaction. Subsequently, aqueous 6 N HCl solution (12 mL) was added to the mixture and stirred at room temperature for another 3 h . After neutralization with saturated aqueous NaHCO_{3} solution $(150 \mathrm{~mL})$, the mixture was extracted with EtOAc $(3 \times 60 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (3:1) to give the product (-)-13 (8.90 g, 96\% yield) as a white solid. 6.70 g white crystal was yielded after recrystallization from $\mathrm{Et}_{2} \mathrm{O}, 72 \%$ recrystallization yield, mp 99$101^{\circ} \mathrm{C}, 99.5 \%$ ee; HPLC conditions: column, Chiralcel OJ-3; eluent, 2-propanol/hexane 20:80; temp, $25^{\circ} \mathrm{C}$; flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$; detection, 210 nm light; $R_{\mathrm{f}} 0.5$ (petroleum ether/ethyl acetate $=2: 1$); $[\alpha]_{\mathrm{D}}^{25}$ -162.6 (c 1.0, CHCl_{3}); IR (KBr): $v_{\max }=2936,1723,1616,1486,1444,1202,1026,838,735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{dd}, J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.86(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 208.4,170.4,146.6,144.9,133.8,118.3,115.5,112.9$, 86.9, 61.0, 56.2, 46.6, 44.2, 42.2, 35.6, 31.2, 14.2; HRMS (m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 383.0489 , found 383.0478 .

Synthesis of enone intermediate (+)-11 in a one-pot procedure

1. Screening of the bases

To a solution of compound (-)-13 (0.19 g, 0.50 mmol) in THF $(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ $(0.23 \mathrm{~mL}, 1.70 \mathrm{mmol})$, then TBSOTf $(0.25 \mathrm{~mL}, 1.10 \mathrm{mmol})$ was added dropwise within 5 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h to complete the reaction and then concentrated in high vacuo. The resulting colorless oil was dissolved in THF $(1.5 \mathrm{~mL})$ and treated with a solution of NBS $(0.11 \mathrm{~g}, 0.60$ $\mathrm{mmol})$ in THF (1.5 mL) dropwise. The mixture was stirred at room temperature for another 1 h . Then to the mixture was added base $(0.80 \mathrm{mmol})$ in THF $(0.80 \mathrm{~mL})$ dropwise. The resulting mixture was stirred at room temperature for $2-20 \mathrm{~h}$ and quenched with saturated aqueous NaHCO_{3} solution (5 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to give a mixture of product $(+) \mathbf{- 1 1}\left(R_{\mathrm{f}} 0.37\right)$ and by-product $\mathbf{1 6}\left(R_{\mathrm{f}}\right.$ 0.37) as a white solid. The results are summarized in Table S1.

Table S1. The results of enantioselective synthesis of $(+)$ - $\mathbf{1 1}$ in a one-pot procedure. ${ }^{a}$

Entry	Base	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	$(+) \mathbf{- 1 1 / 1 \mathbf { 1 6 } ^ { b }}$	Yield (\%) ${ }^{\text {c }}$
1	DBU	rt	15	$94: 6$	58
2	t BuOK	rt	20	$97: 3$	37
3	DABCO	50	10	$96: 4$	41
4	Et N	50	10	$99: 1$	27
5	TBAF	rt	2	$>99: 1$	69
$6^{[d]}$	TBAF	rt	2	$>99: 1$	70

${ }^{a}$ Reaction conditions: (-)-13 ($\left.0.19 \mathrm{~g}, 0.50 \mathrm{mmol}\right), 1.5$ equivalent of base.
${ }^{b}$ The ratio of $(+)$ - $\mathbf{1 1}$ to $\mathbf{1 6}$ was ditermind by ${ }^{1} \mathrm{H}$ NMR.
${ }^{c}$ The yield of $(+)-\mathbf{1 1}$ was caculated from the combined isolated yield of $(+)-\mathbf{1 1}$ and $\mathbf{1 6}$ over $\mathbf{3}$ steps.
${ }^{d}$ Performed on a gram-scale ((-)-13, $\left.1.15 \mathrm{~g}, 3.00 \mathrm{mmol}\right)$.

2. Gram-scale synthesis with TBAF as a base

To a solution of compound (-)-13 (1.15 g, 3.00 mmol$)$ in THF $(9.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ $(1.37 \mathrm{~mL}, 9.90 \mathrm{mmol})$, TBSOTf ($1.52 \mathrm{~mL}, 6.60 \mathrm{mmol}$) was added dropwise within 15 min . The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h to complete the reaction and then concentrated in high vacuo. The resulting colorless oil was dissolved in THF $(9.0 \mathrm{~mL})$ and treated with a solution of NBS $(0.58 \mathrm{~g}, 3.15$ mmol) in THF $(9.0 \mathrm{~mL})$ dropwise. The mixture was stirred at room temperature for another 1 h . Then to the mixture was added TBAF ($4.70 \mathrm{~mL}, 4.70 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) dropwise. The resulting mixture was stirred at room temperature for 2 h and quenched with saturated aqueous NaHCO_{3} solution $(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to give the product $(+)-\mathbf{1 1}(0.82 \mathrm{~g}, 70 \%$ yield $)$ as a white solid. mp $77-79^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.37$ (petroleum ether/ethyl acetate $=3: 1$).

3. Treatment of the isolated intermediates $12,15 \mathrm{a}$, and 15 b with TBAF

General procedure: To a solution of the isolated bromide intermediate ($27.0 \mu \mathrm{~mol}$) THF (0.20 mL) was added TBAF ($40.0 \mu \mathrm{~L}, 40.0 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in THF) was added dropwise. The resulting mixture was stirred at room temperature for 1 h and quenched with saturated aqueous NaHCO_{3} solution (3 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to give the product as a white solid.

For intermediate 12, the product $(+)-\mathbf{1 1}(9.6 \mathrm{mg})$ was obtained in 93% yield.
For intermediate 15a, the product $(+)$ - $\mathbf{1 1}(10.0 \mathrm{mg})$ was obtained in 97% yield.
For intermediate $\mathbf{1 5 b}$, only complex mixtures without any detectable $(+)$ - $\mathbf{1 1}$ were obtained.

The data of the isolated intermediates $(\mathbf{1 4}, \mathbf{1 2}, \mathbf{1 5 a}$, and $\mathbf{1 5 b})$ and product $(+)-\mathbf{1 1}$ as below:
14a/14b (5:1): colorless oil ($R_{\mathrm{f}} 0.63$, petroleum ether/ethyl acetate $=20: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 6.91(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.17 \mathrm{H}), 6.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.17 \mathrm{H}), 6.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.83 \mathrm{H}), 6.81(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 0.83 \mathrm{H}), 5.24(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 0.17 \mathrm{H}), 5.18(\mathrm{dd}, J=4.8,3.2 \mathrm{~Hz}, 0.83 \mathrm{H}), 4.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $0.17 \mathrm{H}), 4.74-4.70(\mathrm{~m}, 0.83 \mathrm{H}), 4.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 0.34 \mathrm{H}), 4.09(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1.66 \mathrm{H}), 3.84(\mathrm{~s}, 0.51 \mathrm{H})$, 3.82 (s, 2.49H), 2.69 (s, 1.66H), 2.63 (dd, $J=16.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (d, $J=5.6 \mathrm{~Hz}, 0.34 \mathrm{H}), 2.51$ (dd, J $=16.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=15.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=15.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.51 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2.49 \mathrm{H}), 0.89-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.11-0.00(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.7,170.5,156.8,150.3,147.4,146.3,145.8,144.6,136.1,135.0,118.7$, $118.3,118.0,115.0,114.6,111.8,101.3,100.2,89.0,86.8,60.6,56.2,56.1,48.3,45.6,44.2,42.1,34.9$, $33.4,29.2,26.8,25.6,18.0,14.1,-4.5(2),-4.6,-4.9$; HRMS (m / z): calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{BrO}_{5} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 498.5085, found 498.5082.

12 (unstable, with minor isomers or other impurities): yellow oil ($R_{\mathrm{f}} 0.4$, petroleum ether/ethyl acetate $=3: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.93(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=14.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=$ $15.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=15.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=15.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 200.6,170.2,146.2,145.2,132.8,118.3,116.0,113.7,86.4,61.3,56.4,48.5,46.9,43.6,42.6$, 41.5, 14.2; HRMS (m / z) : calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 463.1415$, found 463.1412 .

15a: yellow oil $\left(R_{\mathrm{f}} 0.6\right.$, petroleum ether/ethyl acetate $\left.=20: 1\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.02$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=4.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=4.4,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.47(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.2,153.3,145.8,145.7,134.5,118.8,115.3,112.6,102.9,85.6$, $60.7,56.2,45.9,44.7,41.5,38.8,25.5,18.2,14.2,-4.7,-4.8$; HRMS (m / z) : calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{O}_{5} \mathrm{Si}^{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 577.4045$, found 577.4038.

15b: yellow oil ($R_{\mathrm{f}} 0.65$, petroleum ether/ethyl acetate $=20: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $6.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.58-4.53 (m, 1H), 4.09-4.01 (m, 2H), 3.82 (s, 3H), 2.85 ($\mathrm{s}, 2 \mathrm{H}), 2.64$ (dd, $J=15.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (dd, $J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.8,150.5,146.8,144.2,135.1,118.1,115.0,112.4,106.0,91.5,60.7,56.1$, 48.2, 46.8, 46.0, 33.9, 25.6, 18.0, 14.0, -4.7, -4.8; HRMS (m / z) : calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{O}_{5} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 577.4045, found 577.4040.
$(+)-11$: a white solid $\left(R_{\mathrm{f}} 0.37\right.$, petroleum ether/ethyl acetate $\left.=3: 1\right) . \mathrm{mp} 76-79{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+250.0(c$ $0.1, \mathrm{CHCl}_{3}$); IR (KBr): $v_{\max }=2978,2939,1729,1688,1573,1472,1445,1268,1207,1037,860,822$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.01(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.14(\mathrm{dd}, J=10.0$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=13.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=13.6,4.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 191.2,169.8,156.9,149.7,141.1,127.5,126.3,118.5$, $114.6,112.5,74.9,61.1,56.3,41.2,35.1,32.6,14.2 ; \operatorname{HRMS}(m / z)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 381.0332, found 381.0334 .

The ratio of $\mathbf{1 4 a} / \mathbf{1 4 b}$ was determined by ${ }^{1} \mathrm{H}$ NMR and varied over time.

The ratio of $\mathbf{1 2} / \mathbf{1 5 a} / \mathbf{1 5 b}$ was determined by ${ }^{1} \mathrm{H}$ NMR.

Synthesis of enone intermediate (+)-11 from purified intermediates

To a solution of compound (-)-13 (5.90 g, 15.4 mmol$)$ in THF $(77 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($7.03 \mathrm{~mL}, 50.8 \mathrm{mmol}$), and TBSOTf ($7.78 \mathrm{~mL}, 33.9 \mathrm{mmol}$) was added dropwise within 10 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h to complete the reaction. Water $(50 \mathrm{~mL})$ was added to quench the reaction and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was flash chromatographed on silica-gel with petroleum ether/ethyl acetate (3:1) to give a colorless oil. The colorless oil was re-dissolved in THF (60 mL) and cooled to $0^{\circ} \mathrm{C}$ with an ice-bath. A solution of NBS ($2.97 \mathrm{~g}, 16.2 \mathrm{mmol}$) in THF (80 mL) was then added dropwise at $0^{\circ} \mathrm{C}$, and the resulting reaction mixture was stirred at room temperature for another 1 h . The reaction mixture was then quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (50 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was flash chromatographed on a silica-gel column with petroleum ether/ethyl acetate (3:1) to give a yellow oil. The yellow oil was re-dissolved in THF (60 mL), and TBAF ($23.1 \mathrm{~mL}, 23.1 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added dropwise. The resulting mixture was stirred at room temperature for 2 h and quenched with saturated aqueous NaHCO_{3} solution (30 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate, $3: 1$) to give the product $(+)-11(5.05 \mathrm{~g}, 86 \%$ yield) as a white solid.

C) Enantioselective Synthesis of Ketone Intermediate (+)-10

The ketone intermediate $(+) \mathbf{- 1 0}$ was synthesized by the following procedure.

Synthesis of compound (+)-17

To a solution of compound (+)-11 (5.20 g, 13.6 mmol$)$ and 2,2,7,7-tetramethyl-3,6-dioxa-2,7-disilaoctane $(10.0 \mathrm{~mL}, 40.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added TMSOTf $(0.49 \mathrm{~mL}, 2.73 \mathrm{mmol})$ dropwise at $-15^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 4 h , quenched with saturated aqueous NaHCO_{3} solution (40 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (2:1) to give the product $(+) \mathbf{- 1 7}(5.20 \mathrm{~g}, 90 \%$ yield $)$ as a white solid: $\mathrm{mp} 45-47^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.5$ (petroleum ether/ethyl acetate $=1: 1$); $[\alpha]_{\mathrm{D}}^{25}+175.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (KBr): $v_{\max }=2979,2940,2891,1731,1574,1475,1445,1416,1265,1212,1149,1122,1016,993$, $842 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J$ $=9.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=9.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.12(\mathrm{~m}$, 2H), 4.10-4.03 (m, 2H), 3.96-3.88 (m, 1H), 3.83 ($\mathrm{s}, 3 \mathrm{H}$), 2.95 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (d, $J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=13.2,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 170.1,149.1,141.2,138.7,129.0,125.6,117.8,113.5,111.5,104.3,74.0$, $65.8,65.4,60.7,56.1,41.1,34.5,30.8,14.2$; $\mathrm{HRMS}(m / z)$: calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrNaO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 447.0414, found 447.0419.

Synthesis of compound (+)-18

The mixture of compound (+)-17 ($3.50 \mathrm{~g}, 8.23 \mathrm{mmol}$), $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.00 \mathrm{~g}, 1.23 \mathrm{mmol})$, and was dissolved in toluene (35 mL). A solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(8.04 \mathrm{~g}, 24.7 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ and a solution of $\operatorname{BocNH}\left(\mathrm{CH}_{2}\right)_{2}(9-\mathrm{BBN})$, which was generated by in situ by the reaction of tert-butyl vinylcarbamate $(1.77 \mathrm{~g}, 12.4 \mathrm{mmol})$ and $(9-\mathrm{BBN})_{2}(1.51 \mathrm{~g}, 6.18 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ at room temperature for 4 h , was added. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h , and then filtered through a pad of Florisil. The filtrate was washed with water (30 mL) , and the aqueous phase was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (1:1) to give the product (+)-18 ($3.43 \mathrm{~g}, 85 \%$ yield) as a light yellow-green solid: mp $44-46{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.45$ (petroleum ether/ethyl acetate $=2: 3$); $[\alpha]_{\mathrm{D}}^{25}+142.6(c 1.0$, CHCl_{3}); IR (KBr): $v_{\max }=3374,2977,2937,2897,1710,1589,1484,1366,1158,1051,992,950,733$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (dd, $J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{brs}, 1 \mathrm{H}), 4.53-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 2 \mathrm{H})$, 4.10-4.01 (m, 2H), 3.97-3.89 (m, 1H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{ddd}, J=13.2,5.2,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.5,155.9,148.2,140.4$, $139.3,129.8,127.5,125.1,114.9,110.7,104.5,79.2,73.7,65.7,65.4,60.6,55.8,41.9,41.3,36.0,34.5$, 31.0, 28.4, 14.2; HRMS (m / z) : calcd for $\left.\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NNaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}\right) 512.2255$, found 512.2258 .

Synthesis of compound (+)-19

To a solution of compound $(+)-18(3.40 \mathrm{~g}, 6.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBALH ($13.9 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, 13.9 mmol) dropwise. The resulting mixture was stirred at $78{ }^{\circ} \mathrm{C}$ for 1 h and then quenched with saturated aqueous sodium-potassium tartrate solution (30 mL). The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (1:1) to give the product $(+)-19(2.72 \mathrm{~g}, 88 \%$ yield $)$ as a white solid: $\mathrm{mp} 75-77^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.34$ (petroleum ether/ethyl acetate $=2: 3$); $[\alpha]_{\mathrm{D}}^{25}+155.7\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}): v_{\max }=3599,3354$, 2966, 2932, 2897, 1708, 1589, 1516, 1483, 1366, 1273, 1166, 1144, 950, 844, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.82(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=$ $10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.85$ ($\mathrm{s}, 3 \mathrm{H}$), $3.33-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (ddd, $J=13.2,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 200.6,155.9,148.5$, $140.4,138.7,130.3,126.8,126.0,115.0,110.9,104.3,79.3,73.5,65.8,65.4,55.9,49.3,41.9,36.0$,

Synthesis of compound (+)-20

$(+)-19$
(+)-20
The mixture of compound $(+)-19(2.67 \mathrm{~g}, 6.00 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.27 \mathrm{~g})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was charged with H_{2} balloon, and the mixture was stirred at room temperature for 1 h . The mixture was then filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (1:1) to give the product $(+)-\mathbf{2 0}(2.57 \mathrm{~g}, 95 \%$ yield $)$ as a white solid: mp $123-125{ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.55$ (petroleum ether/ethyl acetate, $1: 2$); $[\alpha]_{\mathrm{D}}^{25}+25.2$ (c 1.0, CHCl_{3}); IR (KBr): $v_{\max }=3727,3703,3626,3602,3369,2934,2890,1714,1588,1517,1482,1365$, $1272,1220,1169,1146,1110,1037,733 \mathrm{~cm}^{-1} ;{ }^{1}{ }^{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.66(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.61(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{brs}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-3.99(\mathrm{~m}, 3 \mathrm{H}), 3.95-3.90(\mathrm{~m}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{dd}, J=16.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=$ $16.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.44$ ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 201.5,155.9,148.1,141.9,130.5,126.2,116.6,110.5,107.8$, $79.2,73.3,65.0(2), 55.8,51.4,41.9,38.2,36.0,33.1,31.7,28.6,28.4$; HRMS (m / z): calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 448.2330$, found 448.2327.

Synthesis of compound (+)-21

To a solution of (methoxymethyl)triphenylphosphonium chloride ($6.86 \mathrm{~g}, 20.0 \mathrm{mmol}$) in THF (20 mL) was added $t \mathrm{BuOK}(2.08 \mathrm{~g}, 18.0 \mathrm{mmol})$ in portions at $-30^{\circ} \mathrm{C}$, and the resulting suspension solution was stirred at the same temperature for 0.5 h . The solution of compound (+)-20 (2.69 g, 6.00 mmol$)$ in 15 mL THF was then added, and the resulting mixture was stirred at room temperature for another 4 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 30 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (2:1 to $1: 1$) to give the product (+)-21 as a mixture of Z and E isomers ($44: 56,2.57 \mathrm{~g}, 90 \%$ yield): mp $46-51^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.53$ (petroleum ether/ethyl acetate $=1: 1$); $[\alpha]_{\mathrm{D}}^{25}+33.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (KBr): $v_{\max }=$ 3632, 3359, 2932, 1708, 1587, 1516, 1480, 1365, 1250, 1145, 1022, 949, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.62(\mathrm{~s}, 0.44 \mathrm{H}), 6.60(\mathrm{~s}, 0.56 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.56 \mathrm{H}), 5.93(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 0.44 \mathrm{H}), 4.65-4.54(\mathrm{~m}, 1.56 \mathrm{H}), 4.30(\mathrm{~m}, 1.2 \mathrm{H}), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 0.56 \mathrm{H}), 4.09-3.95(\mathrm{~m}$, $3.7 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 1.0 \mathrm{H}), 3.85(\mathrm{~s}, 1.68 \mathrm{H}), 3.84(\mathrm{~s}, 1.32 \mathrm{H}), 3.59(\mathrm{~s}, 1.32 \mathrm{H}), 3.45(\mathrm{~s}, 1.56 \mathrm{H})$, $3.37-3.25(\mathrm{~m}, 2.0 \mathrm{H}), 2.75-2.66(\mathrm{~m}, 2.0 \mathrm{H}), 2.60-2.43(\mathrm{~m}, 1.44 \mathrm{H}), 2.22(\mathrm{dd}, J=14.0,8.8 \mathrm{~Hz}, 0.56 \mathrm{H})$, $1.96-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.9,149.0$, $147.8,147.7,142.1,129.8,129.6,128.1$ (2), 117.2, 116.8, 109.8 (2), 108.4 (2), 101.7, 97.8, 79.1, 73.7
(2), 65.0, 64.9, 59.4 (2), 56.0, 55.8, 42.1, 42.0, 37.9, 37.7, 36.9, 36.0, 35.9, 34.3, 34.1, 32.7, 30.8, 29.0, 28.4; HRMS (m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$493.2908, found 493.2905.

Synthesis of compound (+)-10

To a solution of $(+)-\mathbf{2 1}(2.80 \mathrm{~g}, 5.89 \mathrm{mmol})$ in DCE $(55 \mathrm{~mL})$ was added 14 mL TFA dropwise. The resulting reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 20 h and then concentrated in vacuo. The residue was re-dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(6.09 \mathrm{~mL}, 44.0 \mathrm{mmol})$ and $\mathrm{ClCO}_{2} \mathrm{Bn}(3.43 \mathrm{~mL}, 23.6$ mmol) were added dropwise successively at room temperature. The reaction mixture was stirred for 12 h, quenched with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (1:1) to give the product $(+) \mathbf{- 1 0}$ as a mixture of two diastereoisomers ($d r=4: 1,2.30 \mathrm{~g}, 90 \%$ yield): white solid, $\mathrm{mp} 62-67^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.46$ (petroleum ether/ethyl acetate $=1: 1) ;[\alpha]_{\mathrm{D}}^{25}+149.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}): v_{\max }=2938,2866,1725,1695,1600$, 1486, 1423, 1280, 1195, 1101, 990, 735, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.53-7.28(\mathrm{~m}, 5 \mathrm{H})$, $6.61(\mathrm{~s}, 1 \mathrm{H}), 5.27-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.94-4.82(\mathrm{~m}, 0.85 \mathrm{H}), 4.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 0.15 \mathrm{H}), 4.71-4.69(\mathrm{~m}$, $0.85 \mathrm{H}), 4.58-4.56(\mathrm{~m}, 1.5 \mathrm{H}), 4.48-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 1 \mathrm{H})$, 2.47-2.18 (m, 4H), 2.15-2.03 (m, 2H), 1.97-1.83 (m, 2H), $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 206.0,155.2,146.4,140.2,136.8,128.5,128.0,127.8,127.8,125.9,123.7,110.2$, $78.5,67.1,56.0,49.4,40.2,39.2,39.1,36.6,32.2,31.2,30.7,29.9$; HRMS (m/z): calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{5}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 434.1962$, found 434.1957 .

D) Enantioselective Synthesis of Pentacyclic Homoproaporphine Alkaloids

The advanced chiral intermediate (-)-9 and the members of pentacyclic homoproaphine alkaloid family were synthesized by the following procedure.

Synthesis of compound (+)-24

To a solution of compound $(+)-\mathbf{1 0}(2.30 \mathrm{~g}, 5.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ was added $\mathrm{Li}_{2} \mathrm{CO}_{3}$ $(0.12 \mathrm{~g}, 1.60 \mathrm{mmol})$ and $m-\operatorname{CPBA}(1.47 \mathrm{~g}, 6.80 \mathrm{mmol})$. The resulting mixture was stirred at room temperature for 1 h , and quenched with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (30 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 40 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (2:1) to give the product (+)-24 ($2.20 \mathrm{~g}, 92 \%$ yield) as a white solid, mp $83-85{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.47$ (petroleum ether/ethyl acetate $=1: 1) ;[\alpha]_{\mathrm{D}}^{25}+55.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR $(\mathrm{KBr}): v_{\max }=2930,2871,1740,1695,1423,1266,1099$, $1036,737,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.45-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=5.2$,
$0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.93-$ $2.80(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.8,155.1,145.9,140.3,136.8,128.6,128.1,127.8,127.4,125.1,123.3,110.6$, 94.7, 67.2, $56.1(2), 49.8,40.9,39.1,36.1,35.5,33.2,32.4,31.9,30.1 ; \operatorname{HRMS}(m / z)$: calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 450.1911$, found 450.1904 .

Synthesis of compound (-)-25

To a solution of compound (+)-24 ($0.66 \mathrm{~g}, 1.47 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBALH ($2.20 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, 2.20 mmol) dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h , quenched with saturated aqueous solution of sodium-potassium tartrate (20 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (1:1 to 100% ethyl acetate) to give the product (-) $\mathbf{2 5}(0.56 \mathrm{~g}, 85 \%$ yield) as a mixture of diastereoisomers (not stable). $R_{\mathrm{f}} 0.58$ (100% ethyl acetate); $[\alpha]_{\mathrm{D}}^{25}-123.0$ (c 1.0, CHCl_{3}); IR (KBr): $v_{\max }$ $=3744,3479,2930,1695,1424,1358,1269,1195,1101,735,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.71(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{dd}, J=$ $10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.45$ (m, 1H), 2.44-2.26 (m, 2H), $2.22(\mathrm{dd}, J=13.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 2 \mathrm{H})$, $1.68(\mathrm{dd}, J=13.9,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 201.2,155.3,147.1$, $139.9,136.8,128.6,128.5,128.1,128.0,127.8,126.8,110.3,92.7,67.2,55.9,42.1,39.8,39.5,39.2$, 34.6, 33.0, 32.4, 30.4, 29.3; HRMS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 452.2068$, found 452.2074.

Synthesis of compound (-)-26

To a solution of compound (-)-25 (0.35 g, 0.77 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added pyridinium chlorochromate ($\mathrm{PCC}, 0.26 \mathrm{~g}, 1.20 \mathrm{mmol}$), and the mixture was stirred at room temperature for 1.5 h . The reaction mixture was filtrated through a short plug of silica gel and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (1:1) to give the product (-)-26 ($0.23 \mathrm{~g}, 65 \%$ yield) as a white solid (with a minor diastereoisomer): mp 59-62 ${ }^{\circ} \mathrm{C}$; R_{f} 0.4 (petroleum ether/ethyl acetate $=1: 1$); $[\alpha]_{\mathrm{D}}^{25}-36.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}): v_{\max }=3733,3625,2939$, $1769,1696,1488,1447,1268,1229,1195,1126,1100,904,737,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.68(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.28-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{dd}, J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.59(\mathrm{~m}, 2 \mathrm{H})$, $2.55-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H})$,
$1.57-1.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 200.1,167.0,155.2,146.3,138.8,136.6,130.8$, $128.6,128.1,128.1,127.9,125.7,125.1,111.4,67.3,56.1,50.5,42.3,39.2,38.9,35.1,32.5,31.7,30.6$; HRMS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 450.1911$, found 450.1916.

Synthesis of compound (-)-9

To a solution of compound (-)-26 ($0.23 \mathrm{~g}, 0.50 \mathrm{mmol})$ in THF $(83 \mathrm{~mL})$ were added $t \mathrm{BuOH}(0.23$ $\mathrm{mL}, 2.50 \mathrm{mmol})$ and $\mathrm{SmI}_{2}(25.0 \mathrm{~mL}, 2.50 \mathrm{mmol}, 0.1 \mathrm{M}$ in THF) at room temperature. The mixture was stirred at room temperature for 1.5 h , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate ($1: 1$ to 100% ethyl acetate) to give the product $(-)-9(0.17 \mathrm{~g}, 76 \%$ yield) as a white solid: mp 98-100 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.41$ (100% ethyl acetate); $[\alpha]_{\mathrm{D}}^{25}-86.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (KBr): $v_{\max }=3463$, 2930, 2866, 1695, 1601, 1427, 1358, 1267, 1173, 1095, 1053, 736, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 7.48-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.22-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dd}, J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-$ $4.23(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{td}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{td}, J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{tt}, J=14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta:$ $155.5,145.7,142.5,136.8,127.8,127.5,127.5,124.8,124.5,123.9,110.3,99.3,70.6,66.9,55.1,49.7$, 38.9, 38.7, 34.6, 33.4, 32.9, 29.2, 27.1; HRMS (m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 452.2068$, found 452.2065 .

Synthesis of compound (-)-27

To a solution of compound (-)-9 $(0.19 \mathrm{~g}, 0.42 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ were added $\mathrm{CH}(\mathrm{OMe})_{3}$ $(0.14 \mathrm{~mL}, 1.25 \mathrm{mmol})$ and $(+)-10$-camphorsulfonic acid (CSA, $0.10 \mathrm{~g}, 0.42 \mathrm{mmol})$. The reaction mixture was heated to reflux for 24 h , diluted with saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (1:1) to give the product (-)-27 $(0.17 \mathrm{~g}, 87 \%$ yield) as a white solid (with a minor diastereoisomer), mp $75-77{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.36$ (petroleum ether/ethyl acetate $=1: 1$); $[\alpha]_{\mathrm{D}}^{25}-35.5$ (c 1.0, CHCl_{3}); IR (KBr): $v_{\max }=3483,2938,2838,1695,1425,1267,1198,1097,1061,736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.23-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{dd}, J=11.2,5.2 \mathrm{~Hz}$, $0.8 \mathrm{H}), 4.53(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.48-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.97-$ $2.77(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.82$ $(\mathrm{m}, 2 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamer mixture) δ : $49.2,39.1,35.4,34.9,34.6,33.7,33.0,29.9,26.6$; HRMS (m / z) : calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 466.2224, found 466.2222.

Synthesis of (+)-regeline (1)

To a solution of (-)-27 ($87.0 \mathrm{mg}, 0.19 \mathrm{mmol}$) in THF (6 mL) was added $\mathrm{LiAlH}_{4}(43.0 \mathrm{mg}, 1.12$ mmol), and the resulting mixture was stirred at room temperature for 24 h . The reaction was then quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$, and the mixture was extracted with EtOAc ($3 \times 6 \mathrm{~mL}$). The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with ethyl acetate/triethylamine (30:1) to give the product $(+)$-regeline (1) ($45.0 \mathrm{mg}, 69 \%$ yield) as a white solid: $\mathrm{mp} 201-203^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{2} 198-200{ }^{\circ} \mathrm{C}\right) ; R_{\mathrm{f}} 0.26$ (ethyl acetate/triethylamine $=30: 1) ;[\alpha]_{\mathrm{D}}^{25}+92.0(c 1.5, \mathrm{MeOH})\left(\right.$ lit. ${ }^{2}+93(c 1.5, \mathrm{MeOH})$); IR (KBr) : $v_{\max }=3175,2945,2877,2833,1598,1485,1463,1374,1259,1225,1159,1061,1004,872,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.52(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.03$ (m, 1H), 3.03-2.98 (m, 1H), $2.94(\mathrm{dd}, J=9.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=15.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.47$ $(\mathrm{m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.59-1,53(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 146.0$, $142.1,126.2,124.6,123.9,109.8,102.0,70.8,60.0,55.9,537,49.2,43.7,34.7,34.3,34.2,33.1,28.9$, 27.1, 26.4; HRMS (m / z) : calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 346.2013$, found 346.2011.

The product (+)-1 (20.0 mg) was re-dissolved in a mixed solvent of ethyl acetate (1 mL) and n-hexane (1 mL). After slowly evaporating the solvents at ambient temperautre, the fine crystals were obtained amd their structure was analyzed by X-ray diffraction.

Table S2. Crystal data and structure refinement for (+)-regeline (1) (CCDC 2003662)

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4}$
Formula weight	345.42
Temperature/K	294.15
Crystal system	trigonal
Space group	P32
a/Å	11.34890(10)
b/Å	11.34890 (10)
c/Å	12.20100 (10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	120
Volume/A ${ }^{3}$	1360.92(3)
Z	3
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.264
μ / mm^{-1}	0.706
$\mathrm{F}(000)$	558.0
Crystal size/mm ${ }^{3}$	$0.34 \times 0.26 \times 0.24$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	8.998 to 158.73
Index ranges	$-14 \leq \mathrm{h} \leq 14,-13 \leq \mathrm{k} \leq 13,-15 \leq 1 \leq 15$
Reflections collected	11417
Independent reflections	$3640\left[\mathrm{R}_{\text {int }}=0.0195, \mathrm{R}_{\text {sigma }}=0.0157\right]$
Data/restraints/parameters	3640/1/234
Goodness-of-fit on F^{2}	1.044
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0302, \mathrm{wR}_{2}=0.0869$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0304, \mathrm{wR}_{2}=0.0871$
Largest diff. peak/hole / e \AA^{-3}	0.24/-0.15
Flack parameter	0.04(6)

Table S3. Comparison of NMR data of natural and synthetic (+)-regeline

(+)-regeline

No.	${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$:	
	Natural ${ }^{[2]}$	Synthetic (400 MHz)
3	6.42 (s)	6.52 (s)
6a	--	$2.94(\mathrm{dd}, J=9.7,5.5 \mathrm{~Hz})$
11	--	3.84-3.83 (m)
O-Me	3.74 (s)	3.83 (s)
O-Me	3.34 (s)	3.43 (s)
$\mathrm{N}-\mathrm{Me}$	2.36 (s)	2.45 (s)
	${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta$:	
	Natural ${ }^{[2]}$	Synthetic (101 MHz)
1	145.0	146.0
2	142.1	142.1
14	126.4	126.2
15	124.6	124.6
16	123.8	123.9
3	110.2	109.8
12	101.9	102.0
11	70.5	70.8
6a	60.0	60.0
2a	56.0	55.9
5	53.6	53.7
12a	48.9	49.2
6	43.6	43.7
8 a	34.6	34.7
$4,13,10,9,8,7$	34.2, 34.2, 33.0, 28.8, 27.0, 26.4	34.3, 34.2, 33.1, 28.9, 27.1, 26.4

Synthesis of (+)-regalamine (2)

The mixture of $(+)-\mathbf{1}(44.0 \mathrm{mg}, 0.13 \mathrm{mmol})$ and 2 mL of $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ was heated to $100{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 2 h . The reaction mixture was then cooled to room temperature, and a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(4 \mathrm{~mL})$ was added to quench the reaction. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with ethyl acetate/
triethylamine (20:1) to give the product (+)-regalamine (2) (41.0 mg, 95\% yield) as a white solid: mp $220-222{ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} 225-226{ }^{\circ} \mathrm{C}$); $R_{\mathrm{f}} 0.15$ (ethyl acetate/triethylamine $=30: 1$); $[\alpha]_{\mathrm{D}}^{25}+43.8(c 1.92, \mathrm{MeOH})$ (lit. ${ }^{3}+33$ (c 1.93, MeOH)); IR (KBr): $v_{\max }=3464,3370,2938,2858,2794,1599,1485,1446,1373$, $1265,1224,1174,1138,1055,1013,875,734,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.45(\mathrm{~s}, 1 \mathrm{H})$, $3.83-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=10.0,5.6 \mathrm{~Hz}, 1$ H), $2.59(\mathrm{dd}, J=16.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{td}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 1 \mathrm{H})$, $2.20(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.35(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 145.6,141.4,126.2,124.7,123.6,109.5,99.4,71.4,60.1,55.8$, $53.6,43.6,39.0,34.9,33.9,32.8,28.7,26.9,26.5$; $\operatorname{HRMS}(m / z)$: calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 332.1856, found 332.1863 .

Synthesis of (+)-kesselridine (3)

To a solution of $(+)$-regeline ($20.0 \mathrm{mg}, 57.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{BBr}_{3}(0.17 \mathrm{~mL}$, $1.0 \mathrm{M}, 0.17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting mixture was stirred at room temperature for 4 h . The reaction mixture was diluted with saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with ethyl acetate/triethylamine (20:1) to give the product $(+)$-kesselridine (3) $\left(14.0 \mathrm{mg}, 78 \%\right.$ yield) as a white solid: $\mathrm{mp} 205-206{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{4}$ $232-234{ }^{\circ} \mathrm{C}$); $R_{\mathrm{f}} 0.22$ (ethyl acetate/triethylamine $=30: 1$); $[\alpha]_{\mathrm{D}}^{25}+200.0$ (c 0.1, pyridine) (lit. ${ }^{4}-50$ (pyridine)); IR (KBr): $v_{\max }=3737,3651,3626,2955,2918,2850,1461,1377,1237,1131,992,966$, 895, $853 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 2 \mathrm{H})$, 3.01-2.92 (m, 1H), 2.63-2.54 (m, 2H), $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.33(\mathrm{~m}$, $1 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 144.5,142.4,125.0,124.8,123.9,114.2,100$. 8, 72.1, 61.7, 54.5, 42.6, 39.6, 35.8, 34.8, 34.3, 28.2(2), 27.1; HRMS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4}([\mathrm{M}+$ $H]^{+}$) 318.1700, found 318.1699.

Synthesis of (+)-kesselringine (4)

To a solution of $(+)-3(28.0 \mathrm{mg}, 88.2 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ were added $\mathrm{CH}(\mathrm{OMe})_{3}(30.0 \mu \mathrm{~L}$, 0.27 mmol) and (+)-10-camphorsulfonic acid (CSA, $30.0 \mathrm{mg}, 0.13 \mathrm{mmol}$). The reaction mixture was heated to reflux for 24 h , diluted with saturated aqueous NaHCO_{3} solution (10 mL), and extracted with EtOAc ($3 \times 6 \mathrm{~mL}$). The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with ethyl acetate/triethylamine (20:1) to give the product $(+)$-kesselringine (4) $\left(25.0 \mathrm{mg}, 86 \%\right.$ yield) as a white solid: $\mathrm{mp} 197-198{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{5}$

194-196 $\left.{ }^{\circ} \mathrm{C}\right) ; R_{\mathrm{f}} 0.25$ (ethyl acetate/triethylamine $\left.=30: 1\right) ;[\alpha]_{\mathrm{D}}^{25}+79.0\left(c 1.0, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. ${ }^{6}+93(c 1.0$, $\left.\mathrm{CHCl}_{3}\right)$); IR (KBr): $v_{\max }=3473,2953,2928,2868,1595,1503,1462,1377,1272,1189,1059,813$, $723,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{brs}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$, $3.13-2.89(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.2$, $139.9,125.4,123.2,112.5,102.8,77.2,70.9,60.2,53.6,49.4,43.5,34.6,34.1,34.0,33.3,28.4,27.1$, 26.3; HRMS (m / z) : calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 332.1856$, found 332.1859 .

Synthesis of compound (+)-jolantidine (5)

To a solution of compound (-)-9 (41.0 mg, $91.8 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(9.0 \mathrm{mg})$, and the suspension mixture was stirred at room temperature under ambient H_{2} pressure for 6 h . The mixture was then filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on silica-gel column with dichloromethane/methanol (3:1) to give the product $(+)$-jolantidine (5) ($21.0 \mathrm{mg}, 75 \%$ yield) as a white solid: $\mathrm{mp} 269-270{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left..^{7} 275-277{ }^{\circ} \mathrm{C}\right) ; R_{\mathrm{f}} 0.53$ (dichloromethane/methanol $=3: 1$); $[\alpha]_{\mathrm{D}}^{25}+90.5(c 0.4, \mathrm{MeOH})\left(\right.$ lit. ${ }^{7}+102(c 0.4, \mathrm{MeOH})$); IR (KBr): $v_{\max }=3454,3298,2925,2853,1598,1484,1445,1368,1265,1173,1051,1013,737,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 6.61(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.70(\mathrm{~m}, 1 \mathrm{H})$, $3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{td}, J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.47-1.35(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 147.4,143.6,127.6,125.8,124.8,111.9,100.7$, $72.1,56.5,52.5,44.0,39.5,36.0,34.8,34.5,29.2,28.8,28.2$; HRMS (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}([\mathrm{M}+$ $\left.H]^{+}\right) 318.1700$, found 318.1697 .

Synthesis of (+)-regelinine (6)

To a solution of oxalyl chloride $(0.10 \mathrm{~mL}, 1.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added slowly the solution of DMSO $(0.16 \mathrm{~mL}, 2.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. A solution of $(-)-27(0.17 \mathrm{~g}$, $0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added dropwise at the same temperature and the reaction mixture was stirred for 2 h . Subsequently, triethylamine ($0.46 \mathrm{~mL}, 3.30 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h , warmed to room temperature naturally, and quenched with water (5 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica-gel column with petroleum ether/ethyl acetate (2:1) to give the product (-)-S1 ($0.16 \mathrm{~g}, 96 \%$ yield) as a white solid, $\mathrm{mp} 75-77{ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.43$ (petroleum ether/ethyl acetate $=1: 1$); $[\alpha]_{\mathrm{D}}^{25}+150\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}): v_{\max }=2945,2840$, $1734,1697,1488,1424,1278,1206,1085,983,735,699 \mathrm{~cm}-1 ;{ }^{\prime} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.44$
$7.30(\mathrm{~m}, 5 \mathrm{H}), 6.67(\mathrm{dd}, J=10.0,3.2 \mathrm{~Hz}, 0.2), 6.66 \square 6.57(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 0.2 \mathrm{H}), 5.30-5.09(\mathrm{~m}, 2 \mathrm{H})$, $4.95(\mathrm{~m}, 0.2 \mathrm{H}), 4.82(\mathrm{~m}, 0.6 \mathrm{H}), 4.57(\mathrm{~m}, 0.13 \mathrm{H}), 4.43(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.69 \mathrm{H}), 3.85(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{~m}$, $3 \mathrm{H}), 3.49 \square 3.28(\mathrm{~m}, 0.65 \mathrm{H}), 2.97-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 0.8 \mathrm{H}), 2.46-2.12(\mathrm{~m}, 5.1 \mathrm{H}), 2.00-1.72$ $(\mathrm{m}, 3.5 \mathrm{H}), 1.63-1.46(\mathrm{~m}, 0.9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 202.1,156.4,146.6,141.1,136.8$, $128.6,128.1(2), 123.8,121.6,112.6,111.1,99.3,67.2,56.2,51.2,42.7,40.0,39.1,37.1,36.3,34.9$, 34.5, 32.6, 29.9; HRMS (m / z) : calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{30} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]_{+}\right) 464.2068$, found 464.2066.

To the solution of (-)-S1 in THF (8 mL) was added $\mathrm{LiAlH}_{4}(83.5 \mathrm{mg}, 2.20 \mathrm{mmol}$), and the resulting mixture was stirred at room temperature for 24 h . The reaction was then quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$, and the mixture was extracted with EtOAc $(3 \times 8 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica-gel column with ethyl acetate/triethylamine (30:1) to give (+)-regelinine (6) (80.0 mg, 63\% yield over 2 steps) as a white solid: mp $252-253{ }^{\circ} \mathrm{C}$ (lit. ${ }^{8} 253-254{ }^{\circ} \mathrm{C}$); $R_{\mathrm{f}} 0.32$ (ethyl acetate/triethylamine $=20: 1$); $[\alpha]_{\mathrm{D}}^{25}+110.4\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}): v_{\max }=3348,2942,2844,1599$, 1486, 1454, 1244, 1076, $976,889,730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.72 (dd, $J=11.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.12-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-$ $2.56(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{td}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=12.8,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.27(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 146.0,142.4,126.0,124.6,123.5,110.0,100.8,75.5,60.2,55.9,53.7,49.4,43.7,37.6$, 37.4, 34.9, 34.0, 28.9, 28.1, 27.2; HRMS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 346.2013$, found 346.2013 .

References

1. Chen, J.-Q.; Xie, J.-H.; Bao, D.-H.; Liu, S.; Zhou, Q.-L. Total synthesis of (-)-galanthamine and $(-)$-lycoramine via catalytic asymmetric hydrogenation and intramolecular reductive Heck cyclization. Org. Lett. 2012, 14, 2714-2717.
2. Abdullaeva, D. A.; Yusupov M. K.; Aslanov, K. A. The structure of regeline. Chem. Nat. Comp. 1976, 12, 702-705.
3. Yusupov, M. K.; Abdullaeva, D. A.; Aslanov, K. A.; Sadykov, A. S. The structure of regalamine. Chem. Nat. Comp. 1975, 11, 395-397.
4. Kasimov, K.; Yusupov, M. K.; Timbekov É. K.; Aslanov, K. A. Structure of kesselridine. Chem. Nat. Comp. 1975, 11, 202-205.
5. Yusupov, M. K.; Sadykov, A. S. The structure of kesselringine. Chem. Nat. Comp. 1976, 12, 305-308.
6. Yusupov, M. K.; Mukhamedyarova, N. L.; Sadykov, A. S.; Dolejš, L.; Sedmera P.; Šantavý, F. Constitution of the alkaloid kesselringine. Collect. Czech. Chem. Commun. 1977, 42, 1581-1587.
7. Chommadov, B.; Usmanov, A. M.; Yusupov, M. K. Jolantidine - A new base from Merendera jolantae. Chem. Nat. Comp. 1983, 19, 755.
8. Yusupov, M. K.; Chommadov B.; Aslanov, K. A. The structure of regelinine. Chem. Nat. Comp. 1985, 21, 396-397.
E) NMR Spectra of New Compounds and Pentacyclic Homoproaporphine Alkaloids

Compound (-)-13

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]
Compound 14

$14 a(\alpha) / 14 b(\beta)$
regioselectivity 5:1
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 12 (not stable)

12
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 15a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 15b

Compound (+)-11

(+)-11
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(+)-11
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound (+)-17

(+)-17
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(+)-17
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound (+)-18

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound (+)-19

(+)-19
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound (+)-20

部登

(+)-20
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(+)-20
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]Compound (+)-21 (a mixture of Z and E isomers in a ratio of 44:56)

Compound (+)-10 (with a minor diastereoisomer)

Compound (+)-24 (with a minor diastereoisomer)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound (-)-25 (not stable, with minor diastereoisomers)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound (-)-26 (with a minor diastereoisomer)

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]
Compound (-)-9

$\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}$

Compound (-)-27 (with a minor diastereoisomer)

[^3](+)-Regeline (1)

咢哭

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^4]
(+)-Regalamine (2)

(+)-Kesselridine (3)

[^5](+)-Kesselringine (4)

[^6](+)-Jolantidine (5)
(

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

											1	,	,	1	,	1	1	1		
00	190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

(+)-Regelinine (6)

(+)-regelinine
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(+)-regelinine
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	180	170			140		120		100	1	18	70	1	5		10	10		
190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \mathrm{f} 1 \end{array}$		80	70	60	50	40	30	20	10	0

F) HPLC Charts for (-)-13

[^0]: $\begin{array}{llllllllllllllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$

[^1]: 10

 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | - |
 | :--- |

[^2]: $\begin{array}{llllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ f 1(\mathrm{ppm})\end{array}$

[^3]:

[^4]: $\begin{array}{llllllllllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{100}{100} \underset{f 1}{(\mathrm{ppm})} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$

[^5]:

[^6]: $\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{\substack{100 \\ f 1 \\(\mathrm{ppm})}}{ } & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

