Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence

Huang Wu,[†] Yu Wang,[†] Leighton O. Jones,[†] Wenqi Liu,[†] Bo Song,[†] Yunpeng Cui,[‡] Kang Cai,[†] Long Zhang,[†] Dengke Shen,[†] Xiao-Yang Chen,[†] Yang Jiao,[†] Charlotte L. Stern,[†] Xiaopeng Li,[⊥] George C. Schatz[†] and J. Fraser Stoddart^{*,†,v,§} [†]Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States [‡]Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States [‡]Department of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia [§]Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China [⊥]College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, Guangdong

¹College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, Guangdon 518055, P.R. China

*E-mail: stoddart@northwestern.edu

Supporting Information

Table of Contents

Section A. Materials / General Methods / Instruments	S2
Section B. Synthetic Protocols	S3
Section C. NMR Spectroscopy	S4
Section D. Mass Spectrometry	S16
Section E. Crystallographic Characterization	S17
Section F. Cyclic Voltammetry	S19
Section G. Photophysical Characterization	S20
Section H. Isothermal Titration Calorimetry (ITC)	S27
Section I. Density Functional Theory Calculations	S30
Section J. Cartesian Coordinates for the Optimized Structures	S37
Section K. References	S58

Section A. Materials / General Methods / Instruments

All solvents and reagents were obtained commercially and used without further purification unless noted otherwise. 1,4-Bis((E)-2-(pyridin-4-yl)vinyl)benzene (**1,4-BPEB**), 4,4'-((1E,1'E)-1,4phenylenebis(ethene-2,1-diyl))bis(1-(4-(bromomethyl)benzyl)pyridin-1-ium) $(BrOPV^{2+})$ and (OPV^{2+}) 4,4'-((1*E*,1'*E*)-1,4-phenylenebis(ethene-2,1-diyl))bis(1-methylpyridin-1-ium) were prepared according to the previous literature procedures.¹ Thin-layer chromatography (TLC) was performed on silica gel 60 F254 (E Merck). Developed plates were visualized using UV light at wavelengths of 254 and 365 nm. Reverse-phase liquid chromatography was performed on Combiflash Rf 200 purification system, using C18-columns and a binary solvent system (MeCN with 0.1% TFA and H₂O with 0.1% TFA). Normal-phase column chromatography was carried out on silica gel 60F (Merck 9385, 0.040 – 0.063 mm). UV-Vis Absorption spectra were recorded in a conventional rectangular quartz cell (10 \times 10 \times 45 mm) on a UV-3600 Shimadzu spectrophotometer. Fluorescence spectra were measured in a rectangular quartz cell $(10 \times 10 \times 45)$ mm) on a HORIBA FluoroMax-4 spectrometer, which was equipped with an integrating sphere for absolute fluorescence quantum yields determination and time-correlated single-photon counting (TCSPC) module for emission decays. All the photophysical (UV-Vis absorption and fluorescence spectroscopy) experiments were performed at 298 K in H₂O, except the nuclear magnetic resonance (NMR) experiments which were performed in CD₃CN and D₂O. NMR Spectra were recorded on a Bruker Avance III 600 MHz and Agilent 500 MHz spectrometers, with working frequencies of 600 and 500 MHz for ¹H NMR, as well as 150 and 125 MHz for ¹³C NMR, respectively. 2D DOSY NMR Spectroscopy was conducted in D₂O with the concentration of **OPVEBox**·4Cl held at 0.2 mM. The spectrometer was set with the following parameters: the pulse sequence: Bruker pulse program dstebpgp3s; the relaxation delay (D1): 2 s; the diffusion time (D20): 0.06 s; the diffusion gradient pulse length (P30): 1.0 ms; the number of scan (ns): 16; the number of gradient steps: 32 steps with linear spacing; the gradient range: 2-85%. Single crystal X-ray diffraction studies were measured on a Bruker Kappa APEX2 CCD or a Rigaku XtaLAB Synergy diffractometer using Cu-K α radiation ($\lambda = 1.5407$ Å) equipped with an Oxford cryostream variable temperature device, and data were collected using the Bruker APEX-II or Rigaku CrysAlis Pro program. Detailed experimental procedures are provided below in the appropriate sections. Cyclic voltammetry (CV) was performed on a Gamry Multipurpose instrument (Reference 600) interfaced to a PC with a three-electrode system under a N₂ atmosphere at 298 K. Microcalorimetric titrations were performed on a thermostated TA Nano Isothermal Titration Calorimeter at atmospheric pressure and 298 K, the data were analyzed with NanoAnalyze software. Electrospray ionization-mass spectra (ESI-MS) were measured on Waters Synapt G2 mass spectrometer. The specific experimental conditions were employed as follow: ESI capillary voltage, 2.0 kV; sample cone voltage, 20 V; extraction cone voltage, 0.1 V; source temperature, 120 °C; desolvation temperature, 150 °C; cone gas flow, 10 L/h; desolvation gas flow, 700 L/h (N₂).

Section B. Synthetic Protocols

OPVEBox•**4PF6:** Two different reactions were carried out for the ring-closing step: (1) catalyst without template, (2) catalyst with a template.

(1) TBAI as a catalyst without template: **BrOPV**•2PF₆ (141 mg, 0.15 mmol) and **1,4-BPEB** (43 mg, 0.15 mmol) were dissolved in dry MeCN (75 mL), followed by adding 0.2 equiv of TBAI (11 mg, 0.03 mmol) as catalyst. The resulting mixture was heated at 80 °C for 3 days under a N₂ atmosphere. After cooling to room temp, excess TBACl was added to quench the reaction resulting in a yellow precipitate which was collected by filtration and washed with Me₂CO and CH₂Cl₂. The crude precipitate was then subjected to reverse-phase C18 column chromatogram, starting with H₂O / 0.1 % TFA as eluent, followed by continuous addition of MeCN / 0.1% TFA over the course of 45 min. The fractions containing the desired product were combined, and followed by removal of MeCN by rotary evaporation under vacuum. The residual aqueous mixture was then treated with excess NH₄PF₆. The resulting yellow precipitate was separated by filtration and dried under vacuum yielding pure **OPVEBox**•4PF₆ (yield: 40%).

(2) TBAI as a catalyst and pyrene as a template: A solution of **BrOPV**•2PF₆ (141 mg, 0.15 mmol), **1,4-BPEB** (43 mg, 0.15 mmol), TBAI (11 mg, 0.03 mmol) and 6 equiv of pyrene (182 mg, 0.90 mmol) in dry MeCN (75 mL) was heated under reflux at 80 °C for 3 days. After cooling to room temp, excess TBACl was added to quench the reaction. The resulting crude precipitate was separated by filtration, and then dissolved in H₂O in order to remove the pyrene template by continuous liquid-liquid extraction with CHCl₃ over 3 days. The color of aqueous phase changed from brown to yellow. The aqueous phase was concentrated by rotary evaporation under vacuum and the resulting crude precipitate was then subjected to reverse-phase C18 column chromatography, starting with $H_2O / 0.1 \%$ TFA as eluent, followed by continuous addition of MeCN up to an eluent mixture of 99.9 % MeCN / 0.1% TFA over the course of 45 min. The fractions containing the desired product were combined and concentrated by rotary evaporation under vacuum. The residue was dissolved in H_2O and treated with excess NH_4PF_6 to afford a yellow precipitate, which after filtration and drying under a vacuum yielded pure **OPVEBox**•4PF₆ (yield: 42%).

¹H NMR (600 MHz, CD₃CN) δ 8.60 (d, *J* = 7.0 Hz, 2H), 7.90 (d, *J* = 7.0 Hz, 2H), 7.65 (d, *J* = 16.1 Hz, 3H), 7.58 (s, 2H), 7.26 (d, *J* = 16.4 Hz, 1H), 5.58 (s, 2H). ¹³C NMR (150 MHz, CD₃CN) δ 154.9, 144.5, 141.6, 137.8, 137.1, 131.0, 129.8, 125.6, 124.7, 64.4. HRMS-ESI for **OPVEBox**•4PF₆; Calcd for C₅₆H₄₈F₂₄N₄P₄: *m*/*z* = 1211.2804 [*M* – PF₆]⁺, 533.1598 [*M* – 2PF₆]²⁺; Found: 1211.2807 [*M* – PF₆]⁺, 533.1595 [*M* – 2PF₆]²⁺.

OPVEBox•4Cl: A water-soluble counterpart of **OPVEBox**•4Cl was obtained by means of counterion exchange: Tetrabutylammonium chloride (TBACl, 300 mg) was added to a MeCN solution (4 mL) of **OPVEBox**•4PF₆ (100 mg). The resulting yellow precipitate was collected by centrifugation and washed with Me₂CO to give the desired compound **OPVEBox**•4Cl (67 mg) as a yellow powder (yield: 99%).

¹H NMR (600 MHz, D₂O) δ 8.74 (d, *J* = 6.6 Hz, 2H), 7.95 (d, *J* = 6.2 Hz, 2H), 7.64 (m, 5H), 7.26 (d, *J* = 16.3 Hz, 1H), 5.71 (s, 2H). ¹³C NMR (125 MHz, D₂O) δ 153.9, 143.2, 140.2, 136.7, 135.9, 129.9, 128.7, 124.6, 123.8, 63.4. ESI-TOF for **OPVEBox**•4Cl; Calcd for C₅₆H₄₈Cl₄N₄: *m/z* = 194.10 [*M* – 4Cl]⁴⁺, 258.46 [*M* – 4Cl – H]³⁺, 423.16 [*M* – 2Cl]²⁺, Found: 194.10 [*M* – 4Cl]⁴⁺, 258.46 [*M* – 2Cl]²⁺.

Section C. NMR Spectroscopy

(1) The ¹H NMR and ¹³C NMR spectroscopy of the target products: $OPVEBox•4PF_6$ and OPVEBox•4Cl

Chemical shifts are reported in ppm relative to the signals corresponding to the residual nondeuterated solvents (CD₃CN: $\delta_{\rm H} = 1.96$ ppm and $\delta_{\rm C} = 1.32$ and 118.26 ppm; D₂O: $\delta_{\rm H} = 4.79$ ppm).

Figure S1. ¹H NMR spectrum (600 MHz, CD₃CN, 298 K) of OPVEBox•4PF₆

Figure S2. ¹³C NMR spectrum (150 MHz, CD₃CN, 298 K) of OPVEBox•4PF₆

Figure S3. ¹H NMR spectrum (600 MHz, D₂O, 298 K) of OPVEBox•4Cl

Figure S4. ¹³C NMR spectrum (125 MHz, D₂O, 298 K) of OPVEBox•4C1

(2) The two-dimensional COSY, ROESY, HSBC, HMQC NMR spectroscopy of OPVEBox•4PF₆. and OPVEBox•4Cl

Figure S5. Annotated 2D $^{1}H^{-1}H$ COSY NMR spectrum (600 MHz, CD₃CN, 298 K) of **OPVEBox**•4PF₆

Figure S6. Annotated 2D $^{1}H^{-1}H$ ROESY NMR spectrum (600 MHz, CD₃CN, 298 K) of **OPVEBox**•4PF₆.

Figure S7. Annotated 2D ¹H–¹H COSY NMR spectrum (600 MHz, D₂O, 298 K) of OPVEBox•4Cl

Figure S8. Annotated 2D $^{1}H^{-1}H$ ROESY NMR spectrum (600 MHz, D₂O, 298 K) of **OPVEBox**•4Cl

Figure S9. Annotated ¹H–¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (600 MHz, D₂O, 298 K) of **OPVEBox**•4Cl

Figure S10. Annotated ¹H–¹³C Heteronuclear Multiple Bond Coherence (HMBC) NMR spectrum (600 MHz, D₂O, 298 K) of **OPVEBox**•4Cl

(3) The one-dimensional ¹H NMR and two-dimensional ¹H–¹H COSY and ROESY NMR spectroscopy of OPVEBox⁴⁺ \subset CB[8] ring-in-ring complex

Figure S11. ¹H NMR Spectra (600 MHz, [**OPVEBox**⁴⁺] = [**CB**[**8**]] = 2.0×10^{-4} M, D₂O, 298 K) of (a) **OPVEBox**⁴⁺, (b) **OPVEBox**⁴⁺⊂**CB**[**8**] ring-in-ring complex, and (c) **CB**[**8**] showing the chemical shift changes of **OPVEBox**⁴⁺ and **CB**[**8**] upon forming the binary **OPVEBox**⁴⁺⊂**CB**[**8**] ring-in-ring complex. The chemical shifts of proton H-7 residing on the central phenylene groups and the protons (H-5 and H-6) residing on the C=C double bonds show large upfield shifts ($\Delta\delta$ = -0.64, -0.43 and -1.12 for H-5, H-6, and H-7, respectively), together with the small upfield shifts of the signal for protons on **CB**[**8**] ($\Delta\delta$ = -0.09, -0.11 and -0.13 for H-a, H-b, and H-c, respectively), indicating that **CB**[**8**] is bound in the middle of **OPVEBox**⁴⁺ to form the 1:1 ring-in-ring structure.

Figure S12. Annotated 2D $^{1}H^{-1}H$ COSY NMR spectrum (600 MHz, D₂O, 298 K) of **OPVEBox**⁴⁺ \subset **CB[8]** ring-in-ring complex

Figure S13. Annotated 2D $^{1}H^{-1}H$ ROESY NMR spectrum (600 MHz, D₂O, 298 K) of **OPVEBox**⁴⁺ \subset **CB[8]** ring-in-ring complex

(4) The one-dimensional ¹H NMR and two-dimensional ¹H–¹H COSY and ROESY NMR spectroscopy of OPVEBox⁴⁺ \subset 2CB[8] ring-in-rings complex

Figure S14. ¹H NMR Spectra (600 MHz, [OPVEBox⁴⁺] = 2.0×10^{-4} , [CB[8]] = 4.0×10^{-4} M, D₂O, 298 K) of (a) OPVEBox⁴⁺, (b) OPVEBox⁴⁺⊂2CB[8] ring-in-rings complex, and (c) CB[8], showing the chemical shift changes of OPVEBox⁴⁺ and CB[8] upon forming the OPVEBox⁴⁺⊂2CB[8] ring-in-rings complex. All the protons residing on the pyridinium groups and the C=C double bonds display large upfield shifts ($\Delta\delta$ = -0.61, -1.20, -0.75 and -0.81 for H-3, H-4, H-5, and H-6, respectively), while the chemical shift of H-7 showed no change, indicating that two CB[8] molecules are bound to the two ends of OPVEBox⁴⁺ to form the 1:2 ring-in-rings superstructure. All the methylene protons (H-a and H-b) on CB[8] were split into two sets of peaks (δ = 5.96 / 5.82 and 4.36 / 4.22 for H-a and H-b, respectively), indicating that the centrosymmetric geometry of CB[8] molecules has been broken.

Figure S15. Annotated 2D $^{1}H^{-1}H$ COSY NMR spectrum (600 MHz, D₂O, 298 K) of OPVEBox⁴⁺ \subset 2CB[8] ring-in-rings complex

Figure S16. Annotated 2D $^{1}H^{-1}H$ ROESY NMR spectrum (600 MHz, D₂O, 298 K) of **OPVEBox**⁴⁺ \subset 2CB[8] ring-in-rings complex

(5) The two-dimensional DOSY spectroscopy characterization of $OPVEBox^{4+}$

Figure S17. 2D DOSY spectrum (600 MHz, D₂O, 298 K) of OPVEBox•4Cl

(6) The ¹H NMR Titrations between OPVEBox⁴⁺ and CB[8]

Figure S18. ¹H NMR Titration (600 MHz, H₂O, 298 K) of **OPVEBox**⁴⁺ upon addition different equiv of **CB[8]** ([(**OPVEBox**⁴⁺] = 2.0×10^{-4} M, [**CB[8]**] / [**OPVEBox**⁴⁺] = 0 - 3 eq). The annotations show the chemical shift changes of the protons in **OPVEBox**⁴⁺ upon addition different equiv of **CB[8]**.

(7) The binding behavior $OPVEBox^{4+}and \gamma CD$

Figure S19. ¹H NMR Spectra (500 MHz, D₂O, 298 K) of (a) **OPVEBox**•4Cl, (b) **OPVEBox**•4Cl with 1 equiv of γ -**CD**, (c) **OPVEBox**•4Cl with 2 equiv of γ -**CD**, and (d) γ -**CD**.

(8) The binding behavior between OPV^{2+} and CB[8]

Figure S20. ¹H NMR Spectra (600 MHz, D₂O, 298 K) of (a) **OPV**•2Cl, (b) **OPV**•2Cl with 1 equiv of **CB[8]**, (c) **OPV**•2Cl with 0.5 equiv of **CB[8]**, and (d) **CB[8]**.

Section D. Mass Spectrometry

The mass spectrometry characterizations of OPVEBox•4Cl and ternary OPVEBox⁴⁺ \subset 2CB[8] ring-in-rings complex

Figure S21. Electrospray ionization-mass spectrum (ESI-MS) of OPVEBox•4Cl

Figure S22. Calculated (red) and measured (blue) isotope patterns for different charged states observed from **OPVEBox**•4Cl

Figure S23. Calculated (red) and measured (blue) isotope patterns for different charged states observed from **OPVEBox**⁴⁺**⊂2CB[8]** ring-in-rings complex

Section E. Crystallographic Characterization

All crystallographic data are available free of charge from the Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_request/cif.

(1) OPVEBox•4Cl

(*a*) *Method*. **OPVEBox**•4Cl (0.5 mg, 0.5 µmol) was dissolved in deionized H₂O (1.0 mL), and the resulting solution was passed through a 0.45-µm filter. Then the filter was added into two 1-mL tubes with volumes of 0.2 and 0.4 mL, respectively. The tubes were placed together in one 20-mL vial containing Me₂CO (~3 mL) and the vial was capped. Slow vapor diffusion of Me₂CO into the aqueous solution of **OPVEBox**•4Cl (0.5 mM) during 1 week, yielded yellow single crystals of **OPVEBox**•4Cl. A suitable crystal was mounted on a MITIGEN holder with Paratone oil on a XtaLAB Synergy, Single source at home / near, HyPix diffractometer. The crystal was kept at 100.01(10) K during data collection. Using Olex2², the structure was solved with the ShelXT³ structure solution program using Intrinsic Phasing and refined with the XL⁴ refinement package using Least Squares minimisation. The solid-state (super)structure of **OPVEBox**•4Cl is shown in Figure 1.

(*b*) Crystal Parameters. $[C_{58}H_{48}N_{4} \cdot (Cl)_{4}] \cdot (C_{3}H_{6}O)_{2} \cdot (H_{2}O)_{6}$. Mr =1143.03. Yellow block (0.171 × 0.065 × 0.021 mm³). Monoclinic, space group $P2_{1}/c$ (no. 14), a = 15.6756(7), b = 11.7857(4), c = 16.4783(8) Å, a = 90.000, $\beta = 91.124(4)$, $\gamma = 90.000^{\circ}$, V = 3043.7(2) Å³, Z = 2, T = 100.01(10) K, $\mu(CuK\alpha) = 2.215$ mm⁻¹, Dcalc = 1.247 g/mm³, 11277 reflections measured (5.638 $\leq 2\Theta \leq 103.66$),

3312 unique ($R_{int} = 0.0668$, $R_{sigma} = 0.0775$) which were used in all calculations. The final R_1 was 0.0554 (I > 2 σ (I)) and wR_2 was 0.1523 (all data). CCDC Number: 2016357.

(c) Refinement Details. No special refinement necessary.

(2) OPVEBox•4PF6

(a) Method. **OPVEBox**•4PF₆ (1.4 mg, 1.0 µmol) was dissolved in MeCN (1.0 mL), and the resulting solution was passed through a 0.45-µm filter when added into two 1-mL tubes with volumes of 0.2, and 0.4 mL, respectively. The tubes were placed together in one 20-mL vial containing iPr_2O (~3 mL) and the vial was capped. Slow vapor diffusion of iPr_2O into the MeCN solution of **OPVEBox**•4PF₆ (1.0 mM) over the course of 3 days, yielded yellow single crystals of **OPVEBox**•4PF₆. A suitable crystal was mounted on a MITIGEN holder in Paratone oil on a Kappa Apex 2 diffractometer. The crystal was kept at 100.03 K during data collection. Using Olex2², the structure was solved with the SheIXT³ structure solution program using Intrinsic Phasing and refined with the XL⁴ refinement package using Least Squares minimisation. The solid-state (super)structure of **OPVEBox**•4PF₆ is shown in Figure S24.

(*b*) Crystal Parameters. $C_{56}H_{48}N_{4} \cdot (PF_{6})_{4}$. Mr = 1356.86. Yellow block $(0.129 \times 0.105 \times 0.027 \text{ mm}^{3})$. Monoclinic, space group $P2_{1/c}$ (no. 14), a = 19.621(8), b = 12.649(4), c = 14.500(5) Å, a = 90.000, $\beta = 107.270(15)$, $\gamma = 90.000^{\circ}$, V = 3437(2) Å³, Z = 2, T = 100.03 K, $\mu(CuK\alpha) = 1.934 \text{ mm}^{-1}$, $Dcalc = 1.303 \text{ g/mm}^{3}$, 7256 reflections measured (4.716 $\leq 2\Theta \leq 88.984$), 2571 unique ($R_{int} = 0.1535$, $R_{sigma} = 0.1765$) which were used in all calculations. The final R_1 was 0.1395 (I > 2 σ (I)) and wR_2 was 0.4034 (all data). CCDC Number: 2016358.

(c) *Refinement Details*. Rigid bond restraints (esd 0.01) were imposed on the displacement parameters as well as restraints on similar amplitudes (esd 0.05) separated by less than 1.7 Å globally. Distance restraints were imposed on the disordered atoms.

(d) Solvent Treatment Details.

The solvent masking procedure as implemented in Olex2 was used to remove the electronic contribution of solvent molecules from the refinement. As the exact solvent content is not known, only the atoms used in the refinement model are reported in the formula here. Total solvent accessible volume / cell = 693.0 Å³ [20.2%], Total electron count / cell = 247.0.

Figure S24. Solid-state (super)structure of **OPVEBox**⁴⁺ obtained from X-ray diffraction studies on single crystals of **OPVEBox**•4PF₆. (a – b) Capped-stick representations of different views showing the box-like geometry of **OPVEBox**⁴⁺; (c) The solid-state superstructure showing the face-to-face stacking between the adjacent OPV^{2+} units in adjacent **OPVEBox**⁴⁺ molecules; (d) Solid-state superstructure of **OPVEBox**⁴⁺ revealing a herringbone type of packing and two kinds of [$\pi \cdots \pi$] interactions. The hydrogen atoms, counterions and solvent molecules are omitted for the sake of clarity.

Section F. Cyclic Voltammetry

Cyclic voltammetry (CV) was performed on a Gamry Multipurpose instrument (Reference 600) interfaced to a PC under N₂ atmosphere at 298 K. The CV experiments were recorded with a glassy carbon working electrode (0.071 cm^2 , Cypress system), and the electrode surface was polished routinely with alumina–water slurry on a felt surface immediately before use. The counter electrode was a Pt coil, and the reference electrode was a Ag/AgCl electrode. CV Experiments were carried out in a 0.1 M solution of TBAPF₆ electrolyte in DMF at a 0.1 V/s scan rate, and are referenced to the reversible Fc/Fc⁺ couple ([ferrocene] = 0.5 mM).

Figure S25. Cyclic voltammograms ($[OPV^{2+}] = 1.0 \text{ mM}$, $[OPVEBox^{4+}] = 0.5 \text{ mM}$) of OPV^{2+} (left) and $OPVEBox^{4+}$ (right). The results show similar cyclic voltammogram with one set of reversible redox peaks, indicating the absence of electron communication between the pyridinium units.

Section G. Photophysical Characterization

Figure S26. (a) UV-Vis Absorption spectra ([**OPVEBox**⁴⁺] = 0.1–20.0 μ M, H₂O, 298 K) of **OPVEBox**⁴⁺ in different concentrations; (b) Absorbance changes at 392 nm with increasing concentration. The linear relation between absorbance and concentration indicates that there is no aggregation occurring for **OPVEBox**⁴⁺ at the concentrations used in the analysis.

Figure S27. Job's experiment for **OPVEBox**⁴⁺ upon complexation with **CB[8]** in aqueous solution at 298 K. Absorbance intensity changes of **OPVEBox**⁴⁺ recorded at 443 nm was used to analyze the binding ratio. The total concentration of host and guest is constant ([**OPVEBox**⁴⁺] + [**CB[8]**] = 100 μ M).

Figure S28. UV-Vis Absorption spectra ([**OPVEBox**⁴⁺] = 4 μ M, [**CB**[8]] = 0–20 μ M, H₂O, 298 K) of **OPVEBox**⁴⁺ with adding different equiv of **CB**[8]. The maximum absorption peaks show obvious red shifts and decline.

Figure S29. Normalized UV-Vis absorption spectra ([**OPVEBox**⁴⁺] = 4 μ M, [**CB[8**]] = 0–20 μ M, H₂O, 298 K) of **OPVEBox**⁴⁺ with adding different equiv of **CB[8]**. The maximum absorption wavelength red shifted from 392 to 430 nm.

Figure S30. (a) UV-Vis Titration experiment ([**OPVEBox**⁴⁺] = 4 μ M, [**CB**[8]] = 0–20 μ M, H₂O, 298 K) on adding **CB**[8] to a aqueous solution of **OPVEBox**⁴⁺ at 298 K. A typical two-stage bonding process is uncovered. First stage (red curves): the formation of binary **OPVEBox**⁴⁺**CB**[8] ring-in-ring complex upon the addition of 1 equiv of **CB**[8]. Second stage (blue curves): the ternary **OPVEBox**⁴⁺**CB**[8] ring-in-rings complex formed gradually upon continue to add 4 equiv of **CB**[8].

Figure S31. (a) UV-Vis Titration experiment ([**OPVEBox**⁴⁺] = 0.8 μ M, [**CB**[8]] = 0–1.76 μ M, H₂O, 298 K) on adding **CB**[8] to a aqueous solution of **OPVEBox**⁴⁺ at 298 K. (b) Nonlinear least-squares analysis of the absorbance intensity changes at 455 nm in the UV-Vis titration experiment as shown in (a), the first-stage binding constant (*K*₁) was determined to be 5.8 × 10⁷ M⁻¹.

Figure S32. Nonlinear least-squares analysis of the absorbance intensity changes at 495 nm in the UV-Vis titration experiment as shown in Figure S30, in order to calculate the second-stage binding constant (K_2) for the formation of ternary **OPVEBox**⁴⁺**\subset2CB[8]** ring-in-rings complex in aqueous solutions.

(2) Fluorescence Spectroscopic Analysis

The excitation and emission spectra (Figures S33 and S34) were recorded for **OPVEBox**⁴⁺. The red shift of emission spectra (Figure S35) upon the addition of different equiv of **CB[8]** to the aqueous solution of **OPVEBox**•4Cl. The fluorescence quantum yield (Figure S36 and Table S1) and lifetime (Table S2) changes of **OPVEBox**•4Cl upon the addition of different equiv of **CB[8]** in aqueous solutions.

Figure S33. Excitation and emission spectra ([**OPVEBox**⁴⁺] = 2 μ M, H₂O, 298 K) of **OPVEBox**⁴⁺ in an aqueous solution

Figure S34. (a) Emission spectra ([**OPVEBox**⁴⁺] = 0.1–80.0 μ M, $\lambda ex = 392$ nm, H₂O, 298 K) of **OPVEBox**⁴⁺ in different concentration, (b) Emission intensity changes at 482 nm with increasing concentration, indicating there are no obvious aggregation for **OPVEBox**⁴⁺ at the concentration lower than 10.0 μ M.

Figure S35. (a) Normalized emission spectra ([**OPVEBox**⁴⁺] = 2 μ M, [**CB[8**]] = 0–10 μ M, λ_{ex} = 392 nm, H₂O, 298 K) of **OPVEBox**⁴⁺ with adding different equiv of **CB[8**].The maximum emission wavelength red shifted from 482 to 575 nm.

Table S1. The Fluorescence Quant	um Yields of OPVEBox ⁴	+ ($\lambda ex = 392 \text{ nm}$) after Addition	n of 0–5
Equiv of CB[8] in Aqueous Solutio	ons		

Concentration of OPVEBox ⁴⁺	Sample	Quantum Yield / %
	OPVEBox ⁴⁺	2.35 ± 0.004
	1 equiv CB[8]	2.39 ± 0.008
2 μΜ	2 equiv CB[8]	8.14 ± 0.020
	3 equiv CB[8]	16.03 ± 0.051
	5 equiv CB[8]	18.55 ± 0.058
	OPVEBox ⁴⁺	2.50 ± 0.002
	1 equiv CB[8]	2.55 ± 0.002
10 μΜ	2 equiv CB[8]	13.87 ± 0.013
	3 equiv CB[8]	20.99 ± 0.021
	5 equiv CB[8]	29.58 ± 0.032

Figure S36. The fluorescence quantum yields of **OPVEBox**⁴⁺ ([**OPVEBox**⁴⁺] = 2 or 10 μ M) at two different concentrations with adding different equiv of **CB[8]** in aqueous solutions

Table S2. The Fluorescence Lifetimes of OPVEBox ⁴⁺	$\lambda = 374$ nm, Laser) after Addition of 0–5
Equiv of CB[8] in Aqueous Solutions ^a	

Concentration	Sample	Lifetime / ns (% contribution)				
of OPVEBox ⁴⁺	Sampie	$ au_1$	$ au_2$	$ au_{ m avg}$		
	OPVEBox ⁴⁺	0.33 (100)	_	0.33		
2 μΜ	1 equiv CB[8]	0.59 (85.94)	8.11 (14.06)	5.80		
	2 equiv CB[8]	0.67 (22.76)	11.68 (77.24)	11.50		
	3 equiv CB[8]	0.74 (11.95)	11.98 (88.05)	11.89		
	5 equiv CB[8]	0.75 (7.24)	11.79 (92.76)	11.74		
	OPVEBox ⁴⁺	0.28 (100)	-	0.28		
10 µM	1 equiv CB[8]	0.58 (86.53)	7.87 (13.47)	5.53		
	2 equiv CB[8]	0.81 (9.98)	11.97 (90.02)	11.89		
	3 equiv CB[8]	1.00 (5.74)	11.99 (94.26)	11.93		
	5 equiv CB[8]	1.10 (4.77)	12.01 (95.23)	11.96		

^{*a*} The fluorescence decay traces of **OPVEBox**⁴⁺ with 0, 1, and 2–5 equiv of **CB[8]** were detected at 482, 533, 575 nm, respectively.

Figure S37. Fluorescent photographs of **OPVEBox**⁴⁺, **OPVEBox**⁴⁺ \subset **CB[8]** and **OPVEBox**⁴⁺ \subset **2CB[8]** at the concentration of 10⁻⁵ and 10⁻⁴ M in aqueous solution, showing that both the binary and ternary ring-in-ring(s) complexes have highly fluorescent emission at relatively higher concentration (0.1 mM).

Figure S38. (a) Emission spectra recorded during the continuous addition of memantine hydrochloride (**Mem**) to an aqueous solution of **OPVEBox**•4Cl**\subset2CB[8]** ring-in-rings complex ([**OPVEBox**•4Cl] = 2 μ M, [**CB[8]**] = 4 μ M, [**Mem**] = 0 - 6 μ M, λ ex = 392 nm, H₂O, 298 K). (b) The 1931 CIE chromaticity diagram illustrating the luminescent color changes, with the continuous addition of **Mem** to an aqueous solution of the ternary ring-in-rings complex corresponding to (a).

Section H. Isothermal Titration Calorimetry (ITC)

(1) Experiment methods and conditions

All microcalorimetric titrations were performed in a thermostated TA Nano Isothermal Titration

Calorimeter at atmospheric pressure and 298 K. The samples were dissolved in an aqueous NaCl (1.0 mM) solution, in order to improve the solubility of CB[8], and the concentrations of sample were calibrated by UV-Vis absorption spectroscopy after filtered by a 0.45-filter. A solution of one reactant in a syringe was sequentially injected with stirring at 150 rpm into a solution of the other reactant in the sample cell with a constant volume of 185 μ L. A representative titration curve is shown in Figure S39, each titration of reactant into the sample cell gave an apparent reaction heat caused by the formation of the inclusion complex. The reaction heat decreases gradually until a balance was reached, whereupon only the dilution heat was measured. The net reaction heat was obtained by subtracting the dilution heat from the apparent reaction heat. The resulting data were analyzed with NanoAnalyze software using a 1:1 binding model to give the complex stability constant (Ka), standard molar reaction enthalpy (ΔH), and standard deviations. Generally, the first point of the titration curve was disregarded, as there is some liquid mixing near the tip of the injection needle before ITC run. Each titration experiment was duplicated independently two times. All isotherm fittings were used to calculate the average K_a and ΔH , and the titration isotherm showed in Figure S39 is one set of them. The standard free energy (ΔG) and entropy changes (ΔS) can be obtained according to the following equation:

$$\Delta G = -RT \operatorname{Ln} K_a = \Delta H - T \Delta S$$

where *R* is the gas constant and *T* is the absolute temperature.

(2) Measurement of the thermodynamic parameters between $OPVEBox^{4+}$ and CB[8]

Upon titrating **CB[8]** into the solution of **OPVEBox**⁴⁺, a typical two-stage bonding process is uncovered. This process can be described using the following complexation equilibria:

First-stage: **OPVEBox**⁴⁺ + **CB**[8]
$$\xrightarrow{K_1}$$
 OPVEBox⁴⁺ \subset **CB**[8]
Second-stage: **OPVEBox**⁴⁺ \subset **CB**[8] + **CB**[8] $\xrightarrow{K_2}$ **OPVEBox**⁴⁺ \subset **2CB**[8]

Hindering by the poor water solubility of **CB**[8], it is difficult to obtain simultaneously the K_1 and K_2 in a continuous calorimetric titration manner. The value for K_1 can be determined to be 5.8×10^7 M^{-1} by analysis of the UV-Vis titration data. Such a high affinity between **OPVEBox**⁴⁺ and **CB**[8] indicates that the **OPVEBox**⁴⁺**CB**[8] complex is formed quantitatively at high concentration. Hence, we tried using the twice-independent single injection experiments to estimate the binding enthalpy for the formation of **OPVEBox**⁴⁺**CB**[8]. The experiment data are shown in Figure S40. On the other hand, when a solution of the **OPVEBox**⁴⁺**CB**[8] complex in a syringe was injected sequentially into a solution of **CB**[8] in the sample cell, the thermodynamic parameters of the second-stage recognition process were obtained. The experiment data are shown in Figure S39.

Figure S39. Microcalorimetric titration data (a) and fitted curves (b) upon the addition of **OPVEBox**⁴⁺**CB[8]** complex (836 μ M in syringe) into **CB[8]** (50 μ M in cell) in aqueous NaCl (1 mM) solution at 298 K. The result suggested that the ternary **OPVEBox**⁴⁺**C2CB[8]** complex was formed and the bonding constant *K*₂ was found to be 1.5×10^5 M⁻¹.

Figure S40. Twice-independent single injection experiments, in which adding 1 equiv of **OPVEBox**⁴⁺ (949 μ M in syringe) into sample cell with (red line) or without (blue line) **CB[8]** (15 μ M in cell) all at once in aqueous NaCl (1 mM) solution. The ΔH_1 , ΔH_2 and ΔH_{Net} are represented as the dilution heat, apparent reaction heat and net reaction heat, respectively. The averaged binding enthalpy (ΔH_{Net}) for the formation of **OPVEBox**⁴⁺**CB[8]** complex was estimated to be -2.0 kcal mol⁻¹.

Figure S41. Microcalorimetric titration data (a) and the change of enthalpy (b) upon the addition of **CBPQT⁴⁺** (1000 μ M in syringe) into **CB[8]** (50 μ M in cell) in aqueous NaCl (1 mM) solution at 298 K. There is no obvious enthalpy change, indicating that **CBPQT⁴⁺** does not bind inside the cavity of **CB[8]** to form a ring-in-ring complex.

Figure S42. Microcalorimetric titration data (a) and the change of enthalpy (b) upon the addition of **OPVEBox**⁴⁺ (949 μ M in syringe) into **CB[8]** (50 μ M in cell) in aqueous NaCl (1 mM) solution at 298 K. The isotherm is too complex to fit with available programs.

Section I. Density Functional Theory Calculations

In order to gain a better understanding of the geometrical superstructure of the binary **OPVEBox**⁴⁺ \subset **CB[8]** and ternary **OPVEBox**⁴⁺ \subset **2CB[8]** ring-in-ring(s) complexes, as well as the electronic properties and frontier molecular orbitals for all the structures, DFT calculations have been carried out based on the crystal structures of **OPVEBox**⁴⁺ \subset **CB[8]**. Figures S43 and S44 show the DFT-optimized structures of the **OPVEBox**⁴⁺ \subset **CB[8]** and **OPVEBox**⁴⁺ \subset **2CB[8]**

complexes, respectively. Figures S45 and S46 show the electrostatic potential maps of **CB[8]** and **OPVEBox**⁴⁺, as well as the **OPVEBox**⁴⁺ \subset **CB[8]** and **OPVEBox**⁴⁺ \subset **2CB[8]** complexes, respectively. Figures S47–S50 show the frontier molecular orbitals of **CB[8]**, **OPVEBox**⁴⁺, **OPVEBox**⁴⁺ \subset **CB[8]** and **OPVEBox**⁴⁺ \subset **2CB[8]**, respectively. Tables S3 and S4 summarizes the energy levels for **CB[8]**, **OPVEBox**⁴⁺, and their complexes in vacuum and water, respectively. Tables S5 and S6 summarizes the strain energy for the central **OPVEBox**⁴⁺ in ring-in-ring(s) complexes in vacuum and water, respectively

The xyz coordinates from the X-ray single crystals of the **OPVEBox**⁴⁺ and **CB[8]** were used as the starting geometries for their individual optimizations in vacuum. In order to construct the complexes, **OPVEBox**⁴⁺ was carefully manipulated in the molecular editor Avogadro program⁵ (version 1.1.1) and threaded through the CB[8] structure until half of each loop was sitting on either side of the **CB**[8] molecule; this geometry formed the basis of **OPVEBox**⁴⁺**CB**[8] complex. This superstructure was initially energy minimized at the molecular mechanics (MM) level with the universal force field^{6,7} (UFF) in Avogadro. In order to form **OPVEBox**⁴⁺**C2CB[8]** complex, one CB[8] molecule was moved along to one end of OPVEBox⁴⁺ and another CB[8] was added to the other end. This complex was also energy minimized at the same level as **OPVEBox**⁴⁺**CB**[8]. All four (super)structures, i.e., CB[8], OPVEBox⁴⁺, OPVEBox⁴⁺ CB[8], OPVEBox⁴⁺ CB[8], were optimized subsequently with density functional theory (DFT) in the Orca program⁸ (version 4.1.2) using the hybrid generalized gradient approximation (GGA) Becke three-parameter Lee-Yang-Parr⁹ (B3LYP) functional, and the Ahlrich's double zeta basis set with a polarization function¹⁰ Def2-SVP. In order to speed up the DFT optimizations, the Coulomb integral and numerical chain-of-sphere integration for the HF exchange^{11,12} (RIJCOSX) method was applied with the Def2/J auxiliary basis^{13,14} (AuxJ). The Frontier Molecular Orbitals (FMO) were visualized in ChemCraft (version b574b). The electrostatic potential maps were computed with B3LYP and the Slater-type basis set¹⁵ DZP in the Amsterdam Density Functional program¹⁶ (version 2018.104) for CB[8], OPVEBox⁴⁺ and OPVEBox⁴⁺ CB[8] complex, while that of OPVEBox⁴⁺ CB[8] complex was computed at the B3LYP/SZ level on account of its size, as any larger basis was computationally intractable. Frozen cores were used as implemented in ADF (which for C, O and N relates to the 1s core being frozen) to reduce the computational cost. The optimized structures in vacuum were re-optimized at the same theoretical level with the Solvation Model based on Density¹⁷ (SMD) variant of the Conductor-like Polarizable Continuum Model¹⁸ (CPCM) in a water continuum, in the Orca program. These CPCM structures were found to have several stationary points that equilibrated and thus no single minimum was found; except for slight xyz displacements the overall structures in a water continuum remained chemically identical to their vacuum counterparts. These can therefore be considered as semi-optimized but serve the purpose of analyzing the FMO energies in experimental conditions.

(1) DFT Optimized Structures

Figure S43. Optimized superstructure of the binary OPVEBox⁴⁺ \subset CB[8] ring-in-ring complex obtained from DFT calculations. (a–c) Capped-stick representations of different views of the OPVEBox⁴⁺ \subset CB[8] complex; (d–f) Space-filling representations showing geometries of OPVEBox⁴⁺ \subset CB[8], as well as individual OPVEBox⁴⁺ and CB[8] in the complex, and the characteristic distances defining their geometrical dimensions.

Figure S44. Optimized superstructure of the ternary **OPVEBox**⁴⁺ \subset 2**CB**[8] ring-in-rings complex obtained from DFT calculations. (a–c) Capped-stick representations of different views of the **OPVEBox**⁴⁺ \subset 2**CB**[8] complex; (d–f) Space-filling representations showing geometries of **OPVEBox**⁴⁺ \subset 2**CB**[8], as well as individual **OPVEBox**⁴⁺ and **CB**[8] in the complex, and the characteristic distances defining their geometrical dimensions.

Figure S45. Different views of electrostatic potential maps of (a) **OPVEBox**⁴⁺ and (b) **CB[8]** obtained from DFT calculations. These maps demonstrate that the **OPVEBox**⁴⁺ is electron poor, while the **CB[8]** is related electron negative. Red and blue colors in the maps represent negative and positive electrostatic potentials, respectively.

Figure S46. Different views of electrostatic potential maps for (a) the binary OPVEBox⁴⁺ \subset CB[8] and (b) ternary OPVEBox⁴⁺ \subset 2CB[8] ring-in-ring(s) complexes obtained from DFT calculations. The maps demonstrate that when combing with one or two CB[8] molecules, the OPVEBox⁴⁺ \subset CB[8] and OPVEBox⁴⁺ \subset 2CB[8] complexes become more and more electron rich. Red and blue colors in the maps represent negative and positive electrostatic potentials, respectively.

Figure S47. Different views of frontier molecular orbitals for **CB[8]**, which were calculated using the optimized geometry. The energy bandgap was calculated to be 6.46 eV.

Figure S48. Different views of frontier molecular orbitals for **OPVEBox**⁴⁺, which were calculated using the optimized geometry. The energy bandgap was calculated to be 2.79 eV. There is slight symmetry breaking, which results in the HOMO being localized on one side of the cyclophane.

Figure S49. Different views of frontier molecular orbitals for binary **OPVEBox**⁴⁺**CB[8]** ring-inring complex, which were calculated using the optimized geometry. The energy bandgap was calculated to be 2.61 eV.

Figure S50. Different views of frontier molecular orbitals for ternary **OPVEBox**⁴⁺**⊂2CB[8]** ringin-rings complex, which were calculated using the optimized geometry. The energy bandgap was calculated to be 2.55 eV.

Energy / eV	CB[8]	OPVEBox ⁴⁺	OPVEBox ⁴⁺ ⊂CB[8]	OPVEBox ⁴⁺ 2CB[8]
$\Psi_{ m LUMO}$	-0.21	-10.76	-9.60	-8.37
$\boldsymbol{\varPsi}_{ ext{HOMO}}$	-6.67	-13.55	-12.21	-10.92
∆ Еномо-lumo	6.46	2.79	2.61	2.55

Table S3. The Calculated Energy Levels of the Frontier Molecular Orbitals in Vacuum

Table S4. The Calculated Energy Levels of the Frontier Molecular Orbitals in Water

Energy / eV	CB[8]	OPVEBox ⁴⁺	OPVEBox ⁴⁺ ⊂CB[8]	OPVEBox ⁴⁺ ⊂2CB[8]
ΨLUMO	0.54	-3.21	-3.10	-3.04
$\Psi_{ m HOMO}$	-6.82	-6.18	-5.81	-5.64
Δ <i>Ehomo-lumo</i>	7.36	2.97	2.71	2.60

(4) Strain Energy Calculations

Table S5. The Calculated Strain Energy for the Central OPVEBox⁴⁺ in Ring-in-Ring(s) Complexes in Vacuum

Strain Energy	OPVEBox ⁴⁺	OPVEBox ⁴⁺ ⊂CB[8]	OPVEBox ⁴⁺ ⊂2CB[8]
<i>E</i> / ha	-2377.4934	-2377.4478	-2377.4251
ΔE / kal mol ⁻¹	_	28.59	42.85

Table S6.	The Ca	lculated	Strain	Energy	for the	Central	OPVEBox ⁴⁺	in	Ring-in-Ring(s)
Complexes	s in Wat	er							

Strain Energy	OPVEBox ⁴⁺	OPVEBox ⁴⁺ ⊂CB[8]	OPVEBox ⁴⁺ ⊂2CB[8]
<i>E</i> / ha	-2378.3322	-2378.3354	-2378.3250
ΔE / kal mol ⁻¹	_	-2.01	4.52

Section J. Cartesian Coordinates for the Optimized Structures

(1) In Vaccum

(a) CB[8]

Η	11.145790	30.137660	-4.726710	Ν	14.890850	28.096560	-0.962540
Η	8.717530	30.233430	-4.523130	С	5.076300	29.287440	-0.757560
Н	12.834100	31.647930	-3.862140	С	6.141090	31.357560	-0.402960
Н	12.786700	28.203600	-4.612570	Н	17.586470	30.451800	-0.795770
С	10.782740	29.882270	-3.709150	С	6.542460	27.470070	-1.048860
Н	14.514400	29.709960	-3.745880	Н	16.707890	27.144070	-0.525560
Н	7.202080	31.689540	-3.296480	0	6.376930	32.453210	0.045350
Η	6.992670	28.383610	-4.166030	0	6.989410	26.353440	-0.951700
С	9.220520	29.914920	-3.586310	С	16.692130	30.826060	-0.260340
С	12.546430	31.475280	-2.802810	С	15.727080	27.350980	-0.046210
С	12.415750	27.927640	-3.604930	Ν	5.119020	30.501210	0.006150
Ν	11.224400	30.892380	-2.775780	Ν	5.666500	28.099040	-0.157650
Ν	11.112440	28.510170	-3.398590	Н	16.730250	31.922990	-0.185890
Η	12.491310	32.443410	-2.282950	Н	15.211820	26.397920	0.144700
Η	12.279670	26.837850	-3.540820	Н	3.151280	30.571990	0.643280
Η	5.498060	29.840890	-2.884440	Н	3.964930	27.129190	0.597900
Ν	8.982740	30.898810	-2.553460	С	4.155660	30.861230	1.013060
Ν	8.877990	28.544650	-3.288880	Н	17.936480	28.628380	0.959360
С	7.687740	31.496910	-2.315960	С	5.021050	27.324830	0.882960
С	7.535330	28.018850	-3.272220	Н	4.204770	31.951630	1.150280
С	14.185700	29.514430	-2.704290	Н	5.561270	26.367930	0.937640
С	10.156190	31.544540	-2.153700	Ν	16.708270	30.324310	1.091650
С	9.987140	27.704890	-3.249490	Ν	15.964380	27.975330	1.236310
Η	7.859730	32.456000	-1.805150	С	17.001050	28.958760	1.457160
Η	7.630100	26.923560	-3.310960	Ν	4.371990	30.280370	2.315660
Ν	13.584030	30.713510	-2.138060	Ν	5.039220	27.910020	2.204330
Ν	13.420810	28.302200	-2.645150	С	16.673230	31.182940	2.186320
Η	16.309230	28.965520	-2.260450	С	15.554760	27.357250	2.421040
0	10.227470	32.524260	-1.452780	0	16.593550	32.387670	2.151960
0	9.972960	26.499980	-3.167010	0	14.841960	26.387620	2.509270
С	6.034740	29.583990	-1.947600	Н	3.074320	28.628220	2.279860
Ν	6.788460	30.735580	-1.474930	С	4.086320	28.902680	2.644600
Ν	6.748280	28.350950	-2.110930	С	17.123980	29.017240	3.018710
С	15.369650	29.233620	-1.733950	Н	18.139610	28.760590	3.386150
С	14.473920	31.359480	-1.272850	0	4.570920	32.293400	3.456170
С	13.823020	27.463610	-1.605990	С	4.507520	31.087360	3.441510
Η	4.036310	29.073650	-1.079890	0	6.387760	26.300460	3.204370
0	14.380150	32.487010	-0.853090	С	5.669550	27.267700	3.274030
0	13.372200	26.372500	-1.354520	Ν	16.822790	30.396600	3.324960
Ν	15.531200	30.479140	-1.041660	Ν	16.182790	28.022030	3.477820

С	4.206750	28.871780	4.207180	С	15.175770	29.749890	7.603030
Ν	4.480350	30.246690	4.550370	0	10.938710	32.590890	7.024260
Ν	5.255670	27.905500	4.446880	0	11.289000	26.620600	8.870580
Η	16.970000	32.088160	4.462910	Н	4.907730	28.957030	7.934610
Η	15.680710	26.494100	4.768900	Ν	7.604190	30.747110	7.755220
С	17.033810	31.000840	4.617600	N	7 808750	28 350910	8 311230
C	16.210510	27.457530	4.807930	н	13 301/70	32 585770	7 405730
H	3.274480	28.537280	4.708310	11 11	12 626250	32.383770	0.020910
Н	18.042580	30.730800	4.989830	П	13.020350	27.090060	9.020810
Н	17.269680	27.278150	5.092410	С	11.022570	31.633410	7.753830
H	4.425210	31.866380	5.799060	С	11.253220	27.826270	8.932770
Н	6.031570	26.362800	5.571210	С	7.024710	29.551790	8.351250
N	16.077180	30.644660	5.632360	С	13.489570	31.639400	7.934270
N	15.558900	28.239750	5.838600	С	13.699650	28.186000	8.959520
C	4.484630	30.771980	5.893300	Ν	12.204880	31.022900	8.180900
C	5.504140	27.312970	5.742630	Н	8.672480	32.495440	7.849280
0	14.790790	32.576240	5.557330	Ν	12 346980	28 686270	8 963220
0	14.265050	26.488920	6.669150	н	15 709730	30.034870	8 533290
H	3.596850	30.390400	6.434090	и П	8 077480	26.021600	0.227730
C	15.042030	31.492470	6.025640	11 N	0.977400	20.921090	9.227730
H C	4.527240	27.103500	6.228600	IN	9.962110	30.977850	8.385650
C	14.696390	27.613280	6.744650	N	10.112790	28.613500	9.063440
	10.1301/0	29.444850	6.416850	С	8.631640	31.542000	8.396670
N	5.050510	30.401430	0.082590	С	8.820250	28.009400	9.276600
0	6.782630	32.4/1400	6.421530	С	11.978440	30.055900	9.231680
Ν	6.332060	28.089500	6.641540	Н	13.969960	31.858320	8.911850
0	7.882220	26.398700	7.055120	Н	14.233300	28.579190	9.846530
Η	17.179110	29.249410	6.741120	Н	6.700570	29.763990	9.390970
С	6.701820	31.357310	6.877560	C	10 41 59 50	29 997750	9 345320
С	7.414580	27.486460	7.289950	н	8 3/1600	31 741250	9.450830
С	5.838210	29.232020	7.395960	и П	8 112270	28 201570	10.280300
Ν	14.403040	30.879260	7.107830	11 TT	12 460790	20.271370	10.200300
N	14 482680	28 508930	7 792710	H	12.469/80	50.401880	10.104910
11	11.102000	-0.000000		Н	10.041950	30.270040	10.354470

(b) **OPVEBox**⁴⁺

Н	-6.312880	4.247277	-0.538720	С	-5.152210	4.118202	1.294271
Η	-4.764450	2.441943	-0.032410	Ν	-3.330230	2.397498	1.514123
Η	-7.122610	6.526215	-0.120640	С	-2.281430	3.077076	0.978171
С	-5.998020	4.760495	0.374112	Н	-6.160070	8.840997	1.183339
Н	-5.375980	1.972575	1.556233	С	-6.079380	6.754348	1.770896
С	-4.712950	2.683110	1.040236	Н	-3.972760	0.937184	2.865147
С	-6.461330	6.056248	0.613113	С	-3.103630	1.486606	2.498996
Η	-2.514910	3.767629	0.165685	С	-4.782280	4.811060	2.454520

С	-1.001150	2.914483	1.464087	С	5.062506	2.242524	9.321516
Н	-0.195180	3.495077	1.010920	Н	-5.324770	8.038936	10.480690
С	-6.590520	8.180815	1.951017	Н	7.081568	4.249163	9.188959
С	-5.230770	6.116313	2.685228	Н	4.354490	1.488025	9.673449
Н	-4.829900	10.056490	2.447471	С	6.766971	3.933138	10.184690
Η	-4.132210	4.343613	3.198703	С	-2.742090	9.853027	11.796760
Η	-7.683590	8.221563	1.820297	С	-3.735370	8.854549	11.672010
С	-1.842460	1.283157	3.019106	С	5.811229	2.901599	10.375680
С	-0.735450	2.038771	2.550474	Н	-3.862880	8.099201	12.450640
Η	-4.903250	6.621884	3.595846	Н	-1.149580	10.765000	12.948960
Η	-1.736600	0.549186	3.818827	Н	8.051197	5.390175	11.143120
С	-5.291760	9.718080	3.376856	С	-1.717030	9.834667	12.836350
Ν	-6.268530	8.779868	3.267826	С	7.322512	4.586724	11.266870
Η	1.295296	2.739166	2.728274	С	5.539157	2.553058	11.725030
С	0.581107	2.033617	3.161852	Н	4.849106	1.739710	11.957440
Η	-4.105710	10.952510	4.642813	С	-1.350980	8.742293	13.560440
С	-4.900230	10.204400	4.607007	Н	-1.887280	7.802800	13.402230
С	-6.917860	8.353530	4.387184	Ν	6.981428	4.267195	12.543270
Η	-7.725960	7.635157	4.233861	Н	6.254819	7.391382	12.964110
С	0.931426	1.319217	4.267791	С	6.118590	3.242189	12.768120
Η	0.214072	0.597554	4.672851	Н	0.332545	10.767450	14.610800
Η	3.191232	2.914572	3.814311	С	-0.205040	8.646770	14.445820
С	-5.485830	9.717384	5.803480	С	0.598783	9.738995	14.860010
С	-6.556250	8.796267	5.641656	Н	8.273704	5.734958	13.292380
С	3.170306	2.394778	4.774290	Н	4.527281	8.635271	14.186220
С	2.132226	1.482409	5.078535	С	5.890395	6.996073	13.917130
Η	-4.133780	10.881480	7.005814	Н	5.898237	3.006785	13.810780
Η	-7.116690	8.414883	6.496301	С	7.517192	5.051649	13.700760
Η	4.936735	3.403956	5.459814	Н	-0.392500	6.481792	14.668580
С	-4.919580	10.124510	7.075995	С	0.200309	7.366959	14.907290
С	4.163423	2.670868	5.704732	С	4.912070	7.705147	14.614570
С	2.207922	0.777001	6.304754	С	1.750494	9.524992	15.592150
Н	1.449915	0.025067	6.540291	Н	2.390556	10.347340	15.918290
С	4.167468	2.053758	6.979740	С	6.437447	5.814147	14.449150
С	3.198560	1.055326	7.234840	Н	8.034540	4.345960	14.366770
С	-5.180170	9.550597	8.282966	С	1.359682	7.209215	15.634080
Н	-5.944840	8.768144	8.345335	Ν	2.144243	8.272956	15.947400
Н	-3.409550	11.610120	8.935825	С	4.443678	7.245699	15.859010
Н	3.202697	0.504985	8.177085	Н	1.708301	6.233754	15.978030
Н	5.799794	3.305914	7.640284	С	5.979791	5.363832	15.694810
С	5.089794	2.551627	7.995618	С	3.431685	8.041693	16.667620
С	-3.504670	10.824700	9.688961	Н	3.830538	9.031890	16.930840
С	-4.433390	9.771971	9.517022	С	4.987320	6.067783	16.388720
Н	-1.969370	11.686250	10.918950	Н	6.414816	4 470093	16,151520
С	-2.690260	10.871190	10.813080	и Ц	3 105501	7 525068	17 600580
С	-4.569500	8.825250	10.562220	11 TT	J.175501 A 651204	5 607041	17 261510
		•	0	Н	4.031394	3.09/041	17.301310

(c) OPVEBox⁴⁺⊂CB[8]

Η	-4.472230	4.296714	-1.458780	Н	4.498483	9.433895	4.187355
Н	-4.598720	1.775709	-1.188180	Н	-0.036680	3.219233	3.364744
Н	-5.265910	6.537650	-0.816430	Н	4.112293	-0.187830	3.744890
С	-5.235390	4.390380	-0.680740	Ν	2.678780	8.378558	4.117547
С	-5.014210	1.917906	-0.181550	С	-1.023980	2.947867	3.747805
Н	-5.672150	1.067355	0.042129	С	4.725851	7.206065	4.348701
С	-5.686450	5.660488	-0.316370	С	-6.310330	6.999695	3.712547
Н	-2.494110	2.555528	-0.629350	С	3.313998	0.529768	4.005733
С	-5.725780	3.249346	-0.027710	Ο	-1.075630	9.511704	4.230824
Ν	-3.875340	1.882802	0.788245	Ν	3.888072	1.856749	4.112727
С	-2.657300	2.372000	0.434261	С	4.008931	8.562150	4.661638
С	-6.638470	5.812838	0.703718	С	5.383763	3.677390	4.358262
Н	-6.736650	7.989941	0.590432	Н	-7.359880	6.743849	3.867544
С	-6.766600	3.395922	0.902520	Н	5.953864	1.503161	4.286766
Η	-5.090430	1.128040	2.309676	Ο	0.458956	0.341425	4.380745
Н	-0.735170	3.057718	1.058027	Ν	1.065694	10.016420	4.972094
С	-1.696900	2.654218	1.381767	С	-4.025030	7.234790	4.475680
С	-4.121300	1.579100	2.093154	С	5.172806	2.162891	4.707831
Н	-4.467390	8.110935	1.187676	С	-0.321450	10.070480	5.004682
С	-7.220610	4.666016	1.264431	Н	6.922608	5.806325	5.154467
С	-6.901980	7.177868	1.311536	С	-5.386350	6.929186	4.732837
Н	-7.211400	2.516617	1.377283	Н	2.284907	11.670590	5.431225
Н	4.918588	5.427380	2.290600	Н	-2.630930	10.974740	5.347760
Н	-7.923330	7.271751	1.703966	С	-1.299070	3.045412	5.076239
Н	3.152202	5.086078	2.210680	Н	-2.280560	2.736838	5.447539
С	-4.683010	7.771089	2.201468	Н	1.174222	4.268110	4.798034
Н	-8.012910	4.759062	2.012840	Ν	2.620281	0.058956	5.181744
С	-3.205060	1.848023	3.082853	Ν	5.109393	6.711434	5.654742
С	4.003292	5.249149	2.887123	С	1.234851	-0.011710	5.240780
С	-1.971410	2.480233	2.763498	Н	-2.012650	7.555728	5.111029
0	1.521205	6.735870	2.949690	Ν	5.568169	4.302795	5.653609
Η	1.017537	9.091976	3.132645	С	1.674679	10.902160	5.942842
Ν	-5.960160	7.382196	2.453442	С	6.072826	5.647693	5.845016
0	2.276635	2.952617	2.851141	Ν	4.091915	8.663338	6.102522
Н	2.347117	10.286970	3.345170	С	-2.955980	7.119552	5.442722
Н	-2.704690	8.064451	2.952689	Ν	-0.694460	10.906190	6.046425
Η	2.578775	0.563775	3.189119	Н	4.380093	10.719350	6.329418
Η	5.620648	7.321777	3.708420	Н	-2.050040	12.495460	6.111334
С	2.514521	7.130201	3.519608	Н	-5.730930	6.658212	5.733010
С	-3.715310	7.719237	3.178872	Н	-1.020930	-0.863630	5.770990
N	3.714127	6.437681	3.659919	С	-2.055760	11.391150	6.186979
Н	-3.442440	1.553897	4.107284	C	0.910402	4.009281	5.824491
С	1.776268	9.471516	3.831530	Ĥ	3.947128	-1.350740	5.995688
С	3.317150	2.947728	3.476867	Ν	5.233781	2.145188	6.158072
Ν	4.168914	4.031858	3.652733	С	4.768715	7.590488	6.680728
Н	6.267203	3.862310	3.718514	C	-0.358650	3.455094	6.107310
				-	•		

0	-4.364270	9.679802	6.386570	С	-2.524120	11.610560	8.693945
Η	0.389398	12.605060	6.641652	С	3.425593	0.327682	8.513481
С	3.844922	9.888987	6.829320	Ν	2.280140	-0.460350	8.481033
С	0.448735	11.502070	6.709237	Н	-6.893950	4.826084	8.997288
C	3.263431	-0.545390	6.325391	Н	1.229632	7.686249	8.170643
C	5.499600	3.392281	6.698836	C	-5.711220	9.604041	8.920864
N	2.451519	10.259250	6.983001	0	2 365141	10.051150	9 293391
N	0.898920	-0.616260	6.449948	C C	0.233980	7 312418	8 417644
U Ц	-2.820770	0.469031 5 715014	0.383334 6 881073	U N	-2 913020	0.282167	8 895979
H	5 888261	0 187878	6 <i>4</i> 5 <i>4</i> 7 <i>4</i> 5	C	-4 306420	0.652475	9.0/957/
C	-0.437940	-1.118240	6.667657	с н	-0.059760	12 759780	9.096042
H	-0.395740	7.314143	6.373538	C II	-0.033700	11 658740	9.211530
С	-3.056390	6.598868	6.693429	C C	-0.023790 5.061030	7 1/8550	0.180115
Н	-0.401760	-2.219230	6.783568	C C	-5.901050	2 050718	0.109270
C	5.249592	0.936795	6.957799	C N	-3.230000	2.950718	9.190379
н	2.813097	4 632695	6 596713	N C	-1.300700	6 220924	9.420907
н	-4 006730	6 173551	7.030196	C U	-2.295540	0.520854	9.05/755
N	-2 741860	11 001550	7.050170	н	-0.330030	10.352910	9.423817
C	1 831814	<i>A</i> 220111	6 8/2102	H	3.545101	4.30/433	8.849480
C C	3 887060	4.220111	7 365308	C	-0.910450	-0.960930	9.169922
N	3 055333	0.352345	7.303378	H	-4.841/00	-0.177940	9.549293
C	2.955555	1.060520	7.229911	H	-3.2/4930	5.908516	9.28316/
	2.002413	-1.009330	7.104907	H	-0.065750	3.226435	9.506351
П	4.233982	9.735075	7 952667	C Ĩ	-3.725310	11.086580	9.553404
0 C	3.041221	7.402018	7.833007	С	2.594860	3.941936	9.186305
C H	-0.695550	3.228111	7.462241	Н	-0.851080	-2.063900	9.237810
H	2.04/19/	-2.1/2140	7.281601	0	3.902876	0.861032	9.492278
H	-1.691090	2.853976	7.709263	Ν	-5.695280	8.395722	9.720710
0	5.674461	3.645925	7.875533	Ν	-4.553430	1.878056	9.776477
С	-2.342010	0.124319	7.638454	С	-6.534880	4.893404	10.034220
Ν	0.681391	11.095720	8.079535	Н	-4.409130	11.891940	9.882832
С	-0.689590	7.108013	7.404134	Н	0.559079	11.403660	10.108140
С	1.880417	10.416690	8.240531	С	1.594060	-0.849900	9.691922
Η	-6.156880	9.342956	7.951389	Ν	0.232781	-0.364860	9.832523
Η	-4.717400	0.788511	8.039702	С	-2.136340	-0.360820	9.936220
0	-6.135870	6.894743	8.003452	Н	5.269513	3.882228	10.146280
Ν	-1.143180	-0.555020	7.799524	Ν	-6.030040	6.238254	10.225520
0	-5.503000	3.078709	8.025414	Н	1.588217	-1.954210	9.767511
С	-1.996680	6.654916	7.694899	Ν	-5.571580	3.829556	10.224430
Н	5.695433	1.197736	7.927232	С	-0.103060	7.085746	9.772591
С	1.535070	3.885819	8.184926	Č	-1.696920	10.552550	10.638200
Ν	-4.416980	10.188620	8.648905	Č	-1.372240	6.531878	10.055430
С	0.228044	3.432557	8.475734	Н	-7.384590	4.734896	10.724870
Н	-2.508710	12.713190	8.597497	N	-3.082360	10.482510	10.697310
				= •			

Η	-2.746720	-1.129160	10.447790	0	-2.738760	7.588942	13.028250
С	2.494642	3.420967	10.436900	С	-4.464860	5.292104	12.991740
Η	2.169272	-0.433580	10.531160	С	3.254236	2.821070	12.700620
Η	1.551330	2.984797	10.768640	0	-1.982730	3.805448	12.929020
С	-0.140190	0.470756	10.874360	Н	2.981389	8.986184	11.772080
Ν	-1.527340	0.524895	10.906960	Ν	5.499143	3.158203	13.425820
С	-5.634640	8.378271	11.170970	Н	2.243655	2.475776	12.926870
Η	1.819082	7.803441	10.432240	Н	7.552193	5.781357	13.866440
С	4.925080	3.611268	11.146510	Н	-5.380070	5.113567	13.588310
0	-0.921140	10.199080	11.498200	С	1.510190	8.060565	13.116190
С	-4.470620	1.979060	11.217420	Н	-3.613750	5.455225	13.668140
Η	-1.636060	6.273024	11.081880	С	4.222058	2.769189	13.677900
С	0.837467	7.495332	10.803610	Н	7.462390	3.268674	14.175130
С	-5.845650	6.863841	11.520780	С	2.744016	8.692337	12.796590
С	-5.187520	3.335162	11.530370	С	6.441061	3.362580	14.567630
Η	-6.415800	9.038068	11.591760	Н	6.750688	8.023826	14.501930
Η	-4.960290	1.107276	11.691510	С	6.759856	5.874428	14.614810
Η	6.898695	3.796657	12.011600	Н	0.274053	7.483567	14.821890
Ν	-4.350040	8.684573	11.766250	С	1.235877	7.886712	14.497970
С	3.563792	3.305662	11.403820	Н	4.006549	2.429328	14.691710
0	0.614024	1.029529	11.648190	С	3.660469	8.961110	13.786120
С	-3.776180	10.011650	11.873230	Н	6.275775	2.550536	15.288780
Ν	-3.140560	2.162542	11.761740	С	6.305855	7.144537	14.976690
Η	-6.729110	6.679052	12.160530	Н	4.629689	9.411888	13.569410
С	5.849179	3.540733	12.166680	С	6.177569	4.727625	15.175410
Η	-6.082060	3.219496	12.171020	С	2.196436	8.168910	15.445320
Η	-4.574650	10.729130	12.133850	Ν	3.414566	8.657711	15.091110
Ν	-4.630810	6.509505	12.226400	С	5.265055	7.291144	15.906930
С	-2.237940	1.069649	12.047600	Н	2.033369	7.985483	16.508970
Ν	-4.175590	4.103771	12.218640	С	5.225549	4.879993	16.195490
С	-3.779080	7.593671	12.402210	Н	5.211445	9.473140	15.837060
С	-2.976100	3.411070	12.359230	С	4.553516	8.622599	16.060810
Η	-3.041110	9.977831	12.689990	Н	4.804947	4.002837	16.695510
С	0.562468	7.593186	12.132040	С	4.774581	6.150114	16.559920
Η	-2.808670	0.254118	12.533940	Н	4.138124	8.764806	17.067470
Η	-0.424930	7.322273	12.515170	Н	4.011459	6.243804	17.337990
Н	-1.479180	1.449243	12.746430				

(d) OPVEBox⁴⁺⊂2CB[8]

Η	-4.666680	3.998761	-2.384580	С	-2.156920	3.125608	0.999594
Н	-4.502320	1.526840	-1.741570	С	0.196734	-0.627550	0.249435
Н	0.959356	1.975079	-2.832980	Н	-7.535440	2.214027	0.319254
Н	-0.823510	2.166857	-2.938780	Н	0.451482	9.166450	-1.051100
С	-5.507210	4.092192	-1.691010	С	-7.171340	6.816126	0.294247
Н	-5.565210	6.238152	-1.862890	С	-4.445500	1.733587	1.542694
0	-1.903660	4.336107	-2.521190	Н	-5.389920	1.210229	1.688080
С	0.040434	2.198310	-2.259480	Н	-4.375600	10.283660	-0.981480
Н	-1.783470	6.739751	-2.681210	Ν	1.654145	3.781954	0.165337
Н	-0.157240	7.493538	-2.797080	Н	-8.155980	6.953818	0.753550
С	-5.113510	1.752292	-0.859410	С	-0.331620	8.786824	-0.367480
С	-6.014090	5.357087	-1.395670	Ν	1.340886	1.404571	0.664171
Н	-2.854800	3.025757	-1.048880	С	2.250557	2.521206	0.561032
Н	-5.660000	0.848242	-0.573110	Ν	-2.848560	-1.667950	1.137167
0	-2.317200	0.587137	-1.903670	Ν	1.270046	5.994007	0.239720
С	-5.986860	2.970743	-0.997860	Н	2.208947	7.851782	0.078438
Н	2.218549	3.861010	-1.859670	С	-4.214640	-1.427630	1.177002
С	-0.814510	4.530187	-2.022250	С	-4.894060	7.228754	1.174079
С	-0.880180	7.005567	-2.113970	Ν	-2.543530	9.635934	-0.269080
Ν	0.142291	3.557561	-1.750610	Н	-8.439290	4.454635	0.841154
Н	-2.847560	-1.601510	-0.924900	Н	-3.244900	11.585710	-0.479680
Н	1.742109	6.257164	-1.793670	С	-3.643130	10.586860	-0.219520
Ν	-0.161580	1.159105	-1.269140	Ν	-6.167610	6.843304	1.420379
С	-1.326920	0.399708	-1.229190	С	-2.396000	2.775775	2.352036
Н	1.752074	0.302914	-1.080320	С	1.645408	4.892364	1.004372
Ν	-0.298680	5.764846	-1.633150	С	-3.606840	2.069479	2.588237
С	-3.025760	2.759031	-0.006760	Н	-0.906780	10.938380	-0.071580
Ν	-4.145560	2.048559	0.257709	С	1.463130	7.344953	0.722588
С	1.361130	4.120845	-1.209760	С	-1.220240	9.923795	0.240896
0	-3.536270	8.050975	-1.645430	Ν	0.310560	-0.323440	1.658694
Н	-1.581870	-2.653880	-0.203440	Н	-6.622080	-1.533670	1.880272
С	1.066288	5.659555	-1.152650	Ν	0.273974	8.166070	0.791090
С	-7.003270	5.497671	-0.410460	Н	-2.927560	7.551431	1.919056
С	-7.117060	3.093507	-0.177090	Н	2.691133	2.671854	1.556886
С	-2.108620	-1.685840	-0.114810	Ο	-6.365320	9.808666	0.275762
С	0.893224	0.596217	-0.446880	Н	-1.945420	-3.214330	2.238301
Ν	-1.143900	-0.617330	-0.300750	С	1.022582	0.846980	1.901409
Н	-6.953820	7.688911	-0.331080	С	-3.930960	7.202401	2.163268
Н	0.688572	-1.592630	0.020633	С	-2.346210	-2.194320	2.393157
Ν	-1.278850	7.965448	-1.098750	Ν	-4.655660	-1.659470	2.476108
Н	-4.680610	7.554598	0.155481	Н	-0.542940	3.675129	2.958155
С	-2.565590	8.497267	-1.069060	Н	0.392177	-2.257840	2.438303
0	-4.911280	-1.094920	0.242811	Н	-3.894090	1.762712	3.594102
Н	-1.259090	3.682448	0.735184	О	-7.673000	0.686952	2.191115
Н	3.050358	2.267550	-0.159670	С	-1.413280	3.142899	3.349579
С	-7.626460	4.357880	0.117593	Н	1.860519	7.265888	1.744893

С	-6.063410	-1.653470	2.819601	Н	-10.224200	6.606529	3.686267
С	0.014115	-1.257860	2.722404	С	-5.127920	11.408030	3.162840
0	1.941158	4.906811	2.178747	С	-0.425120	3.183531	5.659730
Ν	-4.356260	10.676150	1.040404	Н	-7.848680	11.651970	3.140495
C	-6.492650	6.378382	2.652217	О	-1.249860	-0.194700	5.081933
C	-5.697950	10.325760	1.145596	Ċ	-8.651590	8.542347	3.475202
H	-6.326370	-2.625980	3.276143	н	-0.894190	10 538020	3 565095
	-1.380670	-1.3/6180	3.089032	C	-6 341080	-0.668030	5 156237
п N	-7.316620	0.034030	2.771132	C C	-9 083130	4 399209	4 242561
C	-0.123730	9.758247 8.764695	1.007451	с н	-9 786860	1.377207	5.016505
C	-3.603260	-2.156650	3.336981	н	-6 59/1780	-1.682/120	5 518081
0	1.348092	1.281126	2.980435		-0.374700	-1.082420 8.450348	7 402064
Н	-3 878470	-3 150780	3 739463	0 C	5.747142	7 404242	7.492004
C	-4 230050	6 763587	3 479222		0.439342 5 195690	12 4242	7.213413
н	-8 111140	10 406110	1 870286	п	-3.463060	0 669472	2 702022
C	-7 355650	0.424458	3 331974	IN	-7.904930	9.008475	5.765025 9.122646
н	0 5/19692	-0.901050	3 61/13/15	H	2.883589	10.646080	8.122040
N	-6 /196380	-0.508600	3 722300	C	-3.892370	-1.140280	5.0/035/
n C	-0.490380	-0.398090	3.722300	N	-8.812/50	3.265024	5.001706
С U	-3.370190	0.333280	2 407147	0	5.281363	4.832934	6./61/36
п	-9.270890	2.055056	3.40/14/	H	-4.216330	-2.142990	6.012837
п	1.007709	4.003080	4.283401	Н	2.706089	4.510686	6.032095
C	-1.452840	2.856754	4.681078	С	-3.293970	10.410750	4.271917
H	-3.550610	12.413560	1.909/15	Ν	-5.047290	-0.261010	5.664514
0	-9.013500	8.202440	2.368853	Н	6.186177	2.588460	6.470271
C	-3.882840	11.399540	2.205529	С	-3.393700	6.438616	5.806764
0	-9.195250	4.442429	3.035586	С	-7.307700	0.439775	5.691126
0	0.280474	8.493239	3.093870	С	1.745968	4.067899	6.307140
Η	-2.319270	2.330071	5.093362	Н	4.014630	11.957590	8.615060
Η	-1.181740	11.752610	2.263646	Н	9.013376	6.465455	7.658874
С	-1.868400	-0.856420	4.281047	С	-9.827310	6.738214	4.703108
Ν	-6.140910	10.697260	2.408696	Н	-0.925240	7.752219	5.934521
С	-1.455980	10.749270	2.643578	С	4.667826	8.872811	8.151397
Η	-2.246150	7.224568	4.198890	Ν	-4.640030	10.753550	4.357607
Ν	-3.192240	-1.276900	4.412330	Ν	-8.935640	7.878617	4.663743
С	-7.543960	10.652290	2.779622	N	5.959607	8.341509	8.207033
С	-3.209510	6.810467	4.508318	Н	-4.353530	5.998906	6.092259
Ν	-2.858970	10.747840	2.990029	H	7.676364	9.547961	8.382410
Н	7.242203	7.886422	6.623331	н	7 889665	2 131197	6 829053
Н	5.591985	7.169481	6.555496	N	-9 224760	5 478227	5 110462
Н	-5.909280	5.974268	4.649172	N	6 932574	6 14/026	7 730887
С	0.815522	3.775113	5.319786	C	6 3/15/181	<u>4</u> 9/670/	7 379/07
N	-7.797030	1.077704	4.480921	C	-0 680510	7 887012	7 020491
C	-8.974220	1.927994	4.458601	с u	-0.000310 8 15/000	0.032906	6 277682
-	0.771220			11	-0.134000	0.000000	0.211003

С	3.582172	10.979300	8.903468	С	-0.479140	7.448539	8.010441
Н	-3.174930	-0.724440	6.392703	С	-6.975910	2.148410	7.547484
Н	-1.627200	2.416624	7.296136	Н	-4.614970	10.492290	6.397049
Н	9.307465	4.034729	7.712716	Н	-9.375420	8.927388	6.436475
0	-2.614030	9.945800	5.156460	С	5.135766	1.271194	8.333238
С	6.958918	2.550602	7.251347	Н	-9.983120	5.352840	7.066346
Ν	4.651885	10.006610	8.962458	Ν	-7.898320	5.617286	7.162459
Н	-10.665600	6.955959	5.390185	Н	-0.999510	11.216080	10.664990
С	8.259883	5.947242	8.281983	С	8.602437	7.673513	10.145400
Ν	7.212315	3.917701	7.660379	С	-2.874250	6.023475	8.165418
С	6.856917	9.145070	9.007780	Н	3.748759	12.833750	10.963940
Н	6.272498	11.283210	9.356433	С	2.514132	4.118850	8.645541
С	-5.128820	0.849028	6.505085	С	-7.010480	4.618051	7.543929
0	0.801282	10.322180	9.291644	Н	0.005291	2.940491	9.041891
С	-7.731050	9.845389	5.209680	Н	-3.832470	5.506050	8.236652
С	-1.251200	7.286430	6.866105	0	-5.312330	8.368312	7.302984
Ν	-6.462310	1.257178	6.530009	Н	8.130703	0.475694	8.760496
С	-2.473940	6.576285	6.925365	Ν	8.597429	4.069610	9.693845
С	8.427984	4.384561	8.285826	Н	-7.760410	1.613732	8.118392
С	-8.796210	3.551054	6.424343	С	3.260965	11.889460	11.272580
С	1.485237	3.785595	7.670401	Ν	5.980446	10.023680	11.022690
Ν	-6.384160	9.687942	5.717265	Н	3.149973	-0.176960	8.699077
С	5.926867	10.257730	9.592161	Ν	0.936104	11.432340	11.329980
С	-5.357350	10.706080	5.613932	Н	9.686714	2.290305	9.554834
С	-8.500310	8.624102	5.830361	С	-7.790940	6.975285	7.659066
0	4.252462	1.635149	7.594622	Н	-6.140660	2.394185	8.218716
С	0.248683	3.185957	8.007454	С	7.296411	1.004674	9.259609
Η	-8.144540	10.823020	5.523938	С	8.688574	5.209256	10.480890
С	-9.070620	5.093670	6.496070	0	-5.999870	4.765552	8.194624
Η	9.353491	8.178118	9.508827	Н	-0.723740	12.629770	11.746730
Ν	2.805563	11.156190	10.113830	С	-0.487950	11.561910	11.575360
Η	-9.562940	2.945127	6.944232	С	6.891304	9.023499	11.361850
0	-4.215550	1.347209	7.124048	Н	5.968100	11.998650	11.698380
С	1.439143	10.891670	10.148480	Н	8.989076	7.610435	11.172700
Η	-5.817940	11.695210	5.801112	Н	4.713098	5.558818	9.812049
Ν	-7.513750	3.407007	7.078127	Ν	5.023682	0.336004	9.360164
С	-6.278030	8.642986	6.630678	С	8.922413	2.748863	10.208270
Ν	6.468579	1.670092	8.283499	С	-0.875600	6.878241	9.245658
Ν	-7.508110	7.987501	6.666058	Н	1.687003	13.180330	12.233480
Н	3.356131	4.685930	8.236702	0	-2.220350	9.286134	11.373590
Ν	8.425657	6.311289	9.673693	С	-2.090000	6.158849	9.300661
Н	0.442875	8.031258	7.960734	С	1.950151	12.113080	12.105560
Ν	7.403261	8.491878	10.178700	Н	-6.956670	6.985190	8.375772

Н	-8.729220	7.239132	8.182634	Н	-0.731840	5.451327	11.590590
С	2.537307	3.742901	9.955893	С	1.471352	11.767110	14.593790
С	5.555117	11.013720	11.994050	Н	2.856004	2.583361	12.375040
С	3.825507	-0.451510	9.522948	Ν	1.232746	0.002849	12.003830
Н	4.085057	-1.525760	9.445864	Н	-4.322610	8.855766	14.401700
Ν	4.122427	11.156850	12.184600	С	3.435747	-0.865000	12.016580
Ν	7.808136	1.827958	10.341170	Н	1.395766	8.601574	12.348600
Н	1.735209	3.103529	10.330470	Н	3.671868	-1.934120	11.851180
С	6.295684	0.031997	9.980231	Н	-3.541110	3.575858	12.935930
0	1.174660	0.640020	9.773756	Ν	0.285927	10.949280	14.752160
Н	6.551343	-1.035290	9.834192	С	-3.174350	5.962145	13.578640
0	8.951881	5.246492	11.665020	С	-0.192820	0.073214	12.236020
С	4.671334	4.925857	10.698990	С	-1.965010	10.196740	14.770190
Н	9.348499	2.894221	11.211380	Ν	5.712057	4.299576	12.761750
0	7.205680	8.694061	12.483950	С	5.907002	-0.399760	12.480380
Ν	-1.016270	10.783940	12.675390	Н	6.103096	-1.467780	12.271480
Н	-2.455610	5.762462	10.248390	С	-1.528710	2.083674	12.798350
С	-1.914560	9.740195	12.449960	Н	-2.820640	10.713350	15.245940
Н	0.649384	7.922962	10.353850	Ν	-3.173220	7.113871	14.354370
С	3.608339	4.002742	10.894490	Ν	4.493349	-0.239760	12.779810
С	-0.051070	7.085300	10.430370	С	4.697683	3.434758	13.003780
Н	5.984897	10.721730	12.963030	Н	2.119380	11.565400	15.458800
Н	-3.883230	8.224350	12.774230	Н	-0.545560	-0.914810	12.592660
Ν	2.256432	11.522950	13.392880	Н	7.624634	4.985909	13.324890
Ν	3.090150	-0.234930	10.757030	С	0.660048	6.586432	12.786010
С	3.538807	10.986510	13.434070	Н	6.667548	7.200286	14.074500
С	1.768441	0.198607	10.730730	С	1.371704	7.781739	13.066680
Н	6.475989	5.787138	11.531250	С	2.161060	-0.640190	12.902690
С	7.334852	1.417539	11.582570	Ν	-0.629490	1.086520	13.172030
Ν	6.421521	0.389460	11.378560	Н	6.461791	-0.099230	13.380720
С	5.675414	5.059018	11.638620	С	-3.181720	3.518678	13.973680
0	-3.350220	5.901580	12.382990	Ν	-2.984500	4.876766	14.430230
Н	-1.266340	12.246210	14.170740	С	6.784965	4.480841	13.814190
Н	-0.666180	0.303960	11.270630	С	0.155905	10.036760	15.792330
0	-1.862190	2.361036	11.668620	Ν	-2.000540	2.678598	13.968540
С	-0.968590	11.185040	14.064090	Н	1.729604	-1.583310	13.291090
Ν	-2.426640	9.354720	13.687100	Ν	-1.146360	9.559609	15.781780
С	-3.514770	8.407563	13.794190	Н	4.760886	2.863524	13.929330
С	-0.086300	6.333941	11.567630	С	4.034086	0.325571	13.961740
Η	1.174439	12.832400	14.605420	Н	7.105403	3.473955	14.103480
С	3.650215	3.286429	12.119540	С	6.042147	6.659588	14.788940
0	7.678851	1.855845	12.658220	Н	-3.956100	3.038542	14.602950
0	4.058602	10.468480	14.401740	Ν	2.646684	0.175935	14.001300

Н	0.163712	4.663160	13.687650	Ν	-1.640490	5.069759	16.477530
С	0.688319	5.610293	13.816060	С	-1.075770	6.269872	16.900990
С	-3.068360	6.831572	15.771160	Ν	-0.631280	2.872594	15.989200
Н	2.566948	8.860389	14.523560	С	0.695187	2.438657	15.991680
С	2.011688	7.956935	14.277670	Н	-2.305680	1.621182	15.763090
Н	4.887738	8.405539	15.275190	Н	-0.892510	8.677907	17.625480
0	1.020703	9.727439	16.583800	С	5.420997	4.608505	15.922560
С	6.157182	5.269352	14.929080	Н	1.523554	-0.579120	15.599950
С	-0.504460	0.952292	14.604860	Н	2.619029	0.796703	15.966150
Н	-3.966050	7.203922	16.300920	С	4.137338	6.627271	16.279700
0	4.714071	0.852515	14.817490	Н	5.577052	3.540779	16.103640
С	-2.919470	5.267738	15.820710	0	-0.072830	6.382624	17.573330
Ν	-1.873060	7.306179	16.438590	0	1.604963	2.941129	16.616420
С	5.036841	7.339991	15.470470	Н	1.416692	5.084302	15.795740
С	-1.646490	8.686992	16.825290	С	-1.165650	3.794810	16.980170
С	-1.478770	2.042896	15.160730	С	2.767417	7.202977	16.518950
Ν	0.784863	1.321506	15.159980	Н	2.756245	8.279438	16.721730
Η	-0.773350	-0.073820	14.922110	С	4.397955	5.285327	16.590470
Н	-2.589730	9.105338	17.220730	Н	-0.363140	4.013379	17.698840
С	1.904800	0.394666	15.233180	Н	-1.993310	3.288277	17.511750
С	1.358719	5.831930	15.003810	Н	3.739879	4.734300	17.268190
Ν	1.990638	7.004462	15.241230	Н	2.201710	6.693398	17.306890
Н	-3.723260	4.770608	16.397260				

(2) In Water

(a) CB[8]

Η	11.147940	29.884370	-4.728450	С	6.273080	31.392700	-0.330570
Η	8.736268	30.245820	-4.501580	Н	17.577330	30.312020	-0.833070
Н	12.943480	31.404890	-3.966910	С	6.486095	27.572560	-1.041350
Η	12.627420	28.039970	-4.477940	Н	16.675630	27.151650	-0.459830
С	10.772130	29.793750	-3.697030	Ο	6.616653	32.441300	0.196392
Η	14.466850	29.548810	-3.732480	0	6.931939	26.440200	-0.933680
Η	7.271528	31.686350	-3.255880	С	16.701060	30.751450	-0.332900
Н	6.955899	28.516390	-4.152410	С	15.703880	27.333830	0.032391
С	9.229687	29.899660	-3.579970	Ν	5.185163	30.629250	0.033460
С	12.606750	31.371200	-2.916610	Ν	5.656475	28.215990	-0.130830
С	12.314240	27.810610	-3.445810	Н	16.795910	31.843850	-0.335550
Ν	11.249140	30.892940	-2.894170	Н	15.228710	26.368700	0.243829
Ν	11.054180	28.464760	-3.177070	Н	3.272195	30.728540	0.794502
Η	12.607890	32.387630	-2.505100	Н	3.844671	27.371930	0.485303
Η	12.149950	26.731160	-3.348530	С	4.299474	30.977540	1.108661
Η	5.524043	30.005490	-2.841880	Н	17.924430	28.614870	0.981473
Ν	9.045153	30.880390	-2.519670	С	4.894494	27.426580	0.820894
Ν	8.828578	28.549160	-3.270220	Н	4.376820	32.058720	1.272537
С	7.767805	31.514830	-2.284290	Н	5.324511	26.417910	0.820305
С	7.463646	28.088290	-3.274860	Ν	16.696860	30.316040	1.040742
С	14.161910	29.379440	-2.687850	Ν	15.939590	27.992080	1.296946
С	10.231820	31.520270	-2.206110	С	17.002470	28.971870	1.466482
С	9.898603	27.721660	-3.014670	Ν	4.579845	30.329180	2.369245
Η	7.961240	32.484460	-1.810720	Ν	4.910348	27.906810	2.177773
Η	7.482125	26.995900	-3.367110	С	16.442530	31.163020	2.095676
Ν	13.556960	30.595340	-2.138740	С	15.611840	27.381210	2.494387
Ν	13.389950	28.174290	-2.567370	0	16.157740	32.349210	2.016583
Η	16.265790	28.800550	-2.238050	0	14.864890	26.422120	2.628315
0	10.350160	32.491710	-1.472420	Н	3.056995	28.878790	2.279583
0	9.841241	26.534590	-2.728660	С	4.086675	28.991010	2.654131
С	6.038149	29.690730	-1.919690	С	17.115890	29.104600	3.007476
Ν	6.875592	30.778350	-1.415780	Н	18.145360	29.012160	3.388039
Ν	6.686467	28.423230	-2.107850	О	5.004613	32.266740	3.578323
С	15.343650	29.125690	-1.730080	С	4.736486	31.075650	3.523442
С	14.468480	31.253150	-1.321160	Ο	6.356507	26.330860	3.079155
С	13.749980	27.432430	-1.463140	С	5.607118	27.290230	3.195964
Η	4.043698	29.233650	-1.041170	Ν	16.604510	30.441520	3.264715
0	14.363180	32.394280	-0.897290	Ν	16.303250	28.020180	3.501888
0	13.218280	26.393910	-1.097320	С	4.207454	28.889750	4.196941
Ν	15.533000	30.404240	-1.103630	Ν	4.499712	30.244850	4.595574
Ν	14.837500	28.054470	-0.873780	Ν	5.280797	27.924040	4.382056
С	5.085504	29.421340	-0.737080	Н	16.772820	32.193480	4.330880

Η	15.903720	26.547350	4.881635	Ο	11.427030	26.654150	8.430923
С	16.872670	31.117130	4.513617	Н	4.960482	28.800300	7.905211
С	16.325420	27.559510	4.865436	Ν	7.640654	30.634440	7.756575
Η	3.290775	28.532550	4.691816	Ν	7.849262	28.225650	8.226803
Η	17.905370	30.895040	4.830208	Н	13.202710	32.613700	7.425604
Н	17.376570	27.518650	5.198881	Н	13 774340	27 165040	9 077069
Н	4.377396	31.798170	5.940398	C II	10.951/10	31 609130	7 816067
H	6.018238	26.334400	5.467535	C C	11 3/6/00	27 842600	8 702681
N	15.995610	30.770320	5.596223	C C	7 057085	27.842030	8.702081
N C	15.558650	28.355030	5.80/6/0	C	12 412250	29.419730	0.000022
C	4.488400	30.707410	5.959964	C	13.412350	31.654680	7.913854
	3.330393	27.297330	5 412512	C	13.773280	28.255990	8.965743
0	14.353530	52.558080 26.574140	5.412512	Ν	12.146560	31.002540	8.159789
U Ц	3 618674	20.374140	6.053072	Н	8.563358	32.448210	8.077603
II C	1/ 800050	31 52/350	0.408388 5 954681	Ν	12.399500	28.691570	8.961022
н	4 563583	27 112580	6 160705	Н	15.685670	30.192820	8.485889
C	14 746160	27.714880	6 736469	Н	9.113707	26.814080	9.025082
C	16.117660	29.577830	6.387921	Ν	9.940177	30.984590	8.515667
Ň	5.661335	30.393510	6.737215	Ν	10.176090	28.566760	8.844995
0	6.802129	32.394460	6.482652	С	8.575987	31.444030	8.517937
Ν	6.391641	28.049680	6.546339	С	8.927350	27.890840	9.113510
0	8.027157	26.409140	6.802786	С	11.971670	30.041020	9.238746
Н	17.164320	29.410230	6.687038	Н	13.906180	31.848730	8.882454
С	6.715007	31.261680	6.930693	Н	14.277970	28.707450	9.833148
С	7.488824	27.452190	7.144799	Н	6.756861	29.601670	9.374559
С	5.874354	29.129720	7.385179	С	10.429390	29.909510	9.343870
Ν	14.314720	30.920770	7.055307	Н	8.232901	31.504390	9.565089
Ν	14.539550	28.582210	7.788474	Н	8.604952	28.122770	10.142110
С	15.169840	29.854670	7.572920	Н	12.450190	30.415700	10.157170
0	10.822720	32.554780	7.051607	Н	10.042650	30.012950	10.370080

(b) OPVEBox⁴⁺

Η	-6.679060	4.171015	-0.690640	Ν	-3.681000	2.388162	1.447398
Н	-4.948380	2.415475	-0.226860	С	-2.579750	2.942195	0.882365
Н	-7.392170	6.513691	-0.326320	Н	-6.250930	8.860909	0.859258
С	-6.295270	4.724174	0.169908	С	-6.210780	6.779088	1.467492
Η	-5.718740	1.964666	1.301898	Н	-4.520700	1.374723	3.064232
С	-5.000230	2.656986	0.842625	С	-3.598580	1.796294	2.664456
С	-6.697820	6.044662	0.375209	С	-4.925990	4.833884	2.150500
Η	-2.715210	3.406741	-0.094160	С	-1.369980	2.942643	1.539749
С	-5.408330	4.100671	1.061523	Н	-0.511630	3.414934	1.060920

С	-6.660760	8.216741	1.648729	Н	6.537393	4.994429	9.448421
С	-5.316760	6.159644	2.347572	Н	3.899645	2.218730	10.118380
Η	-4.690700	9.872946	2.060337	С	6.417384	4.571184	10.445030
Η	-4.230070	4.390461	2.864341	С	-2.019030	8.982702	11.261790
Η	-7.755720	8.293639	1.599929	С	-2.996200	7.977196	11.098100
С	-2.412750	1.767619	3.364266	С	5.484020	3.544080	10.713380
С	-1.255700	2.385292	2.834536	Н	-3.100090	7.184099	11.841320
Η	-4.901550	6.693799	3.202180	Н	-0.515540	9.924992	12.497930
Η	-2.413960	1.299728	4.347850	Н	7.895678	5.905448	11.297590
С	-5.115600	9.544716	3.008737	С	-1.054240	8.983260	12.354340
Ν	-6.219040	8.763476	2.942896	С	7.185592	5.095339	11.462520
Η	0.751865	3.136702	3.074981	С	5.431998	3.060221	12.040760
С	-0.015760	2.539408	3.573011	Н	4.744867	2.258512	12.312790
Η	-3.661410	10.499250	4.239369	С	-0.734740	7.915319	13.124600
С	-4.556870	9.877658	4.224737	Н	-1.204370	6.947489	12.931290
С	-6.806260	8.308384	4.080744	Ν	7.081515	4.626197	12.729010
Н	-7.695540	7.691492	3.952333	Н	6.502294	7.663311	13.363790
С	0.195075	2.062474	4.825303	С	6.223201	3.618447	13.018360
Н	-0.573300	1.437439	5.289383	Н	0.546569	10.081380	14.367650
Н	2.345674	3.753044	4.356260	С	0.281469	7.917944	14.162690
С	-5.093810	9.362523	5.425204	С	0.872212	9.090856	14.684410
С	-6.276850	8.592671	5.318785	Н	8.496110	6.013361	13.390160
С	2.358116	3.259171	5.328945	Н	4.656532	8.671733	14.662900
С	1.341508	2.342324	5.677057	С	6.171130	7.189325	14.291300
Η	-3.556530	10.308560	6.599545	Н	6.181572	3.289779	14.056290
Η	-6.781690	8.191897	6.197140	С	7.790008	5.309639	13.845040
Η	4.126627	4.307948	5.956378	Н	0.316195	5.744964	14.330980
С	-4.377260	9.590412	6.666298	С	0.741479	6.686056	14.682170
С	3.362664	3.577048	6.232078	С	5.132357	7.756504	15.024690
С	1.404541	1.726287	6.947629	С	1.884514	9.003939	15.617300
Η	0.629719	1.010037	7.231131	Н	2.377519	9.883397	16.031870
С	3.403492	2.989898	7.516817	С	6.782068	6.003039	14.726950
С	2.413057	2.038311	7.846835	Н	8.358252	4.551079	14.397360
С	-4.570950	8.893635	7.813265	С	1.755499	6.655317	15.613120
Н	-5.353030	8.128971	7.852492	Ν	2.317406	7.801942	16.068020
Η	-2.695230	10.826630	8.461923	С	4.680568	7.142781	16.204170
Η	2.415842	1.555080	8.824643	Н	2.158870	5.724600	16.012310
Η	5.086295	4.217857	8.085401	С	6.357956	5.413220	15.922500
С	4.420374	3.435550	8.460227	С	3.500602	7.710037	16.956920
С	-2.789480	10.022170	9.193627	Н	3.702552	8.720750	17.333680
С	-3.740750	8.994936	9.007593	С	5.307040	5.976306	16.653160
Η	-1.226090	10.822130	10.433040	Н	6.835687	4.496515	16.276480
С	-1.958990	10.021970	10.305260	H	3.233587	7.074255	17.809760
С	-3.846270	7.992677	9.999389	и П	1 058081	5 103211	17 560100
С	4.557678	3.002233	9.737084	11	+.750701	5.475244	17.307170
Η	-4.597070	7.206827	9.886084				

(c) OPVEBox⁴⁺⊂CB[8]

Н	-4.607720	4.393425	-1.381200	Н	4.427922	9.306256	4.172536
Н	-4.658900	1.865446	-1.133920	Н	0.117293	3.480243	3.149304
Н	-5.501450	6.601852	-0.724200	Н	4.366941	-0.239930	3.983417
С	-5.382170	4.454983	-0.612460	Ν	2.770131	8.010467	4.203861
С	-5.038060	2.009771	-0.115880	С	-0.869950	3.259116	3.563557
Н	-5.624350	1.130619	0.175149	С	4.968759	7.147006	4.300219
С	-5.888030	5.700835	-0.241580	С	-6.542900	6.895169	3.791936
Н	-2.609570	2.799770	-0.718090	С	3.601162	0.542419	4.101637
С	-5.816930	3.294076	0.041364	0	-1.056120	9.057390	4.283615
Ν	-3.861970	2.091223	0.794399	Ν	4.248002	1.829454	4.117048
С	-2.700710	2.634910	0.355398	С	4.099613	8.377527	4.665507
С	-6.839220	5.802223	0.783569	С	5.804461	3.587286	4.333232
Н	-6.978760	7.974475	0.714298	Н	-7.596480	6.662801	3.946844
С	-6.836770	3.387389	0.998801	Н	6.283304	1.399472	4.401182
Н	-4.988720	1.386056	2.401909	Ο	0.726341	0.666719	4.333445
Н	-0.783920	3.422294	0.844460	Ν	1.080829	9.532934	5.060223
С	-1.699690	2.979643	1.238665	С	-4.245370	7.035414	4.524185
С	-4.044510	1.849168	2.118075	С	5.519122	2.110831	4.749339
Н	-4.688300	7.991369	1.266515	С	-0.297670	9.629057	5.056300
С	-7.347060	4.633342	1.366474	Н	7.192830	5.821059	5.005143
С	-7.136400	7.143622	1.412008	С	-5.608000	6.766509	4.794264
Н	-7.204800	2.486311	1.495516	Н	2.233829	11.268330	5.376104
Н	5.462344	5.389117	2.316214	Н	-2.594990	10.605110	5.323671
Н	-8.152850	7.207377	1.816200	С	-1.107810	3.384789	4.892175
Н	3.750108	4.969959	2.014169	Н	-2.105250	3.160334	5.275361
С	-4.904140	7.645549	2.276694	Н	1.511008	4.238325	4.596942
Н	-8.106180	4.698072	2.150213	Ν	2.807115	0.249567	5.265022
С	-3.084590	2.181520	3.043669	Ν	5.365203	6.623404	5.594722
С	4.496373	5.160337	2.794434	С	1.431456	0.330065	5.268614
С	-1.881540	2.811050	2.630973	Н	-2.218910	7.270129	5.156185
0	1.839806	6.331939	2.893371	Ν	5.965640	4.264713	5.603587
Н	1.034857	8.570729	3.242727	С	1.687045	10.506780	5.954395
Ν	-6.190120	7.313395	2.548167	С	6.400567	5.629352	5.746800
0	2.686416	2.936630	2.809620	Ν	4.248495	8.486469	6.096233
Н	2.273045	9.858452	3.379947	С	-3.181930	6.879836	5.486566
Н	-2.904050	7.817661	2.995302	Ν	-0.668680	10.519920	6.037115
Н	2.933294	0.520665	3.231814	Н	4.392700	10.550170	6.293161
Н	5.860651	7.397619	3.704556	Н	-2.005960	12.109150	6.103217
С	2.787051	6.823557	3.487823	Н	-5.944450	6.465767	5.786823
С	-3.927060	7.527882	3.237038	Н	-0.912200	-0.275400	5.757557
Ν	4.069503	6.321952	3.532573	С	-2.021050	11.007790	6.167446
Н	-3.267490	1.927185	4.088066	С	1.197414	4.086224	5.629701
С	1.782093	9.020090	3.907293	Н	3.961774	-1.194710	6.245566
С	3.729687	2.913492	3.445349	Ν	5.512712	2.169880	6.201000
Ν	4.629671	3.950697	3.566110	С	4.996545	7.457778	6.632616
Н	6.711882	3.709449	3.721551	С	-0.135000	3.717522	5.913639
				-			

0	-4.447830	9.455049	6.369885	С	-2.438980	11.221300	8.659499
Η	0.416672	12.176160	6.727771	С	3.541234	0.616736	8.623144
С	3.937300	9.693229	6.817700	Ν	2.316646	-0.022510	8.584213
С	0.470297	11.076030	6.734041	Н	-7.399150	4.878427	9.373048
C	3.339986	-0.315390	6.478677	Н	1.016379	7.276028	8.172541
C	5.771208	3.432642	6.682412	C	-5.752880	9.503575	8,932630
N	2.531782	9.958949	6.988923	0	2 431934	9 610738	9 277354
N	0.989819	-0.100/90	6.510254	C C	-0.001080	6 976626	8 478748
U H	-2.709770	1.082755	6.539903	N	-2.836400	0.970020	8 8//517
п u	0.820382	3.740307 0.180561	6.733801	C I	-2.830400	1 161184	8 056268
C II	-0.367050	-0.561690	6 664976	С u	-4.242000	12 240000	0.120069
н	-0 645240	6 983833	6 391153	П	0.018008	12.249900	9.139000
C	-3 322800	6.400133	6 745052	C C	0.020399	7 117042	9.227208
с н	-0.372710	-1 662410	6 764234	C	-6.205480	7.117943	9.356912
C II	5 /15/35	1 010/27	7.065954	C N	-5.39/120	3.293231	9.349107
с u	2 145122	1.017427	6 441651	N	-1.326310	10.6//310	9.415/33
н Ц	4 201000	4.310007	0.441031	C	-2.581420	6.155390	9.086607
п N	-4.291900	0.029439	7.091364	H	-6.309120	10.346970	9.3/33/4
IN C	-2.700710	10.610440	1.3/4/3/	Н	3.761480	4.348773	8.711010
C	2.111396	4.241510	6.662784	С	-0.868950	-0.413450	9.150401
C	-3.904350	9.930003	7.353229	Н	-4.769180	0.271029	9.345201
N a	4.070163	0.586765	7.348306	Н	-3.586610	5.804553	9.321386
С	2.070437	-0.654350	7.304937	Н	0.049776	3.601702	9.318752
Η	4.383600	9.608946	7.815009	С	-3.677440	10.831880	9.508679
0	5.307847	7.326781	7.806950	С	2.764523	4.040175	9.037684
С	-0.528140	3.588729	7.263818	Н	-0.800210	-1.511910	9.202546
Η	1.917214	-1.737120	7.444132	О	4.078207	1.086012	9.612962
Η	-1.567750	3.356384	7.492645	Ν	-5.857440	8.368784	9.815224
0	5.862784	3.753496	7.861056	Ν	-4.550720	2.292396	9.794127
С	-2.245620	0.705668	7.607138	С	-6.915190	4.967204	10.352930
Ν	0.695899	10.589710	8.084406	Н	-4.318410	11.689270	9.770699
С	-0.940740	6.817214	7.426901	Н	0.592631	10.856420	10.116390
С	1.933091	9.995607	8.228858	С	1.591743	-0.359960	9.782093
Н	-6.221030	9.222843	7.981875	N	0 252797	0 182296	9 853195
Н	-4.612740	1.383113	7.949094	C	-2.108770	0.166273	9 886632
0	-6.372830	6.802887	8.186470	н	5 345933	3 972673	10.056130
Ν	-1.070680	0.009803	7.781634	N	-6 386210	6 303742	10.050150
0	-5.644280	3.559728	8.182503	Ц	1 536077	1 / 58080	0.878660
Č	-2.264420	6 440142	7 739998	II N	5.048720	-1.438980	9.070000
н	5 881938	1 283917	8 022109	N C	-3.946720	5.902070	0.705000
C	1 738771	1.205917	8.008327	C C	-0.343640	0./88/93	9./85880
N	-1 103720	9 922720	8 642315		-1./255/0	10.214510	10.039320
C	-+.+03720 0 287877	3775878	8 780052	C	-1.64/550	0.336142	10.096830
	0.30/0//	3.123010	0.207733	H	-/.6/1660	4.824920	11.139620
п	-2.313090	12.310130	8.339392	Ν	-3.099600	10.262050	10.699810

Η	-2.745110	-0.609870	10.340990	0	-2.977620	7.499175	13.124580
С	2.572406	3.620420	10.311450	С	-4.877890	5.357574	13.186190
Η	2.155662	0.044722	10.631420	С	3.265554	3.005804	12.592570
Η	1.586302	3.286950	10.636420	0	-2.278830	4.087089	13.146230
С	-0.157820	0.944319	10.927740	Н	2.789868	8.618852	11.641180
Ν	-1.536040	1.010357	10.913620	Ν	5.527804	3.154082	13.303250
С	-5.825400	8.449396	11.264270	Н	2.233658	2.742836	12.823430
Η	1.615739	7.421472	10.401430	Н	7.505268	5.711343	13.672020
С	4.985605	3.698807	11.047130	Н	-5.840170	5.117822	13.666230
0	-0.985780	9.876211	11.568740	С	1.391892	7.701564	13.068860
С	-4.551610	2.180063	11.241790	Н	-4.118090	5.506954	13.962460
Η	-1.923880	6.136957	11.133360	С	4.229141	2.868751	13.564780
С	0.634390	7.143456	10.793600	Н	7.486924	3.199352	14.053370
С	-6.176060	6.997367	11.710840	С	2.591223	8.352229	12.680010
С	-5.420720	3.383540	11.695550	С	6.468999	3.302619	14.446140
Η	-6.542090	9.205394	11.619460	Н	6.649557	7.952403	14.279360
Η	-4.955220	1.203582	11.553430	С	6.745904	5.806661	14.452450
Η	6.966136	3.752613	11.913150	Н	0.268180	7.068197	14.830850
Ν	-4.524150	8.676542	11.856370	С	1.186002	7.523802	14.456660
С	3.613481	3.465342	11.301560	Н	3.992876	2.540058	14.576120
0	0.574319	1.444228	11.771030	С	3.530782	8.688397	13.625570
С	-3.851360	9.948834	11.884630	Н	6.275710	2.485827	15.151410
Ν	-3.273050	2.420931	11.874230	С	6.262610	7.070071	14.794980
Η	-7.080840	6.927958	12.334070	Н	4.474590	9.163341	13.359930
С	5.904715	3.553569	12.060620	С	6.209879	4.660339	15.055160
Η	-6.241990	3.107143	12.374160	С	2.165098	7.876465	15.360020
Η	-4.596290	10.741640	12.058710	Ν	3.328741	8.433851	14.944360
Ν	-5.011020	6.598573	12.473180	С	5.243633	7.203551	15.748670
С	-2.286150	1.395413	12.088790	Н	2.056612	7.705073	16.430750
Ν	-4.468360	4.232476	12.381760	С	5.260194	4.801520	16.076460
С	-4.044430	7.577269	12.532560	Н	5.097751	9.369453	15.586300
С	-3.229770	3.637453	12.524900	С	4.488874	8.505265	15.875760
Η	-3.146540	9.931672	12.724890	Н	4.851279	3.917770	16.572210
С	0.401799	7.233770	12.125510	С	4.783003	6.065238	16.424030
Η	-2.788590	0.501392	12.498270	Н	4.094033	8.669874	16.884720
Η	-0.576280	6.974484	12.539320	Н	4.009077	6.157638	17.190030
Η	-1.568590	1.773744	12.826420				

(d) OPVEBox⁴⁺⊂2CB[8]

Н	-4.048305	4.018274	-2.211001	С	-1.986700	2.624441	1.132694
Н	-4.287489	1.506092	-1.847619	С	0.138544	-1.022260	0.557671
Н	1.393594	1.611805	-2.299368	Н	-7.282345	2.419356	0.174072
Н	-0.337352	1.902629	-2.638800	Н	1.282539	8.567049	-0.364603
С	-4.935559	4.166047	-1.591038	С	-6.499429	6.971251	0.384760
Н	-4.727741	6.310295	-1.590945	С	-4.478500	1.523136	1.440550
0	-1.381246	4.095060	-2.219016	Н	-5.486970	1.116625	1.489599
С	0.419772	1.860064	-1.846086	Н	-3.322671	10.425101	-0.659974
Н	-1.121047	6.513591	-2.216806	Ν	1.878308	3.241928	0.776180
Н	0.574456	7.082565	-2.201645	Н	-7.493906	7.134562	0.809679
С	-4.914169	1.728572	-0.977035	С	0.385653	8.343082	0.233727
С	-5.315312	5.459413	-1.237311	Ν	1.346503	0.912361	1.147707
Н	-2.499102	2.645878	-0.965767	С	2.353245	1.938303	1.153916
Н	-5.595283	0.891257	-0.803557	Ν	-2.991293	-1.898332	1.163181
0	-2.042339	0.357401	-1.841964	Ν	1.579701	5.442472	0.938228
С	-5.607335	3.064164	-1.040745	Н	2.715420	7.186920	0.944184
Н	2.605622	3.382146	-1.189698	С	-4.326740	-1.560565	1.145365
С	-0.346166	4.210857	-1.574980	С	-4.286352	7.408932	1.346927
С	-0.244382	6.678244	-1.580147	Ν	-1.679228	9.480959	0.172477
Ν	0.519868	3.182394	-1.259792	Н	-7.956073	4.714957	0.795267
Н	-2.837185	-1.781675	-0.891166	Н	-2.076281	11.511612	0.021103
Н	2.231191	5.787380	-1.031138	С	-2.632317	10.573504	0.179448
Ν	0.043716	0.800867	-0.937745	Ν	-5.541430	6.940712	1.527075
С	-1.150868	0.117709	-1.036529	С	-2.429533	2.331132	2.444299
Н	1.869468	-0.169984	-0.572760	С	1.817035	4.293904	1.666285
Ν	0.164827	5.388932	-1.057677	С	-3.722812	1.770380	2.565250
С	-2.791793	2.381629	0.046563	Н	0.107427	10.557135	0.385048
Ν	-4.008587	1.812852	0.202395	С	1.863942	6.740339	1.489047
С	1.718117	3.657216	-0.597052	С	-0.348751	9.617381	0.733925
0	-2.761704	8.091790	-1.337244	Ν	0.145703	-0.767065	1.978018
Н	-1.684720	-2.902576	-0.105650	Н	-6.794002	-1.556959	1.724139
С	1.487279	5.190962	-0.480821	Ν	0.751769	7.655814	1.453821
С	-6.369582	5.657892	-0.334684	Н	-2.365778	7.769329	2.192675
С	-6.748531	3.270108	-0.254232	Н	2.743835	2.014902	2.175791
С	-2.171472	-1.916753	-0.030724	0	-5.423591	9.949337	0.477300
С	0.971055	0.156825	-0.025141	Н	-2.227869	-3.544732	2.216676
Ν	-1.148261	-0.894778	-0.102662	С	0.882245	0.348340	2.320104
Н	-6.229489	7.837217	-0.227519	С	-3.348398	7.330831	2.351705
Н	0.569650	-2.012679	0.340065	С	-2.606259	-2.529939	2.413809
Ν	-0.605377	7.667214	-0.585795	Ν	-4.862650	-1.838917	2.385933
Н	-4.074665	7.842728	0.373526	Н	-0.646373	3.171942	3.243339
С	-1.786321	8.379061	-0.652858	Н	0.081494	-2.735305	2.635321
0	-4.940049	-1.123687	0.180556	Н	-4.163369	1.561938	3.538863
Н	-1.004989	3.065930	0.975428	Ο	-7.543981	0.797031	1.970925
Н	3.169765	1.645370	0.473578	С	-1.572473	2.681142	3.542326
С	-7.129219	4.563916	0.098495	Н	2.141849	6.597478	2.539736

С	-6.273211	-1.712725	2.676287	Н	-9.749780	6.944953	3.715711
С	-0.256847	-1.737596	2.960329	С	-4.258558	11.364289	3.492099
0	1.981676	4.231127	2.873469	С	-0.918586	2.997377	5.899346
Ν	-3.427270	10.699595	1.380370	Н	-6.946726	11.708925	3,383986
С	-5.878093	6.317869	2.684563	0	-1 634904	-0 711731	5 276479
C	-4.772372	10.403411	1.410410	C	-7 922397	8 672169	3 566122
H	-6.627805	-2.654066	3.125097	е н	-0.071204	10 398603	<i>A</i> 012027
N	-1.669328	-1.787867	3.222902	C II	-0.071204	0.723710	5.006165
H N	-6.89345/	5.926925	2.747894	C C	-0.393930	-0.723710	1 1 2 2 2 0 9
IN C	-0.239004	9.313293	2.109424	U U	-0.720430	4.000974	4.155200
C	-3 913067	-2 503477	2.363952	II U	-9.028490	1.734839	4.090330
0	1 130415	0.731737	3 1/19797	П	-7.056289	-1.000819	5.540475
ч	1.130413	3 502708	3.447777	0	2.630419	8.878992	7.272501
n C	-4.207243	-3.302798	2 597274	C	5.290019	7.937851	6.639880
с u	-5.059542	0.719303	3.367374	H	-4.593135	12.369767	3.790726
п	-7.221205	10.553204	2.043721	N	-7.082726	9.705722	3.915767
	-7.299836	0.508795	3.136975	Н	1.773840	10.939408	8.270696
H	0.242443	-1.4/5589	3.900524	С	-4.324525	-1.642535	5.637298
N	-6.64/484	-0.628133	3.562447	Ν	-8.500522	3.478568	4.807295
C	-4.966656	6.181307	3.705913	Ο	4.067245	5.378869	6.278013
H	-8.998037	2.370280	3.140358	Н	-4.860032	-2.589299	5.812992
Н	0.591847	3.795390	4.527431	Н	2.034951	4.656800	6.268225
С	-1.814345	2.505565	4.867122	С	-2.518515	10.236714	4.606009
Η	-2.619435	12.379436	2.348770	Ν	-5.289314	-0.570127	5.607710
0	-8.279676	8.391255	2.428644	Н	4.967109	3.146229	5.738720
С	-2.984604	11.369724	2.593425	С	-2.917288	6.245902	5.895349
0	-8.828798	4.784882	2.919200	С	-7.353426	0.544646	5.480167
0	0.672429	8.077232	3.736545	С	1.107829	4.157725	6.545804
Н	-2.713930	1.984423	5.210875	Н	2.929350	12.236095	8.714398
Η	-0.285597	11.533981	2.639363	Н	7.897318	6.980076	6.592543
С	-2.217009	-1.330387	4.401161	С	-9.319506	6.992.665	4.722804
Ν	-5.261973	10.739239	2.652049	Н	-0 445351	7 520966	6 143237
С	-0.613236	10.576715	3.075315	C	3 614442	9 261677	7 881295
Н	-1.729583	7.215296	4.423463	N	-3 848604	10 607469	4 656265
Ν	-3.521914	-1.778578	4.451682	N	-8 320138	8 030701	4.050205
С	-6.669865	10.723378	2.975783	N	-0.327130	8 765688	7 757203
С	-2.677448	6 722007	4 647712	н	4.902494	5 751494	6 100720
N	-2 012931	10 665564	3 394328	II U	-5.870455	3.731464	0.100720
н	6.013705	8 / 90672	6.015951	п	6.520025	10.114097	7.705155
н	4 383080	7 740883	6.055148	п	6./11088	2.738109	5.840558
и П	4.383089	7.740003 5.655111	0.033146	N	-8.82/613	5.676041	5.058214
n C	-3.200407	J.UJJIII 2 671165	4.003330	N C	5.858975	6.661147	6.992818
U N	0.275369	3.0/1103	5.500909	C	5.212758	5.480389	6.680312
N C	-7.649493	1.258046	4.246470	С	-1.239540	2.832463	7.265762
C	-8.755419	2.194841	4.194232	Н	-8.287086	0.317329	6.017646

С	2.569428	11.223046	8.968846	С	-0.203284	7.367367	8.268224
Н	-3.646838	-1.451318	6.477587	С	-6.838641	2.130724	7.374969
Н	-2.166520	2.318145	7.531867	Н	-3.894627	10.288428	6.684630
Η	8.189081	4.550049	6.592537	Н	-8.710366	9.062919	6.514047
0	-1.889177	9.683575	5.489775	С	4.238219	1.708497	7.677609
С	5.837619	3.101907	6.405180	Н	-9.617433	5.461598	6.990027
Ν	3.652155	10.292400	8.801191	Ν	-7.531185	5.626333	7.140839
Η	-10.113960	7.253228	5.439898	Н	-1.668896	11.754231	11.345922
С	7.256253	6.455718	7.317244	С	7.852970	8.148854	9.135625
Ν	6.112029	4.447875	6.848032	С	-2.578859	5.895428	8.284700
С	5.864750	9.581385	8.472524	Н	3.182772	12.832647	11.003140
Η	5.250478	11.585430	9.221815	С	1.840774	4.374696	8.842005
С	-5.212142	0.527772	6.438818	С	-6.680961	4.584021	7.433017
0	-0.177340	10.724687	9.687875	Н	-0.647474	3.130870	9.306824
С	-6.972022	9.858270	5.353842	Н	-3.526944	5.356278	8.277633
С	-0.860232	7.118725	7.068284	0	-4.740940	8.132287	7.464903
Ν	-6.413146	1.204401	6.355885	Н	7.307549	1.081253	7.684119
С	-2.075620	6.399955	7.064816	Ν	7.769570	4.575347	8.652839
С	7.408654	4.903971	7.283805	Н	-7.694888	1.692753	7.918342
С	-8.492498	3.670590	6.247128	С	2.659776	11.940290	11.381940
С	0.812983	3.954795	7.910970	Ν	5.203650	10.072701	10.692537
Ν	-5.666852	9.587414	5.911400	Н	2.440659	0.083429	8.192560
С	4.974573	10.523190	9.319882	Ν	0.348635	11.711605	11.722248
С	-4.597669	10.554820	5.886677	Н	8.826846	2.817185	8.324218
С	-7.854989	8.708813	5.917858	С	-7.361986	6.950024	7.690755
0	3.241083	2.022796	7.057495	Н	-6.005479	2.267438	8.073382
С	-0.384941	3.295047	8.260512	С	6.500779	1.520311	8.291727
Η	-7.313835	10.861192	5.653930	С	7.946588	5.693361	9.430245
С	-8.711348	5.200836	6.420245	0	-5.655947	4.651386	8.095826
Η	8.402072	8.710453	8.363211	Н	-1.102380	12.947027	12.557208
Ν	2.000799	11.246752	10.296513	С	-0.996491	11.911031	12.197984
Η	-9.276051	3.059474	6.721152	С	6.264657	9.179784	10.746115
0	-4.264430	0.832628	7.148686	Н	5.366748	11.970052	11.540822
С	0.631651	11.164452	10.487985	Н	8.467994	8.094277	10.041224
Η	-5.020229	11.553115	6.092044	Н	3.964286	5.956774	9.732564
Ν	-7.213363	3.433074	6.882629	Ν	4.302543	0.785162	8.710203
С	-5.671980	8.508612	6.773769	С	8.164632	3.257874	9.088205
Ν	5.524681	2.156819	7.444372	С	-0.716845	6.871450	9.487465
Ν	-6.941796	7.961178	6.753573	Н	1.363052	13.357240	12.533366
Η	2.610762	5.009701	8.391879	0	-2.405402	9.435854	11.886413
Ν	7.648740	6.799415	8.668479	С	-1.914289	6.123168	9.476341
Η	0.719840	7.951341	8.253692	С	1.508401	12.277758	12.369058
Ν	6.655148	8.888194	9.458020	Н	-6.597256	6.881044	8.473983

Η	-8.314549	7.266186	8.145715	Н	-0.769629	5.480005	11.838481
С	2.015343	3.962299	10.123234	С	1.271602	11.871419	14.878732
С	4.960224	10.976178	11.801646	Н	2.827960	2.692643	12.343202
С	3.225481	-0.146088	8.923974	Ν	0.964334	0.050176	11.711854
Η	3.593677	-1.174107	8.755758	Н	-4.275274	8.685374	14.996735
Ν	3.570436	11.129285	12.174195	С	3.178188	-0.705041	11.405505
Ν	7.075155	2.342434	9.345667	Н	1.167293	8.675176	12.667400
Η	1.315673	3.254777	10.575760	Н	3.438586	-1.751854	11.181380
С	5.668774	0.468119	9.073694	Н	-3.557171	3.579957	13.194973
0	0.559155	0.723582	9.530676	Ν	0.149740	11.006261	15.155302
Η	5.907340	-0.571354	8.797836	С	-3.075865	5.928856	13.902576
0	8.332822	5.710659	10.592857	С	-0.408589	0.014318	12.140906
С	4.148690	5.266623	10.553912	С	-2.023826	10.111108	15.329132
Η	8.728682	3.376454	10.020724	Ν	5.603593	4.569830	12.304219
0	6.787521	8.741143	11.761539	С	5.669301	-0.164416	11.545875
Ν	-1.409447	11.022583	13.250520	Н	5.834808	-1.206179	11.225774
Η	-2.342683	5.768428	10.415172	С	-1.600129	2.070192	12.834822
С	-2.106918	9.862487	12.989267	Н	-2.893207	10.475097	15.897986
Η	0.716213	7.945606	10.704514	Ν	-3.057338	7.027343	14.730449
С	3.203587	4.265144	10.890136	Ν	4.309132	-0.047718	12.032405
С	-0.004808	7.121049	10.727330	С	4.717080	3.615006	12.669902
Η	5.501536	10.593613	12.673992	Н	2.013593	11.716762	15.671546
Η	-3.943510	8.207710	13.302801	Н	-0.628291	-0.980039	12.565380
Ν	1.928966	11.649025	13.606172	Н	7.516986	5.376856	12.604284
Ν	2.624369	-0.068043	10.229032	С	0.602318	6.603794	13.070715
С	3.156310	11.037648	13.487221	Н	6.402653	7.460094	13.476639
С	1.305985	0.299540	10.395414	С	1.234425	7.835475	13.357080
Η	6.022841	6.215965	11.111895	С	2.040112	-0.552839	12.457855
С	6.862523	1.795809	10.598263	Ν	-0.764573	1.011903	13.112974
Ν	6.028853	0.708518	10.454272	Н	6.339204	0.062143	12.383895
С	5.305489	5.417290	11.289770	С	-3.094068	3.487651	14.184203
0	-3.301130	5.929520	12.700848	Ν	-2.852260	4.814229	14.681658
Η	-1.526384	12.258652	14.941902	С	6.791604	4.796283	13.182430
Η	-1.034542	0.176427	11.255815	С	0.185369	10.021025	16.118633
0	-2.023248	2.388449	11.733806	Ν	-1.906477	2.683432	14.037755
С	-1.197267	11.247085	14.659646	Н	1.714127	-1.511512	12.892659
Ν	-2.457568	9.308372	14.203677	Ν	-1.074642	9.476480	16.222240
С	-3.501758	8.323724	14.299181	Н	5.002237	2.960209	13.490664
С	-0.129150	6.365514	11.847958	С	3.996792	0.453396	13.276093
Η	0.928860	12.918236	14.911124	Н	7.218111	3.811580	13.401144
С	3.515122	3.471467	12.017506	С	5.966800	6.874528	14.288541
0	7.362394	2.183938	11.644739	Н	-3.796173	2.972636	14.862670
0	3.783874	10.518525	14.404709	Ν	2.643141	0.278267	13.491303

Η	0.281482	4.601376	13.874274	Ν	-1.387966	4.916869	16.653926
С	0.740581	5.577323	14.032796	С	-0.815795	6.090688	17.101453
С	-2.863759	6.681832	16.119840	Ν	-0.439703	2.753957	15.991144
Η	2.465210	8.916329	14.775779	С	0.880530	2.403253	15.792336
С	1.945061	7.995850	14.523061	Н	-2.137260	1.536086	15.787904
Η	4.744787	8.501511	14.965700	Н	-0.631021	8.457034	17.957446
0	1.160811	9.707777	16.789754	С	5.702825	4.768434	15.452059
С	6.249151	5.506287	14.393974	Н	1.723043	-0.512524	15.188431
С	-0.416526	0.923951	14.506524	Н	2.837342	0.861570	15.454578
Η	-3.719633	7.027872	16.720784	С	4.330800	6.668382	16.061947
0	4.789392	0.943577	14.074150	Н	5.961078	3.713006	15.575479
С	-2.706636	5.133162	16.084019	0	0.220543	6.181243	17.747729
Ν	-1.625242	7.139542	16.722035	0	1.845552	2.897736	16.361102
С	5.020854	7.456860	15.126565	Н	1.654266	5.000640	15.912143
С	-1.435952	8.489108	17.213260	С	-0.900094	3.616814	17.059038
С	-1.338796	1.975578	15.170468	С	2.990367	7.138396	16.566696
Ν	0.926038	1.382635	14.851046	Н	2.964651	8.191834	16.863802
Η	-0.575246	-0.099246	14.880535	С	4.730851	5.343178	16.274127
Η	-2.365171	8.816466	17.706110	Н	-0.063506	3.781359	17.748463
С	2.053218	0.466576	14.798551	Н	-1.703092	3.086842	17.597302
С	1.481959	5.785496	15.176343	Н	4.217473	4.727392	17.016783
Ν	2.054162	6.986249	15.417972	Н	2.601085	6.528477	17.387777
Η	-3.464055	4.597172	16.677094				

Section K. References

(1) Wu, H.; Chen, Y.; Zhang, L.; Anamimoghadam, O.; Shen, D.; Liu, Z.; Cai, K.; Pezzato, C.; Stern, C. L.; Liu, Y.; Stoddart, J. F. A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. *J. Am. Chem. Soc.* **2019**, *141*, 1280–1289.

(2) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* **2009**, *42*, 339–341.

(3) Sheldrick, G. M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. *Acta. Cryst.* **2015**, *A71*, 3–8.

(4) Sheldrick, G. M. A Short History of SHELX. Acta. Cryst. 2008, A64, 112–122.

(5) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. *J. Cheminf.* **2012**, *4*, 17.

(6) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF, A Full

Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. *J. Am. Chem. Soc.* **1992**, *114*, 10024–10035.

(7) Rappe, A. K.; Colwell, K. S.; Casewit, C. J. Application of a Universal Force Field to Metal Complexes. *Inorg. Chem.* **1993**, *32*, 3438–3450.

(8) Neese, F. The ORCA Program System. *Wiley Interdiscip. Rev.: Comput. Mol. Sci.*, **2012**, *2*, 73–78.

(9) Becke, A. D. Density Functional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* **1993**, *98*, 5648–5652.

(10) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.

(11) Neese, F. An Improvement of the Resolution of the Identity Approximation for the Calculation of the Coulomb Matrix. *J. Comp. Chem.*, **2003**, *24*, 1740–1747.

(12) Izsák, R.; Neese, F. An Overlap Fitted Chain of Spheres Exchange Method, *J. Chem. Phys.*, **2011**, *135*, 144105.

(13) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. *Phys. Chem. Chem. Phys.*2006, 8, 1057–1065.

(14) Stoychev, G. L.; Auer, A. A.; Neese, F. Automatic Generation of Auxiliary Basis Sets. J. *Theo. Comp. Chem.* **2017**, *13*, 554–562.

(15) Van Lenthe, E.; Baerends, E. J. Optimized Slater-Type Basis Sets for the Elements 1–118. *J. Comput. Chem.* **2003**, *24*, 1142–1156.

(16) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J.A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967.

(17) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B*, **2009**, *113*, 6378–6396.

(18) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. *J. Phys. Chem. A*, **1998**, *102*, 1995–2001.