Supplementary Information

A Facile and Green Engineering Approach for Enhanced Corrosion Resistance of Ni-Cr-Al₂O₃ Thermal Spray Coatings

Harpreet Singh Arora **, **, Gopinath Perumal **, Manjeet Rani, Harpreet S Grewal **Both authors contributed equally

¹Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh, India 201314

*Corresponding author email: harpreet.arora@snu.edu.in

Table S1: HVOF Spray parameters used for developing Ni-Cr-5Al₂O₃ coatings on stainless steel (SS316L)

Parameters	Value
LPG flow rate (slpm)	55-60
Oxygen flow rate (slpm)	240
Air pressure (kg/cm2)	5
Powder feed rate (g/min)	45
Spraying distance (mm)	152
Particle size Nickel (μm)	50-70
Particle size Chromium (μm)	60-90
Particle size Alumina (μm)	35-60

Figure S1: EDAX analysis of (a) FSP treated Ni-Cr-5Al₂O₃ coating and (b) SFP treated Ni-Cr-5Al₂O₃ coating.

Figure S2: SEM images of top surfaces after potentiodynamic polarization testing (a) and (b) assprayed Ni-Cr-5Al₂O₃ coating, (c) and (d) FSP treated Ni-Cr-5Al₂O₃ coating and (e) and (f) SFP treated Ni-Cr-5Al₂O₃ coating.

Figure S3: (a) XPS survey scan and (b) atomic percentage of different elements in the oxide layer of the as-sprayed, FSP treated and SFP treated Ni-Cr-5Al₂O₃ coating.