Supporting Information

Improvement of DNA Vector Delivery of DOTAP Lipoplexes by Short Chain Aminolipids

Jonas Buck¹, Dennis Mueller², Ute Mettal^{2,3}, Miriam Ackermann², Hiu Man Grisch-Chan⁴, Beat Thöny⁴, Andreas Zumbuehl^{2,5}, Jörg Huwyler^{1*}, Dominik Witzigmann^{1,6}

1 Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Switzerland

2 Department of Chemistry, University of Fribourg, Switzerland

3 Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Germany and Department of Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany

4 Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Switzerland

5 Acthera Therapeutics Ltd., Peter Merian-Strasse 45, 4052 Basel, Switzerland

6 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.

* Corresponding author

Supporting Results

1. Synthesis of Amino Lipids

1.1 Synthesis of *N*-decyl-*N*-(3-methyoxypropyl)decan-1-amine (AL-A10)

Figure S1: Chemical structure of *N*-decyl-*N*-(3-methyoxypropyl)decan-1-amine (AL-A10).

3-Methoxypropylamine (1.00 eq., 5.00 mmol, 0.51 mL), and decanal (2.20 eq., 11.00 mmol, 2.07 mL) were dissolved in DCM (25 mL) and stirred for 3 h. Sodium triacetoxyborohydride (2.20 eq., 11.00 mmol, 2.33 g) was added and the mixture was stirred for 2 days. The product was purified by column chromatography (Silica; EtOAc/MeOH (98:2 V/V) \rightarrow EtOAc/MeOH (90:10 V/V)) to yield a yellow liquid (702 mg, 1.90 mmol, 38.0 %).

¹**H NMR** (400 MHz, CDCl₃) δ = 3.47 (t, *J* = 5.5 Hz, 2H), 3.33 (s, 3H), 3.14-3.08 (m, 2H), 3.00-2.95 (m, 4H), 2.16-2.09 (m, 2H), 1.82-1.78 (m, 4H,), 1.35-1.27 (m, 28H), 0.89 (t, *J* =7.0 Hz, 6H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 69.3, 58.8, 52.4, 50.5, 31.8, 29.2, 29.0, 26.8, 24.1, 23.0, 22.6, 14.1 ppm.
 IR v = 2924, 2853, 1718, 1579, 1466, 1379, 1256, 1119 cm⁻¹.

HRMS (ESI⁺): m/z [M+H]⁺: calculated for [C₂₄H₅₁NO+H]⁺: 370.4048; found: 370.4037.

R_f(EtOAc / MeOH (9:1 V/V)) = 0.34.

Figure S2: ¹H-NMR of *N*-decyl-*N*-(3-methyoxypropyl)decan-1-amine (AL-A10).

Figure S3: ¹³C-NMR of *N*-decyl-*N*-(3-methyoxypropyl)decan-1-amine (AL-A10).

1.2 Synthesis of *N*-dodecyl-*N*-(3-methoxypropyl)dodecan-1-amine (AL-A12)

<u>_</u>0_

Figure S4: Chemical structure of *N*-dodecyl-*N*-(3-methoxypropyl)dodecan-1-amine (AL-A12).

3-Methoxypropylamine (1.00 eq., 5.00 mmol, 0.51 mL), and lauraldehyde (2.20 eq., 11.00 mmol, 2.44 mL) were dissolved in DCM (25 mL) and stirred for 3 h. Sodium triacetoxyborohydride (2.20 eq., 11.00 mmol, 2.33 g) was added and the mixture was stirred for 5 days. The product was purified by column chromatography (silica; DCM/MeOH (98:2 V/V) \rightarrow DCM/MeOH 90:10 V/V)) to yield a yellow, viscous liquid (588 mg, 1.38 mmol, 28 %).

¹**H NMR** (400 MHz, CDCl₃) δ = 3.49-3.39 (m, 2H), 3.31 (s, 3H), 3.10-3.06 (m, 2H), 2.97-2.93 (m, 3H), 2.05-1.98 (m, 4H), 1.74-1.62 (m, 3H), 1.31-1.25 (m, 36H), 0.87 (t, *J* = 6.9 Hz, 6H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 69.5, 58.7, 52.0, 50.1, 31.9, 29.6, 29.6, 29.5, 29.3, 29.1, 26.8, 24.1, 23.0,
22.6, 14.1 ppm.

IR v⁻ = 2923, 2823, 1717, 1567, 1466, 1379, 1251, 1118 cm⁻¹.

HRMS (ESI⁺) : m/z [M+H]⁺: calculated for [C₂₈H₅₉NO+H]⁺: 426.4674; found: 426.4661.

R_f (DCM / MeOH (9:1 V/V)) = 0.61.

Figure S5: ¹H-NMR of *N*-dodecyl-*N*-(3-methoxypropyl)dodecan-1-amine (AL-A12).

Cl3APT CDCl3 {C:\Bruker\TopSpin3.2\data\MMR\Zumbuehl} AZ 24

Figure S6: ¹³C-NMR of *N*-dodecyl-*N*-(3-methoxypropyl)dodecan-1-amine (AL-A12).

1.3 Synthesis of 3-(didecylamino)propan-1-ol (AL-B10)

Figure S7: Chemical structure of 3-(didecylamino)propan-1-ol (AL-B10).

3-Amino-1-propanol (1.00 eq., 5.00 mmol, 0.38 mL) and decanal (2.20 eq., 11.00 mmol, 2.07 mL) were dissolved in DCM (25 mL) and stirred for 3 h. Sodium triacetoxyborohydride (2.20 eq., 11.00 mmol, 2.33 g) was added and the mixture was stirred for 5 days. The product was purified by column chromatography (silica; DCM/MeOH/H₂O (89:10:1 V/V/V)) to yield a slightly yellow, viscous liquid (1.380 g, 3.88 mmol, 78 %). Aldehyde is not fully reacted off.

¹**H NMR** (400 MHz, CDCl₃) δ = 3.75-3.72 (m, 2H), 3.14 (t, *J* =7.2 Hz, 2H), 2.97-2.93 (m, 4H), 1.92 (qui, *J* = 6.2 Hz, 2H), 1.65 (m, 4H), 1.30-1.25 (m, 28H), 0.87 (t, *J* = 6.8 Hz, 6H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 59.0, 51.9, 50.2, 31.8, 29.4, 29.4, 29.2, 29.1, 26.8, 22.9, 22.6, 22.0, 14.0 ppm.

IR v = 2924, 2855, 1715, 1567, 1467, 1377, 1250, 1062, 1008 cm⁻¹.

HRMS (ESI⁺) : m/z [M+H]⁺: calculated for [C₂₃H₄₉NO+H]⁺: 356.3892; found: 356.3880.

 R_{f} (DCM / MeOH / H₂O, (89:10:1 V/V/V)) = 0.40.

Figure S8: ¹H-NMR of 3-(didecylamino)propan-1-ol (AL-B10).

Figure S9: ¹³C-NMR of 3-(didecylamino)propan-1-ol (AL-B10).

1.4 Synthesis of 3-(didodecylamino)propan-1-ol (AL-B12)

Figure S10: Chemical structure of 3-(didodecylamino)propan-1-ol (**AL-B12**). 3-Amino-1-propanol (1.00 eq., 5.00 mmol, 0.38 mL), lauraldehyde (2.20 eq, 11.00 mmol, 2.44 mL) and sodium triacetoxyborohydride (2.20 eq., 22.00 mmol, 2.33 g) were mixed in DCM and stirred for 2 days. The product was purified by column chromatography (silica, DCM/MeOH (95:5 V/V)) to yield a yellow liquid (428 mg, 1.04 mmol, 21 %). Aldehyde not fully reacted off.

¹H NMR (400 MHz, CDCl₃) δ = 3.76 (m, 2H), 3.47 (m, 1H), 3.21-3.17 (t, *J* = 7.2 Hz, 2H), 3.04-3.00 (m, 4H), 1.99-1.93 (q, *J* = 6.2 Hz, 2H), 1.68 (m, 4H), 1.30-1.24 (m, 36H), 0.88-0.85 (t, *J* = 6.7 Hz, 6H) ppm. ¹³C NMR (100MHz, CDCl₃) δ = 61.4, 59.0, 52.0, 51.9, 31.8, 29.5, 29.3, 29.3, 29.0, 26.7, 26.3, 22.8, 22.6,

21.1, 14.0 ppm.

IR 𝒴 = 2924, 2855, 1713, 1379, 1237, 1008 cm⁻¹.

HRMS (ESI⁺) : m/z [M+H]⁺: calculated for [C₂₇H₅₇NO + H]⁺: 412.4513; found : 412.4512

R_f (DCM/MeOH (95:5 V/V)): 0.67.

Figure S11: ¹H-NMR of 3-(didodecylamino)propan-1-ol (AL-B12).

Figure S12: ¹³C-NMR of 3-(didodecylamino)propan-1-ol (AL-B12).

1.5 Synthesis of 3-(didecylamino)propane-1,2-diol (AL-C10)

Figure S13: Chemical structure of 3-(didecylamino)propane-1,2-diol (AL-C10).

(±)-3-Amino-1,2-propanediol (1.00 eq., 5.00 mmol, 0.51 mL), decanal (2.20 eq, 11.00 mmol, 2.07 mL) and sodium triacetoxyborohydride (2.20 eq., 11.00 mmol, 2.33 g) were mixed in DCM and stirred for 2 days. The product was purified by column chromatography (silica; EtOAc/MeOH (98:2 V/V) \rightarrow EtOAc/MeOH (90:10 V/V)) to yield a yellow liquid (773 mg, 2.081 mmol, 42 %).

NMR data still showed impurities after several purification steps.

HRMS (ESI⁺) : m/z [M+H]⁺: calculated for [C₂₃H₄₉NO₂ + H]⁺: 372.3836; found : 372.3831

R_f (EtOAc/MeOH (90:10 V/V)): 0.25.

Figure S15: ¹³C-NMR of 3-(didecylamino)propane-1,2-diol (AL-C10).

1.6 Synthesis 3-(didodecylamino)-1,2-propanediol (AL-C12)

Figure S16: Chemical structure of 3-(didodecylamino)-1,2-propanediol (AL-C12).

(±)-3-Amino-1,2-propanediol (1.00 eq., 5.00 mmol, 0.51 mL), lauraldehyde (2.20 eq, 11.00 mmol, 2.44 mL) and sodium triacetoxyborohydride (2.20 eq., 11.00 mmol, 2.33 g) were mixed in DCM and stirred for 2 days. The product was purified by column chromatography (silica; DCM/MeOH (98:2 V/V)). The yield was too low to be determined, but still sufficient for characterization by NMR and HRMS.

¹**H NMR** (600 MHz, CDCl₃) δ = 4.17-4.11 (m, 1H), 3.73-3.67 (m, 1H), 3.62-3.56 (m, 1H), 3.18-2.93 (m, 5H), 1.75-1.57 (m, 2H),1.36-1.20 (m, 38H), 0.91-0.85 (m, 6H) ppm.

¹³C NMR (150 MHz, CDCl3) δ = 66.8, 64.7, 57.3, 54.2, 32.1, 29.8, 29.8, 29.7, 29.6, 29.5, 29.4, 27.1, 23.8, 22.9, 14.3 ppm.

HRMS (ESI⁺): m/z [M+H]⁺: calculated for [C₂₇H₅₇NO₂ + H]⁺: 428.4462; found: 428.4462.

Figure S17: ¹H-NMR of 3-(Didodecylamino)-1,2-propanediol (AL-C12).

Figure S18: ¹³C-NMR of 3-(Didodecylamino)-1,2-propanediol (AL-C12).

1.7 Synthesis of *N*,*N*-didecyl-*N*,*N*-dimethylethane-1,2-diamine (AL-D10)

Figure S19: Chemical structure of *N*,*N'*-didecyl-*N*,*N'*-dimethylethane-1,2-diamine (**AL-D10**). *N*,*N''*-Dimethylethylenediamine (1.00 eq., 5.00 mmol, 0.54 mL), and decanal (2.20 eq., 11.00 mmol, 2.07 mL) were dissolved in DCM (25 mL) and stirred for 3 h. Sodium triacetoxyborohydride (2.20 eq., 11.00 mmol, 2.33 g) was added and the reaction was stirred for 2 days. The product was purified by column chromatography (silica; DCM/MeOH/H₂O (89:10:1 V/V/V)) to yield a slightly yellow, cloudy and viscous liquid (1.924 g, 5.21 mmol). Aldehyde not fully reacted off.

¹**H NMR** (400 MHz, CDCl₃) δ = 3.04 (s, 4H), 2.75-2.71 (m, 4H), 2.53 (s, 6H), 1.61-1.57 (m, 4H), 1.28-1.25 (m, 28H), 0.87 (t, *J* = 6.9 Hz, 12 H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 56.8, 51.6, 40.6, 31.8, 29.4, 29.2, 27.0, 24.8, 22.6, 21.8, 14.0 ppm.

IR v = 2924, 2854, 1713, 1568, 1466, 1406, 1377, 1257 cm⁻¹.

HRMS (ESI⁺) : m/z [M+H]⁺: calculated for [C₂₄H₅₂N₂+H]⁺: 369.4209; found: 369.4209.

R_f(**DCM / MeOH / H**₂**O**, (89:10:1 V/V/V)) = 0.39.

Figure S20: ¹H-NMR of *N*,*N*'-didecyl-*N*,*N*'-dimethylethane-1,2-diamine (AL-D10).

Figure S21: ¹³C-NMR of *N*,*N*'-didecyl-*N*,*N*'-dimethylethane-1,2-diamine (**AL-D10**).

1.8 Synthesis of *N*,*N*,*N*,*N*-Tetrakis(decyl)propane-1,3-diamine (AL-E10)

Figure S22: Chemical structure of *N*,*N*,*N'*,*N'*-Tetrakis(decyl)propane-1,3-diamine (AL-E10). 1,3-Diaminopropane (1.00 eq., 5.00 mmol, 0.42 mL), and decanal (4.40 eq., 22.00 mmol, 4.14 mL) were dissolved in DCM (25 mL) and stirred for 3 h. Sodium triacetoxyborohydride (4.40 eq., 22.00 mmol, 4.66 g) was added and the reaction was stirred for 2 days. The product was purified by column chromatography (silica; EtOAc/MeOH (98:2) \rightarrow EtOAc/MeOH (90:10)) to yield a slightly yellow liquid (855 mg, 1.36 mmol, 27 %).

¹**H NMR** (400 MHz, CDCl₃) δ = 3.10 (m, 4H), 2.95-2.91 (m, 8H), 2.43-2.39 (m, 2H), 1.77-1.66 (m, 8H), 1.33-1.27 (m, 56H), 0.89 (t *J* = 7.0 Hz, 12H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 52.5, 51.0, 31.8, 29.4, 29.4, 29.2, 29.1, 26.9, 23.4, 22.6, 14.1 ppm.

IR v = 2922, 2853, 1715, 1571, 1466, 1377, 1259 cm⁻¹.

HRMS (ESI⁺): m/z [M+H]⁺: calculated for [C₄₃H₉₀N₂+H]⁺: 635.7182; found: 635.7178.

R_f(EtOAc / MeOH (9:1 V/V)) = 0.54.

Figure S23: ¹H-NMR of *N*,*N*,*N*',*N*'-Tetrakis(decyl)propane-1,3-diamine (AL-E10).

Figure S24: ¹³C-NMR of *N*,*N*,*N*',*N*'-Tetrakis(decyl)propane-1,3-diamine (AL-E10).

1.9 Synthesis of *N*,*N*,*N*',*N*'-tetradodecylpropane-1,3-diamine (**AL-E12**)

Figure S25: Chemical structure of *N*,*N*,*N*',*N*'-tetradodecylpropane-1,3-diamine (AL-E12).

1,3-Diaminopropane (1.00 eq., 5.00 mmol, 0.42 mL), lauraldehyde (4.40 eq, 22.00 mmol, 4.88 mL) and sodium triacetoxyborohydride (4.40 eq., 22.00 mmol, 4.66 g) were mixed in DCM and stirred for 5 days. The product was purified by column chromatography (silica; DCM/MeOH (98:2 V/V)) to yield a yellow liquid (26 mg, 0.04 mmol, <1 %). Aldehyde not fully reacted off.

¹H NMR (400 MHz, CDCl₃) δ = 3.10-3.06 (t, J = 7.8 Hz 4H), 2.96-2.92 (q, J = 4.2 Hz, 8H), 2.24-2.08 (m, 2H), 1.61 (m, 8H), 1.29-1.25 (m, 72H), 0.89-0.85 (t, J = 6.9 Hz, 12H) ppm.

¹³**C NMR** (100 MHz, CDCl3) δ = 51.8, 51.6, 49.8, 31.9, 29.6, 29.3, 29.1, 26.8, 22.9, 20.0, 22.6, 21.7, 14.0 ppm.

IR v = 2923, 2854, 1714, 1565, 1467, 1361, 1252, 1008 cm⁻¹.

HRMS (ESI⁺): m/z [M+H]⁺: calculated for [C₅₁H₁₀₆N₂ + H]⁺: 747.8429; found : 747.8426

R_f (DCM/MeOH (98:2 V/V)): 0.16.

Figure S26: ¹H-NMR of *N*,*N*,*N*',*N*'-tetradodecylpropane-1,3-diamine (**AL-E12**).

Figure S27: ¹³C-NMR of *N*,*N*,*N*',*N*'-tetradodecylpropane-1,3-diamine (**AL-E12**).

1.10 Synthesis of (Benzyl)didecylamine (AL-F10)

S19

Figure S28: Chemical structure of (Benzyl)didecylamine (AL-F10).

Benzylamine (1.00 eq., 5.00 mmol, 0.55 mL), and decanal (2.20 eq., 11.00 mmol, 2.07 mL) were dissolved in DCM (25 mL) and stirred for 3 h. Sodium triacetoxyborohydride (2.20 eq., 11.00 mmol, 2.33 g) was added and the mixture was stirred for 2 days. The product was purified by column chromatography (Silica; EtOAc/MeOH (98:2 V/V) \rightarrow EtOAc/MeOH (90:10 V/V)) to yield a dark yellow liquid (666 mg, 1.72 mmol, 34.4 %).

¹**H-NMR (400 MHz, CDCl₃):** δ = 7.27 − 7.10 (m, 5H), 3.46 (s, 2H), 2.36 − 2.26 (m, 4H), 1.45 − 1.31 (m, 4H), 1.17 (s, 28H), 0.81 (t, *J* = 6.8 Hz, 6H) ppm.

¹³C-NMR (100 MHz, CDCl₃): δ = 140.5, 129.0, 128.2, 126.7, 58.8, 54.0, 32.1, 29.83, 29.77, 29.75, 29.5, 27.5, 27.2, 22.8, 14.3 ppm.

HRMS (ESI⁺): m/z [M+H]⁺: calculated for [C₂₇H₄₉N + H]⁺: 388.3938; found : 388.3933.

R_f(DCM:MeOH (92:8 V/V)): 0.94.

Figure S29: ¹H-NMR of (Benzyl)didecylamine (AL-F10).

Figure S30: ¹³C-NMR of (Benzyl)didecylamine (AL-F10).

1.11 Synthesis of [(1*H*-Imidazol-2-yl)methyl]didecylamine (AL-G10)

Figure S31: Chemical structure of [(1*H*-Imidazol-2-yl)methyl]didecylamine (AL-G10). 2-(Aminomethyl)imidazole dihydrochloride (1.00 eq., 5.00 mmol, 0.85 g), and decanal (2.20 eq., 11.00 mmol, 2.07 mL) were dissolved in DCM (25 mL) and stirred for 3 h. Sodium triacetoxyborohydride (2.20 eq., 11.00 mmol, 2.33 g) was added and the mixture was stirred for 2 days. The product was purified by column chromatography (Silica; EtOAc/MeOH (98:2 V/V) \rightarrow EtOAc/MeOH (90:10 V/V)) to yield a yellow liquid (1.36 g, 3.59 mmol, 71.9 %).

¹H-NMR (400 MHz, CDCl₃): δ = 11.23 (br s, 2H), 7.01 – 6.93 (m, 2H), 5.22 (s, 1H), 4.39 (s, 1H), 3.58 – 3.55 (m, 1 H), 2.86 – 2.81 (m, 2H), 1.98 (br s, 4H), 1.58 – 1.46 (m, 3H), 1.18 (br s, 28H), 0.83 – 0.79 (m, 6H) ppm.

The integrals are not fitting well due to impurities which could not be removed by chromatography. Residual solvent peaks were found for DCM (5.33 ppm) and EtOAc 1.26 (s), 2.05 (t), 4.12 (q)

¹³C-NMR (100 MHz, CDCl₃): δ = 138.1, 122.9, 63.1, 52.9, 49.5, 37.7, 34.6, 32.9, 32.0, 32.0, 29.7, 29.7, 29.6, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 27.3, 27.3, 26.9, 25.9, 23.4, 22.8, 22.2, 14.2 ppm.

HRMS (ESI⁺): m/z [M+H]⁺: calculated for [C₂₄H₄₇N₃ + H]⁺: 378.3843; found : 378.3843.

R_f(DCM:MeOH (92:8 V/V)): 0.64.

Figure S32: ¹H-NMR of [(1*H*-Imidazol-2-yl)methyl]didecylamine (AL-G10).

Figure S33: ¹³C-NMR of [(1*H*-Imidazol-2-yl)methyl]didecylamine (AL-G10).

1.12 Synthesis [(4-Pyridyl)methyl]didecylamine (AL-H10)

Figure S34: Chemical structure of [(4-Pyridyl)methyl]didecylamine (AL-H10).

4-(Aminomethyl)pyridine (1.00 eq., 5.00 mmol, 0.51 mL), and decanal (2.20 eq., 11.00 mmol, 2.07 mL) were dissolved in DCM (25 mL) and stirred for 3 h. Sodium triacetoxyborohydride (2.20 eq., 11.00 mmol, 2.33 g) was added and the mixture was stirred for 2 days. The product was purified by column chromatography (Silica; EtOAc/MeOH (98:2 V/V) \rightarrow EtOAc/MeOH (90:10 V/V)) to yield a brown liquid (1.75 g, 4.51 mmol, 90.1 %). The spectrum still shows small acetic acid contaminations at approx. 2.1 ppm (¹H-NMR), 175 ppm, and 21 ppm (both ¹³C-NMR) that could not be removed with column chromatography.

¹H-NMR (400 MHz, CDCl₃): δ = 8.54 − 8.49 (m, 2H), 7.32 − 7.29 (m, 2H), 3.56 (s, 2H), 2.44 − 2.36 (m, 4H), 1.49 − 1.39 (m, 4H), 1.24 (s, 28H), 0.87 (t, *J* = 6.8 Hz, 6H) ppm.

¹³C-NMR (100 MHz, CDCl₃): δ = 150.3, 149.1, 124.0, 57.8, 54.2, 32.0, 29.8, 29.71, 29.66, 29.5, 27.5, 27.0, 22.8, 14.2 ppm.

HRMS (ESI⁺): m/z [M+H]⁺: calculated for [C₂₆H₄₈N₂ + H]⁺: 389.3890; found : 389.3890.

R_f(DCM:MeOH (92:8 V/V)): 0.78.

Figure S35: ¹H-NMR of [(4-Pyridyl)methyl]didecylamine (AL-H10).

Figure S36: ¹³C-NMR of [(4-Pyridyl)methyl]didecylamine (AL-H10).

2. In vitro experiments

2.1 Transfection experiments

Table S1. Posults of transfection	experiments for aminoli	nid_ and DOTAP:chol_based li	nonlovos
Table 31. Results of transfection	experiments for aminon	plu- and DOTAP.choi-based ii	popiezes.

Substance	Setting	GFP positive cells [%]	MFI [RFU]
AL-A10	1 μg DNA, 1:1 ratio	7.7	801
	2 μg DNA, 1:1 ratio	28.7	1033
AL-A12	1 μg DNA, 1:1 ratio	10.3	785
	2 μg DNA, 1:1 ratio	31.5	1606
AL-B10	1 μg DNA, 1:1 ratio	5.0	384
	2 μg DNA, 1:1 ratio	11.5	928
AL-B12	1 μg DNA, 1:1 ratio	8.6	469
	2 μg DNA, 1:1 ratio	8.3	358
AL-C10	1 μg DNA, 1:1 ratio	8.3	487
	2 μg DNA, 1:1 ratio	9.5	215
AL-C12	1 μg DNA, 1:1 ratio	6.0	658
	2 μg DNA, 1:1 ratio	4.2	451
AL-D10	1 μg DNA, 1:1 ratio	7.9	354
	2 μg DNA, 1:1 ratio	11.6	224
AL-E10	1 μg DNA, 1:1 ratio	4.7	577
	2 μg DNA, 1:1 ratio	11.5	928

AL-F10	1 μg DNA, 1:1 ratio	4.5	906
AL-G10	1 μg DNA, 1:1 ratio	4.7	714
AL-H10	1 μg DNA, 1:1 ratio	2.7	764
DOTAP:chol	1 μg DNA, 1:1 ratio	5.7	507
	2 μg DNA, 1:1 ratio	13.2	756
Lipofectamine 3000	1 μg DNA, 1:1 ratio	47.5	7632

2.2 Cytotoxicity experiments

Table S2: LC10, LC50, and LC90 values corresponding to 90%, 50%, and 10% cell viability for aminolipid- and DOTAP:chol-based systems. The values were calculated from MTT-assay data using the non-linear dose-response function in Origin 2018.

Substance	LC10 (90% viability) [µM]	LC50 (50% viability) [µM]	LC90 (10% viability) [µM]
AL-A10	3.7	16.8	76.5
AL-A12	4.2	43.9	456.9
AL-B10	5.4	9.3	15.9
AL-B12	4.1	9.3	21.1
AL-C10	2.2	4.8	10.4
AL-C12	0.8	9.7	120.3
AL-D10	0.9	3.0	9.5
AL-E10	1.7	20.6	251.9
AL-F10	2.2	75.3	2548.8
AL-G10	9.7	42.2	182.7
AL-H10	2.0	20.6	213.7
DOTAP:chol	2.4	24.4	254.6

Table S3: Average cell viability results of three MTT assays.

Substance	% Survival (4 μM)	% Survival (16 μM)	% Survival (25 μM)	% Survival (64 μM)	% Survival (128 μM)
AL-A10	77.5 ± 0.7	72.9 ± 1.0	65.3 ± 0.4	7.2 ± 0.3	2.5 ± 0.4
AL-A12	96.3 ± 0.7	88.9 ± 1.9	78.2 ± 2.8	48.2 ± 0.6	33.6 ± 0.5
AL-B10	79.2 ± 0.9	69.2 ± 0.6	3.4 ± 0.0	1.7 ± 0.2	1.7 ± 0.2
AL-B12	80.2 ± 1.8	67.4 ± 0.7	13.4 ± 0.2	2.0 ± 0.2	3.1 ± 1.9
AL-C10	62.8 ± 1.1	2.9 ± 0.1	1.4 ± 0.0	2.0 ± 0.6	2.2 ± 0.7
AL-C12	58.3 ± 0.2	53.6 ± 0.6	34.7 ± 0.3	3.6 ± 1.8	3.6 ± 0.1
AL-D10	36.5 ± 1.1	2.4 ± 0.1	3.3 ± 0.4	3.4 ± 0.1	3.5 ± 0.2
AL-E10	71.8 ± 1.5	62.2 ± 0.9	50.7 ± 0.9	22.5 ± 1.6	12.3 ± 1.2
AL-F10	84.7 ± 4.5	68.8 ± 2.0	69.4 ± 1.0	54.1 ± 1.6	39.1 ± 1.8
AL-G10	74.4 ± 7.9	73.4 ± 0.2	68.2 ± 0.1	29.7 ± 4.6	12.0 ± 2.4
AL-H10	80.1 ± 2.0	57.1 ± 2.5	50.5 ± 0.7	26.7 ± 0.9	11.4 ± 0.1
DOTAP:chol	78.4 ± 1.5	73.1 ± 1.1	65.3 ± 0.1	22.0 ± 0.2	17.4 ± 1.1

2.3 Structure-Activity-Relationship

The SAR was done for aminolipids AL-A10, AL-A12, AL-B10, AL-B12, and DOTAP:chol. A total of three independent measurements with three replicates each was done to obtain the data necessary for statistical evaluation. Statistical evaluation was carried out using Origin 2018 Pro (see Materials and Methods).

2.3.1 Results of the Structure-Activity-Relationship experiments

Figure S37: Structure-Activity-Relationship for the most promising aminolipids AL-A10, AL-A12, AL-B10, AL-B12, as well as DOTAP:chol. The graph shows the influence of the headgroup on transfection efficiency (A, B) and transgene expression (D, E) when the tail length stays constant and the influence of the tail length on transfection efficiency (C) and transgene expression (F) when the headgroup stays constant. Methoxy headgroups are superior to hydroxy headgroups (p < 0.001) and C_{12} tails are superior to C_{10} tails in both, transfection efficiency (p < 0.1) and transgene expression (p < 0.001). The data were obtained from three independent measurements with three replicates each. * p < 0.1, ** p < 0.001.

2.3.2 ANOVA Tables for GFP (p < 0.1)

Table S4: Descriptive statistics for the one way ANOVA for GFP (p < 0.1). AL 1 corresponds to AL-A10, AL 2 corresponds to AL-A12, AL 3 corresponds to AL-B10, and AL 4 corresponds to AL-B12.

	N Analysis	N Missing	Mean	Standard Deviation	SE of Mean
DOTAP/Chol 1 ug	8	1	6.0	0.7	0.3
AL 1 1 ug	9	0	7.9	1.9	0.6
AL 2 1 ug	9	0	11.2	4.2	1.4
AL 3 1 ug	9	0	4.7	2.0	0.7
AL 4 1 ug	9	0	7.6	3.1	1.0
DOTAP/Chol 2 ug	9	0	14.3	3.1	1.0
AL 1 2 ug	9	0	28.6	8.2	2.7
AL 2 2 ug	9	0	37.3	12.7	4.2
AL 3 2 ug	9	0	11.5	4.8	1.6
AL 4 2 ug	9	0	6.8	2.8	0.9

Table S5: Overall ANOVA table for the one way ANOVA for GFP (p < 0.1). Null Hypothesis: The means of all levels are equal. Alternative Hypothesis: The means of one or more levels are different. At the 0.1 level, the population means are significantly different.

	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	9	9374.4	1041.6	33.9	0
Error	79	2428.6	30.7		
Total	88	11803.0			

Table S6: Fit statistics for the one way ANOVA for GFP (p < 0.1).

R-Square	Coeff Var	Root MSE	Data Mean
0.794	0.406	5.545	13.661

Table S7: Means comparison Bonferroni test for one way ANOVA for GFP (p < 0.1). Sig equals 1 indicates that the difference of the means is significant at the 0.1 level. Sig equals 0 indicates that the difference of the means is not significant at the 0.1 level. AL 1 corresponds to AL-A10, AL 2 corresponds to AL-A12, AL 3 corresponds to AL-B10, and AL 4 corresponds to AL-B12.

	MeanDiff	SEM	t Value	Prob	Alpha	Sig	LCL	UCL
AL 1 1 ug DOTAP/Chol 1 ug	1.9	2.7	0.7	1	0.1	0	-6.6	10.4
AL 2 1 ug DOTAP/Chol 1 ug	5.2	2.7	1.9	1	0.1	0	-3.4	13.7
AL 2 1 ug AL 1 1 ug	3.2	2.6	1.2	1	0.1	0	-5.0	11.5
AL 3 1 ug DOTAP/Chol 1 ug	-1.3	2.7	-0.5	1	0.1	0	-9.8	7.2
AL 3 1 ug AL 1 1 ug	-3.2	2.6	-1.2	1	0.1	0	-11.5	5.0
AL 3 1 ug AL 2 1 ug	-6.5	2.6	-2.5	0.7	0.1	0	-14.7	1.8
AL 4 1 ug DOTAP/Chol 1 ug	1.6	2.7	0.6	1	0.1	0	-6.9	10.1
AL 4 1 ug AL 1 1 ug	-0.3	2.6	-0.1	1	0.1	0	-8.6	7.9
AL 4 1 ug AL 2 1 ug	-3.6	2.6	-1.4	1	0.1	0	-11.8	4.7
AL 4 1 ug AL 3 1 ug	2.9	2.6	1.1	1	0.1	0	-5.4	11.2
DOTAP/Chol 2 ug DOTAP/Chol 1ug	8.3	2.7	3.1	0.1	0.1	0	-0.2	16.9
DOTAP/Chol 2 ug AL 1 1 ug	6.4	2.6	2.5	0.7	0.1	0	-1.8	14.7
DOTAP/Chol 2 ug AL 2 1 ug	3.2	2.6	1.2	1	0.1	0	-5.1	11.5
DOTAP/Chol 2 ug AL 3 1 ug	9.7	2.6	3.7	0.0	0.1	1	1.4	17.9
DOTAP/Chol 2 ug AL 4 1 ug	6.8	2.6	2.6	0.5	0.1	0	-1.5	15.0
AL 1 2 ug DOTAP/Chol 1 ug	22.6	2.7	8.4	7.4E-11	0.1	1	14.0	31.1
AL 1 2 ug AL 1 1 ug	20.6	2.6	7.9	6.2E-10	0.1	1	12.4	28.9
AL 1 2 ug AL 2 1 ug	17.4	2.6	6.7	1.5E-7	0.1	1	9.1	25.7

AL 1 2 ug AL 3 1 ug	23.9	2.6	9.1	2.4E-12	0.1	1	15.6	32.2
AL 1 2 ug AL 4 1 ug	21.0	2.6	8.0	3.5E-10	0.1	1	12.7	29.2
AL 1 2 ug DOTAP/Chol 2 ug	14.2	2.6	5.4	2.6E-5	0.1	1	6.0	22.5
AL 2 2 ug DOTAP/Chol 1 ug	31.3	2.7	11.6	4.3E-17	0.1	1	22.8	39.8
AL 2 2 ug AL 1 1 ug	29.4	2.6	11.2	2.2-16	0.1	1	21.1	37.6
AL 2 2 ug AL 2 1 ug	26.1	2.6	10.0	5.1E-14	0.1	1	17.9	34.4
AL 2 2 ug AL 3 1 ug	32.6	2.6	12.5	1.1E-18	0.1	1	24.3	40.9
AL 2 2 ug AL 4 1 ug	29.7	2.6	11.4	1.3E-16	0.1	1	21.4	38.0
AL 2 2 ug DOTAP/Chol 2 ug	22.9	2.6	8.8	1.2E-11	0.1	1	14.7	31.2
AL 2 2 ug AL 1 2 ug	8.7	2.6	3.3	0.1	0.1	1	0.5	17.0
AL 3 2 ug DOTAP/Chol 1 ug	5.4	2.7	2.0	1	0.1	0	-3.1	14.0
AL 3 2 ug AL 1 1 ug	3.5	2.6	1.4	1	0.1	0	-4.7	11.8
AL 3 2 ug AL 2 1 ug	0.3	2.6	0.1	1	0.1	0	-8.0	8.6
AL 3 2 ug AL 3 1 ug	6.8	2.6	2.6	0.5	0.1	0	-1.5	15.0
AL 3 2 ug AL 4 1 ug	3.9	2.6	1.5	1	0.1	0	-4.4	12.1
AL 3 2 ug DOTAP/Chol 2 ug	-2.9	2.6	-1.1	1	0.1	0	-11.2	5.4
AL 3 2 ug AL 1 2 ug	-17.1	2.6	-6.6	2.4E-7	0.1	1	-25.4	-8.9
AL 3 2 ug AL 2 2 ug	-25.8	2.6	-9.9	8.4E-14	0.1	1	-34.1	-17.6
AL 4 2 ug DOTAP/Chol 1 ug	0.8	2.7	0.3	1	0.1	0	-7.8	9.3
AL 4 2 ug AL 1 1 ug	-1.2	2.6	-0.5	1	0.1	0	-9.4	7.1
AL 4 2 ug AL 2 1 ug	-4.4	2.6	-1.7	1	0.1	0	-12.7	3.9
AL 4 2 ug AL 3 1 ug	2.1	2.6	0.8	1	0.1	0	-6.2	10.3
AL 4 2 ug AL 4 1 ug	-0.8	2.6	-0.3	1	0.1	0	-9.1	7.4
AL 4 2 ug DOTAP/Chol 2 ug	-7.6	2.6	-2.9	0.2	0.1	0	-15.9	0.7
AL 4 2 ug AL 1 2 ug	-21.8	2.6	-8.3	8.4E-11	0.1	1	-30.1	-13.6
AL 4 2 ug AL 2 2 ug	-30.5	2.6	-11.7	3.1E-17	0.1	1	-38.8	-22.3
AL 4 2 ug AL 3 2 ug	-4.7	2.6	-1.8	1	0.1	0	-13.0	3.6

2.3.3 ANOVA Table for GFP (p < 0.001)

Table S8: Descriptive statistics for the one way ANOVA for GFP (p < 0.001). AL 1 corresponds to AL-A10, AL 2 corresponds to AL-A12, AL 3 corresponds to AL-B10, and AL 4 corresponds to AL-B12.

	N Analysis	N Missing	Mean	Standard Deviation	SE of Mean
DOTAP/Chol 1 ug	8	1	6.0	0.7	0.3
AL 1 1 ug	9	0	7.9	1.9	0.6
AL 2 1 ug	9	0	11.2	4.2	1.4
AL 3 1 ug	9	0	4.7	2.0	0.7
AL 4 1 ug	9	0	7.6	3.1	1.0
DOTAP/Chol 2 ug	9	0	14.3	3.1	1.0
AL 1 2 ug	9	0	28.6	8.2	2.7
AL 2 2 ug	9	0	37.3	12.7	4.2
AL 3 2 ug	9	0	11.5	4.8	1.6
AL 4 2 ug	9	0	6.8	2.8	1.0

Table S9: Overall ANOVA table for the one way ANOVA for GFP (p < 0.001). Null Hypothesis: The means of all levels are equal. Alternative Hypothesis: The means of one or more levels are different. At the 0.001 level, the population means are significantly different.

	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	9	9374.4	1041.6	33.9	0
Error	79	2428.6	30.7		
Total	88	11803.0			

Table S10: Fit statistics for the one way ANOVA for GFP (p < 0.001).

0.794	0.406	5.545	13.661

Table S11: Means comparison Bonferroni test for one way ANOVA for GFP (p < 0.001). Sig equals 1 indicates that the difference of the means is significant at the 0.001 level. Sig equals 0 indicates that the difference of the means is not significant at the 0.001 level. AL 1 corresponds to AL-A10, AL 2 corresponds to AL-A12, AL 3 corresponds to AL-B10, and AL 4 corresponds to AL-B12.

	MeanDiff	SEM	t Value	Prob	Alpha	Sig	LCL	UCL
AL 1 1 ug DOTAP/Chol 1 ug	1.9	2.7	0.7	1	0.001	0	-10.2	14.1
AL 2 1 ug DOTAP/Chol 1 ug	5.2	2.7	1.9	1	0.001	0	-7.0	17.3
AL 2 1 ug AL 1 1 ug	3.2	2.6	1.2	1	0.001	0	-8.6	15.0
AL 3 1 ug DOTAP/Chol 1 ug	-1.3	2.7	-0.5	1	0.001	0	-13.5	10.8
AL 3 1 ug AL 1 1 ug	-3.2	2.6	-1.2	1	0.001	0	-15.0	8.6
AL 3 1 ug AL 2 1 ug	-6.5	2.6	-2.5	0.7	0.001	0	-18.3	5.3
AL 4 1 ug DOTAP/Chol 1 ug	1.6	2.7	0.6	1	0.001	0	-10.6	13.7
AL 4 1 ug AL 1 1 ug	-0.3	2.6	-0.1	1	0.001	0	-12.1	11.5
AL 4 1 ug AL 2 1 ug	-3.6	2.6	-1.4	1	0.001	0	-15.4	8.2
AL 4 1 ug AL 3 1 ug	2.9	2.6	1.1	1	0.001	0	-8.9	14.7
DOTAP/Chol 2 ug DOTAP/Chol 1ug	8.3	2.7	3.1	0.1	0.001	0	-3.8	20.5
DOTAP/Chol 2 ug AL 1 1 ug	6.4	2.6	2.5	0.7	0.001	0	-5.4	18.2
DOTAP/Chol 2 ug AL 2 1 ug	3.2	2.6	1.2	1	0.001	0	-8.6	15.0
DOTAP/Chol 2 ug AL 3 1 ug	9.7	2.6	3.7	0.0	0.001	0	-2.1	21.5
DOTAP/Chol 2 ug AL 4 1 ug	6.8	2.6	2.6	0.5	0.001	0	-5.0	18.5
AL 1 2 ug DOTAP/Chol 1 ug	22.6	2.7	8.4	7.4E-11	0.001	1	10.4	34.7
AL 1 2 ug AL 1 1 ug	20.6	2.6	7.9	6.2E-10	0.001	1	8.9	32.4
AL 1 2 ug AL 2 1 ug	17.4	2.6	6.7	1.5E-7	0.001	1	5.6	29.2
AL 1 2 ug AL 3 1 ug	23.9	2.6	9.1	2.4E-12	0.001	1	12.1	35.7
AL 1 2 ug AL 4 1 ug	21.0	2.6	8.0	3.5E-10	0.001	1	9.2	32.8
AL 1 2 ug DOTAP/Chol 2 ug	14.2	2.6	5.4	2.6E-5	0.001	1	2.4	26.0
AL 2 2 ug DOTAP/Chol 1 ug	31.3	2.7	11.6	4.3E-17	0.001	1	19.1	43.4
AL 2 2 ug AL 1 1 ug	29.4	2.6	11.2	2.2E-16	0.001	1	17.6	41.1
AL 2 2 ug AL 2 1 ug	26.1	2.6	10.0	5.1E-14	0.001	1	14.3	37.9
AL 2 2 ug AL 3 1 ug	32.6	2.6	12.5	1.1E-18	0.001	1	20.8	44.4
AL 2 2 ug AL 4 1 ug	29.7	2.6	11.4	1.3E-16	0.001	1	17.9	41.5
AL 2 2 ug DOTAP/Chol 2 ug	22.9	2.6	8.8	1.2E-11	0.001	1	11.2	34.7
AL 2 2 ug AL 1 2 ug	8.7	2.6	3.3	0.1	0.001	0	-3.1	20.5
AL 3 2 ug DOTAP/Chol 1 ug	5.4	2.7	2.0	1	0.001	0	-6.7	17.6
AL 3 2 ug AL 1 1 ug	3.5	2.6	1.4	1	0.001	0	-8.3	15.3
AL 3 2 ug AL 2 1 ug	0.3	2.6	0.1	1	0.001	0	-11.5	12.1
AL 3 2 ug AL 3 1 ug	6.8	2.6	2.6	0.5	0.001	0	-5.0	18.6
AL 3 2 ug AL 4 1 ug	3.9	2.6	1.5	1	0.001	0	-7.9	15.7
AL 3 2 ug DOTAP/Chol 2 ug	-2.9	2.6	-1.1	1	0.001	0	-14.7	8.9
AL 3 2 ug AL 1 2 ug	-17.1	2.6	-6.6	2.4E-7	0.001	1	-28.9	-5.3
AL 3 2 ug AL 2 2 ug	-25.8	2.6	-9.9	8.4E-14	0.001	1	-37.6	-14.0
AL 4 2 ug DOTAP/Chol 1 ug	0.8	2.7	0.28	1	0.001	0	-11.4	12.9
AL 4 2 ug AL 1 1 ug	-1.2	2.6	-0.5	1	0.001	0	-13.0	10.6
AL 4 2 ug AL 2 1 ug	-4.4	2.6	-1.7	1	0.001	0	-16.2	7.4
AL 4 2 UG AL 3 1 UG	2.1	2.6	0.8	1	0.001	0	-9.7	13.9
	-0.8	2.0	-0.3	1	0.001	0	-12.0	11.0
	-7.0	2.0 2.6	-2.9	0.2 8.3E-11	0.001	1	-19.4	4.2 _10.0
AL 4 2 ug AL 2 2 ug	-30.5	2.0	-11 7	3.1E-17	0.001	1	-42.3	-18 7
AL 4 2 ug AL 3 2 ug	-4.7	2.6	-1.8	1	0.001	0	-16.5	7.1

2.3.4 ANOVA Table for MFI (p < 0.1)

Table S12: Descriptive statistics for the one way ANOVA for MFI (p < 0.1). AL 1 corresponds to AL-A10, AL 2 corresponds to AL-A12, AL 3 corresponds to AL-B10, and AL 4 corresponds to AL-B12.

	N Analysis	N Missing	Mean	Standard Deviation	SE of Mean
DOTAP/Chol 1 ug	8	1	417.5	21.4	7.6
AL 1 1 ug	9	0	409.4	40.0	13.3
AL 2 1 ug	9	0	623.7	152.2	50.5
AL 3 1 ug	8	1	333.3	23.6	8.4
AL 4 1 ug	9	0	320.8	78.8	26.3
DOTAP/Chol 2 ug	9	0	644.4	107.2	35.7
AL 1 2 ug	9	0	893.9	167.7	55.9
AL 2 2 ug	9	0	1459.3	478.0	159.3
AL 3 2 ug	9	0	247.3	103.9	34.6
AL 4 2 ug	9	0	250.8	67.1	22.4

Table S13: Overall ANOVA table for the one way ANOVA for MFI (p < 0.1). Null Hypothesis: The means of all levels are equal. Alternative Hypothesis: The means of one or more levels are different. At the 0.1 level, the population means are significantly different.

	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	9	1.1E7	1.3E6	39.2	0
Error	78	2.5E6	32335.8		
Total	87	1.4E7			

Table S14: Fit statistics for the one way ANOVA for MFI (p < 0.1).

R-Square	Coeff Var	Root MSE	Data Mean
0.819	0.319	179.822	564.239

Table S15: Means comparison Bonferroni test for one way ANOVA for MFI (p < 0.1). Sig equals 1 indicates that the difference of the means is significant at the 0.1 level. Sig equals 0 indicates that the difference of the means is not significant at the 0.1 level. AL 1 corresponds to AL-A10, AL 2 corresponds to AL-A12, AL 3 corresponds to AL-B10, and AL 4 corresponds to AL-B12.

	MeanDiff	SEM	t Value	Prob	Alpha	Sig	LCL	UCL
AL 1 1 ug DOTAP/Chol 1 ug	-8.1	87.4	-0.1	1	0.1	0	-284.5	268.4
AL 2 1 ug DOTAP/Chol 1 ug	206.2	87.4	2.4	0.9	0.1	0	-70.3	482.6
AL 2 1 ug AL 1 1 ug	214.2	84.8	2.5	0.6	0.1	0	-53.9	482.4
AL 3 1 ug DOTAP/Chol 1 ug	-84.3	89.9	-0.9	1	0.1	0	-368.7	200.2
AL 3 1 ug AL 1 1 ug	-76.2	87.4	-0.9	1	0.1	0	-352.6	200.2
AL 3 1 ug AL 2 1 ug	-290.4	87.4	-3.3	0.1	0.1	1	-566.8	-14.0
AL 4 1 ug DOTAP/Chol 1 ug	-96.7	87.4	-1.1	1	0.1	0	-373.1	179.7
AL 4 1 ug AL 1 1 ug	-88.7	84.8	-1.0	1	0.1	0	-356.8	179.5
AL 4 1 ug AL 2 1 ug	-302.9	84.8	-3.6	0.0	0.1	1	-571.1	-34.7
AL 4 1 ug AL 3 1 ug	-12.5	87.4	-0.1	1	0.1	0	-288.9	263.9
DOTAP/Chol 2 ug DOTAP/Chol 1 ug	226.9	87.4	2.6	0.5	0.1	0	-49.5	503.4
DOTAP/Chol 2 ug AL 1 1 ug	235.0	84.8	2.8	0.3	0.1	0	-33.2	503.2
DOTAP/Chol 2 ug AL 2 1 ug	20.8	84.8	0.2	1	0.1	0	-247.4	288.9
DOTAP/Chol 2 ug AL 3 1 ug	311.2	87.4	3.6	0.0	0.1	1	34.8	587.6
DOTAP/Chol 2 ug AL 4 1 ug	323.7	84.8	3.8	0.0	0.1	1	55.5	591.8
AL 1 2 ug DOTAP/Chol 1 ug	476.4	87.4	5.5	2.5E-5	0.1	1	200.0	752.8
AL 1 2 ug AL 1 1 ug	484.4	84.8	5.7	8.6E-6	0.1	1	216.3	752.6

AL 1 2 ug AL 2 1 ug	270.2	84.8	3.2	0.1	0.1	1	2.1	538.4
AL 1 2 ug AL 3 1 ug	560.6	87.4	6.4	4.5E-7	0.1	1	284.2	837.1
AL 1 2 ug AL 4 1 ug	573.1	84.8	6.8	1.0E-7	0.1	1	304.9	841.3
AL 1 2 ug DOTAP/Chol 2 ug	249.4	84.8	2.9	0.2	0.1	0	-18.7	517.6
AL 2 2 ug DOTAP/Chol 1 ug	1041.8	87.4	11.9	1.3E-17	0.1	1	765.4	1318.3
AL 2 2 ug AL 1 1 ug	1049.9	84.8	12.4	1.9E-18	0.1	1	781.7	1318.1
AL 2 2 ug AL 2 1 ug	835.7	84.8	9.9	1.1E-13	0.1	1	567.5	1103.8
AL 2 2 ug AL 3 1 ug	1126.1	87.4	12.9	2.3E-19	0.1	1	849.7	1402.5
AL 2 2 ug AL 4 1 ug	1138.6	84.8	13.4	2.5E-20	0.1	1	870.4	1406.7
AL 2 2 ug DOTAP/Chol 2 ug	814.9	84.8	9.6	3.2E-13	0.1	1	546.7	1083.1
AL 2 2 ug AL 1 2 ug	565.4	84.8	6.7	1.5E-7	0.1	1	297.3	833.6
AL 3 2 ug DOTAP/Chol 1 ug	-170.2	87.4	-1.9	1	0.1	0	-446.6	106.3
AL 3 2 ug AL 1 1 ug	-162.1	84.8	-1.9	1	0.1	0	-430.3	106.1
AL 3 2 ug AL 2 1 ug	-376.3	84.8	-4.4	0.0	0.1	1	-644.5	-108.2
AL 3 2 ug AL 3 1 ug	-85.9	87.4	-1.0	1	0.1	0	-362.3	190.5
AL 3 2 ug AL 4 1 ug	-73.4	84.8	-0.9	1	0.1	0	-341.6	194.7
AL 3 2 ug DOTAP/Chol 2 ug	-397.1	84.8	-4.7	5.3E-4	0.1	1	-665.3	-128.9
AL 3 2 ug AL 1 2 ug	-646.6	84.8	-7.6	2.2E-9	0.1	1	-914.7	-378.4
AL 3 2 ug AL 2 2 ug	-1212.0	84.8	-14.3	7.6E-22	0.1	1	-1480.2	-943.8
AL 4 2 ug DOTAP/Chol 1 ug	-166.7	87.4	-1.9	1	0.1	0	-443.1	109.7
AL 4 2 ug AL 1 1 ug	-158.7	84.8	-1.9	1	0.1	0	-426.8	109.5
AL 4 2 ug AL 2 1 ug	-372.9	84.8	-4.4	0.0	0.1	1	-641.1	-104.7
AL 4 2 ug AL 3 1 ug	-82.5	87.4	-0.9	1	0.1	0	-358.9	193.9
AL 4 2 ug AL 4 1 ug	-70.0	84.8	-0.8	1	0.1	0	-338.2	198.2
AL 4 2 ug DOTAP/Chol 2 ug	-393.7	84.8	-4.6	6.1E-4	0.1	1	-661.8	-125.5
AL 4 2 ug AL 1 2 ug	-643.1	84.8	-7.6	2.7E-9	0.1	1	-911.3	-374.9
AL 4 2 ug AL 2 2 ug	-1208.6	84.8	-14.3	9.0E-22	0.1	1	-1476.7	-940.4
AL 4 2 ug AL 3 2 ug	3.4	84.8	0.0	1	0.1	0	-264.7	271.6

2.3.5 ANOVA Table for MFI (p < 0.001)

Table S16: Descriptive statistics for the one way ANOVA for MFI (p < 0.001). AL 1 corresponds to AL-A10, AL 2 corresponds to AL-A12, AL 3 corresponds to AL-B10, and AL 4 corresponds to AL-B12.

	N Analysis	N Missing	Mean	Standard Deviation	SE of Mean
DOTAP/Chol 1 ug	8	1	417.5	21.4	7.6
AL 1 1 ug	9	0	409.4	40.0	13.3
AL 2 1 ug	9	0	623.6	152.2	50.7
AL 3 1 ug	8	1	333.3	23.6	8.3
AL 4 1 ug	9	0	320.8	78.8	26.3
DOTAP/Chol 2 ug	9	0	644.4	107.2	35.7
AL 1 2 ug	9	0	893.9	167.7	55.9
AL 2 2 ug	9	0	1459.3	478.0	159.3
AL 3 2 ug	9	0	247.3	103.9	34.6
AL 4 2 ug	9	0	250.8	67.1	22.4

Table S17: Overall ANOVA table for the one way ANOVA for MFI (p < 0.001). Null Hypothesis: The means of all levels are equal. Alternative Hypothesis: The means of one or more levels are different. At the 0.001 level, the population means are significantly different.

	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	9	1.1E7	1.3E6	39.2	0
Error	78	2.5E6	32335.8		
Total	87	1.4E7			

Table S18: Fit statistics for the one way ANOVA for MFI (p < 0.001).

R-Square	Coeff Var	Root MSE	Data Mean
0.819	0.319	179.822	564.239

Table S19: Means comparison Bonferroni test for one way ANOVA for MFI (p < 0.001). Sig equals 1 indicates that the difference of the means is significant at the 0.001 level. Sig equals 0 indicates that the difference of the means is not significant at the 0.001 level. AL 1 corresponds to AL-A10, AL 2 corresponds to AL-A12, AL 3 corresponds to AL-B10, and AL 4 corresponds to AL-B12.

	MeanDiff	SEM	t Value	Prob	Alpha	Sig	LCL	UCL
AL 1 1 ug DOTAP/Chol 1 ug	-8.1	87.4	-0.1	1	0.001	0	-402.5	386.4
AL 2 1 ug DOTAP/Chol 1 ug	206.2	87.4	2.4	0.9	0.001	0	-188.2	600.6
AL 2 1 ug AL 1 1 ug	214.2	84.8	2.5	0.6	0.001	0	-168.4	596.9
AL 3 1 ug DOTAP/Chol 1 ug	-84.3	89.9	-0.9	1	0.001	0	-490.1	321.6
AL 3 1 ug AL 1 1 ug	-76.2	87.4	-0.9	1	0.001	0	-470.6	318.2
AL 3 1 ug AL 2 1 ug	-290.4	87.4	-3.3	0.1	0.001	0	-684.8	104.0
AL 4 1 ug DOTAP/Chol 1 ug	-96.7	87.4	-1.1	1	0.001	0	-491.1	297.7
AL 4 1 ug AL 1 1 ug	-88.7	84.8	-1.0	1	0.001	0	-471.3	294.0
AL 4 1 ug AL 2 1 ug	-302.9	84.8	-3.6	0.0	0.001	0	-685.5	79.7
AL 4 1 ug AL 3 1 ug	-12.5	87.4	-0.1	1	0.001	0	-406.9	381.9
DOTAP/Chol 2 ug DOTAP/Chol 1 ug	226.9	87.4	2.6	0.5	0.001	0	-167.5	621.4
DOTAP/Chol 2 ug AL 1 1 ug	235.0	84.8	2.8	0.3	0.001	0	-147.6	617.6
DOTAP/Chol 2 ug AL 2 1 ug	20.8	84.8	0.2	1	0.001	0	-361.9	403.4
DOTAP/Chol 2 ug AL 3 1 ug	311.2	87.4	3.6	0.0	0.001	0	-83.2	705.6
DOTAP/Chol 2 ug AL 4 1 ug	323.7	84.8	3.8	0.0	0.001	0	-59.0	706.3
AL 1 2 ug DOTAP/Chol 1 ug	476.4	87.4	5.5	2.5E-5	0.001	1	82.0	870.8
AL 1 2 ug AL 1 1 ug	484.4	84.8	5.7	8.6E-6	0.001	1	101.8	867.1
AL 1 2 ug AL 2 1 ug	270.2	84.8	3.2	0.1	0.001	0	-112.4	652.9
AL 1 2 ug AL 3 1 ug	560.6	87.4	6.4	4.5E-7	0.001	1	166.2	955.1
AL 1 2 ug AL 4 1 ug	573.1	84.8	6.8	1.0E-7	0.001	1	190.5	955.7
AL 1 2 ug DOTAP/Chol 2 ug	249.4	84.8	2.9	0.2	0.001	0	-133.2	632.1
AL 2 2 ug DOTAP/Chol 1 ug	1041.8	87.4	11.9	1.3E-17	0.001	1	647.4	1436.2
AL 2 2 ug AL 1 1 ug	1049.9	84.8	12.4	1.9E-18	0.001	1	667.3	1432.5
AL 2 2 ug AL 2 1 ug	835.7	84.8	9.9	1.1E-13	0.001	1	453.0	1218.3
AL 2 2 ug AL 3 1 ug	1126.1	87.4	12.9	2.3E-19	0.001	1	731.7	1520.5
AL 2 2 ug AL 4 1 ug	1138.6	84.8	13.4	2.5E-20	0.001	1	755.9	1521.2
AL 2 2 ug DOTAP/Chol 2 ug	814.9	84.8	9.6	3.2E-13	0.001	1	432.3	1197.5
AL 2 2 ug AL 1 2 ug	565.4	84.8	6.7	1.5E-7	0.001	1	182.8	948.1
AL 3 2 ug DOTAP/Chol 1 ug	-170.2	87.4	-1.9	1	0.001	0	-564.6	224.2
AL 3 2 ug AL 1 1 ug	-162.1	84.8	-1.9	1	0.001	0	-544.7	220.5
AL 3 2 ug AL 2 1 ug	-376.3	84.8	-4.4	0.0	0.001	0	-759.0	6.3
AL 3 2 ug AL 3 1 ug	-85.9	87.4	-1.0	1	0.001	0	-480.3	308.5
AL 3 2 ug AL 4 1 ug	-73.4	84.8	-0.9	1	0.001	0	-456.1	309.2
AL 3 2 ug DOTAP/Chol 2 ug	-397.1	84.8	-4.7	5.3E-4	0.001	1	-779.7	-14.5
AL 3 2 ug AL 1 2 ug	-646.6	84.8	-7.6	2.2E-9	0.001	1	-1029.2	-263.9
AL 3 2 ug AL 2 2 ug	-1212.0	84.8	-14.3	7.6E-22	0.001	1	-1594.6	-829.4
AL 4 2 ug DOTAP/Chol 1 ug	-166.7	87.4	-1.9	1	0.001	0	-561.1	227.7
AL 4 2 ug AL 1 1 ug	-158.7	84.8	-1.9	1	0.001	0	-541.3	224.0
AL 4 2 ug AL 2 1 ug	-372.9	84.8	-4.4	0.0	0.001	0	-755.5	9.7
AL 4 2 ug AL 3 1 ug	-82.5	87.4	-0.9	1	0.001	0	-476.9	311.9
AL 4 2 UG AL 4 1 UG	-70.0	84.8	-0.8	1 6 1E 4	0.001	1	-452.6	312.6
	-393.7 _643.1	04.8 84 8	-4.0	2 7F-9	0.001	1	-110.3	-11.0
AL 4 2 ug AL 2 2 ug	-1208 6	84.8	-14.3	9.0E-22	0,001	1	-1591 2	-200.5
AL 4 2 ug AL 3 2 ug	3.4	84.8	0.0	1	0.001	0	-379.2	386.1

2.3.6 Outlier Detection

Table S 20: Outlier detection for GFP at μ g/mL DNA and a lipid-to-DNA ratio of 1. Outliers (red) were defined as values larger than the upper fence or lower than the lower fence and were excluded from analysis.Upper fence is defined by Q3 + 1.5x interquartile range (IQR) and lower fence is defined by Q1 – 1.5x IQR. Only one oulier could be identified.

Contro	I	DOTAP:cl	nol	chol AL-A10		AL-B10		AL-A12		AL-B12	
0.12	0.12	6.52	6.52	8.28	8.28	4.90	4.90	5.25	5.25	4.05	4.05
0.06	0.06	4.74	4.74	6.14	6.14	4.05	4.05	7.18	7.18	8.42	8.42
0.12	0.12	6.75	6.75	8.17	8.17	9.01	9.01	15.20	15.20	9.65	9.65
		5.98	5.98	11.50	11.50	4.28	4.28	6.34	6.34	6.34	6.34
		5.26	5.26	6.72	6.72	2.27	2.27	12.50	12.50	4.83	4.83
		6.52	6.52	7.95	7.95	5.76	5.76	15.60	15.60	9.67	9.67
		10.5		8.32	8.32	3.07	3.07	9.67	9.67	4.88	4.88
		5.78	5.78	5.00	5.00	3.16	3.16	12.60	12.60	6.66	6.66
		6.54	6.54	9.23	9.23	5.66	5.66	16.10	16.10	13.8	13.8
Q1	0.06	Q1	5.52	Q1	6.43	Q1	3.12	Q1	6.76	Q1	4.86
Q3	0.12	Q3	6.65	Q3	8.78	Q3	5.71	Q3	15.4	Q3	9.66
IQR	0.06	IQR	1.13	IQR	2.35	IQR	2.60	IQR	8.64	IQR	4.81
Upper Fence	0.21	Upper Fence	8.33	Upper Fence	12.29	Upper Fence	9.60	Upper Fence	28.36	Upper Fence	16.87
Lower Fence	-0.03	Lower Fence	3.83	Lower Fence	2.91	Lower Fence	-0.78	Lower Fence	-6.20	Lower Fence	-2.35
Median	0.12	Median	6.25	Median	8.17	Median	4.28	Median	12.5	Median	6.66
Average	0.10	Average	6.01	Average	7.92	Average	4.68	Average	11.16	Average	7.59
S.D.	0.03	S.D.	0.67	S.D.	1.76	S.D.	1.89	S.D.	3.95	S.D.	2.94
RSD	28.85	RSD	11.13	RSD	22.27	RSD	40.37	RSD	35.41	RSD	38.73

Table S21: Outlier detection for GFP at 2\mu g/mL DNA and a lipid-to-DNA ratio of 1. Outliers (red) were defined as values larger than the upper fence or lower than the lower fence and were excluded from analysis.Upper fence is defined by Q3 + 1.5x interquartile range (IQR) and lower fence is defined by Q1 – 1.5x IQR. No outlier could be identified.

Control		DOTAP:chol		AL-A10		AL-B10		AL-A12		AL-B12	
0.10	0.10	10.60	10.60	19.50	19.50	11.20	11.20	17.30	17.30	9.78	9.78
0.11	0.11	16.20	16.20	33.50	33.50	7.91	7.91	45.20	45.20	7.43	7.43
0.09	0.09	12.60	12.60	33.40	33.40	8.00	8.00	44.50	44.50	12.70	12.70
		10.60	10.60	16.70	16.70	7.92	7.92	22.00	22.00	3.99	3.99
		17.00	17.00	32.70	32.70	9.37	9.37	43.00	43.00	6.41	6.41
		16.30	16.30	37.10	37.10	8.74	8.74	53.00	53.00	4.93	4.93
		11.30	11.30	17.40	17.40	11.70	11.70	23.80	23.80	5.23	5.23
		19.10	19.10	32.80	32.80	22.20	22.20	44.60	44.60	5.91	5.91
		15.40	15.40	34.00	34.00	16.00	16.00	42.10	42.10	4.43	4.43
Q1	0.09	Q1	10.95	Q1	18.45	Q1	7.96	Q1	22.90	Q1	4.68
Q3	0.11	Q3	16.65	Q3	33.75	Q3	13.85	Q3	44.90	Q3	8.61
IQR	0.02	IQR	5.70	IQR	15.30	IQR	5.89	IQR	22.00	IQR	3.93
Upper Fence	0.14	Upper Fence	25.20	Upper Fence	56.70	Upper Fence	22.69	Upper Fence	77.90	Upper Fence	14.49
Lower Fence	0.06	Lower Fence	2.40	Lower Fence	-4.50	Lower Fence	-0.87	Lower Fence	-10.10	Lower Fence	-1.21
Median	0.10	Median	15.40	Median	32.80	Median	9.37	Median	43.00	Median	5.91
Average	0.10	Average	14.34	Average	28.57	Average	11.45	Average	37.28	Average	6.76
S.D.	0.01	S.D.	2.95	S.D.	7.69	S.D.	4.53	S.D.	11.95	S.D.	2.68
RSD	9.12	RSD	20.58	RSD	26.93	RSD	39.60	RSD	32.07	RSD	39.62

Table S22: Outlier detection for MFI at 1µg/mL DNA and a lipid-to-DNA ratio of 1. Outliers (red) were defined as values larger than the upper fence or lower than the lower fence and were excluded from analysis.Upper fence is defined by Q3 + 1.5x interquartile range (IQR) and lower fence is defined by Q1 – 1.5x IQR. Only two ouliers could be identified.

Control		DOTAP:chol		AL-A10		AL-B10		AL-/	A12	AL-B12	
182	182	409	409	379	379	333	333	424	424	294	294
127	127	398	398	395	395	354	354	451	451	290	290
147	147	461	461	426	426	420		819	819	328	328
		425	425	430	430	344	344	451	451	277	277
		401	401	477	477	313	313	582	582	291	291
		407	407	402	402	329	329	752	752	438	438
		596		392	392	291	291	714	714	224	224
		405	405	340	340	335	335	653	653	281	281
		434	434	444	444	367	367	767	767	464	464
Q1	127	Q1	403	Q1	385.5	Q1	321	Q1	451	Q1	279
Q3	182	Q3	447.5	Q3	437	Q3	360.5	Q3	759.5	Q3	383
IQR	55	IQR	44.5	IQR	51.5	IQR	39.5	IQR	308.5	IQR	104
Upper		Upper		Upper		Upper		Upper		Upper	
Fence	264.50	Fence	514.25	Fence	514.25	Fence	419.75	Fence	1222.25	Fence	539.00
Lower		Lower		Lower		Lower		Lower		Lower	
Fence	44.50	Fence	336.25	Fence	308.25	Fence	261.75	Fence	-11.75	Fence	123.00
Median	147	Median	408	Median	402	Median	334	Median	653	Median	291
Average	152.00	Average	417.50	Average	409.44	Average	333.25	Average	623.67	Average	320.78
S.D.	22.73	S.D.	20.04	S.D.	37.67	S.D.	22.08	S.D.	143.53	S.D.	74.33
RSD	14.95	RSD	4.80	RSD	9.20	RSD	6.63	RSD	23.01	RSD	23.17

Table S 23: Outlier detection for MFI at $2\mu g/mL$ DNA and a lipid-to-DNA ratio of 1. Outliers (red) were defined as values larger than the upper fence or lower than the lower fence and were excluded from analysis.Upper fence is defined by Q3 + 1.5x interquartile range (IQR) and lower fence is defined by Q1 – 1.5x IQR. No outlier could be identified.

Control		DOTAP:chol		AL-A10		AL-B10		AL-A12		AL-B12	
132	132	489	489	816	816	212	212	745	745	303	303
133	133	663	663	966	966	151	151	1972	1972	153	153
148	148	570	570	937	937	151	151	1658	1658	164	164
		531	531	694	694	308	308	968	968	238	238
		733	733	1063	1063	151	151	1492	1492	209	209
		753	753	956	956	164	164	2283	2283	253	253
		564	564	577	577	317	317	1155	1155	304	304
		774	774	1082	1082	427	427	1437	1437	354	354
		723	723	954	954	345	345	1424	1424	279	279
Q1	132	Q1	547.5	Q1	755	Q1	151	Q1	1061.5	Q1	186.5
Q3	148	Q3	743	Q3	1014.5	Q3	331	Q3	1815	Q3	303.5
IQR	16	IQR	195.5	IQR	259.5	IQR	180	IQR	753.5	IQR	117
Upper Fence	172.00	Upper Fence	1036.25	Upper Fence	1403.75	Upper Fence	601.00	Upper Fence	2945.25	Upper Fence	479.00
Lower	108.00	Lower Fence	254 25	Lower Fence	365 75	Lower Fence	-119 00	Lower Fence	-68 75	Lower Fence	11 00
Median	133	Median	663	Median	954	Median	212	Median	1437	Median	253
Average	137.67	Average	644.44	Average	893.89	Average	247.33	Average	1459.33	Average	250.78
S.D.	7.32	S.D.	101.09	S.D.	158.10	S.D.	97.97	S.D.	450.66	S.D.	63.26
RSD	5.32	RSD	15.69	RSD	17.69	RSD	39.61	RSD	30.88	RSD	25.23