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S1. EQ. 4 - ENTANGLED TWO-PHOTON-ABSORPTION

The two-photon absorption (TPA) signal is defined by the transition probability to a final state

|f〉. In the interaction picture using H0 = Hp +HR,

Pf (t) = Tr
{
|f〉 〈f | ρI(t)

}
(S1)

where ρI(t) is the density matrix in the interaction picture, and where we have taken into account

that |f〉 〈f | is time-independent in the interaction picture. The Liouville von-Neumann equation

for the joint matter + photon reads

i
d

dt
ρI(t) = [HRM, I(t), ρI(t)]. (S2)

The formal solution to Eq. (S2) is given by

ρI(t) = T e−i
∫ t
t0
LRM, I(t

′) dt′
ρ0 = T e−i

∫ t
t0
HRM, I(t

′) dt′
ρ0T̄ e

i
∫ t
t0
HRM, I(t

′) dt′
. (S3)
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where OI(t) = e+iH0(t−t0)Oe−iH0(t−t0) and T (T̄ ) is the time-ordering (reverse time-ordering) op-

erator. Here LRM, I(t)ρ = [HRM, I(t), ρ] is the Liouvillian superoperator.

Using Eq. (S3) in Eq. (S1) leads to

Pf (t) = Tr

{
T̄ ei

∫ t
t0
HRM(s) ds |f〉 〈f | T e−i

∫ t
t0
HRM(s) ds

ρ0

}
, (S4)

where we have used the cyclic invariance of the trace Tr {AB} = Tr {BA}. To simplify the notation,

we have suppressed the subscript I for interaction picture operators, i.e., O(t) ≡ OI(t). Initially,

the system is uncorrelated with the external field, ρ0 = |g〉 〈g|⊗ρR(0). Expanding the exponentials

in Eq. (S4) to second-order in the radiation-matter coupling and retaining the terms leading to

two-photon absorption yields

Pf (t) =
∑
p

∫ t

t0

dt2

∫ t2

t0

dt1

∫ t

t0

dt′2

∫ t′2

t0

dt′1 〈g|Vp4(t′1)Vp3(t′2)|f〉 〈f |V †p2(t2)V †p1(t1)|g〉G(2)
p (t′1, t

′
2, t2, t1)

(S5)

where G
(2)
p (t′1, t

′
2, t2, t1) =

〈
Ê†p4(t′1)Ê†p3(t′2)Êp2(t2)Êp1(t1)

〉
is a field correlation function. Equa-

tion (S5) can be represented by the time-loop diagram depicted in Fig. 1c. The subscript

p = p4p3p2p1 denotes the sequence of photons (ω1/ω2) that interact with the system along the

time-loop clockwise. There are four pathways corresponding to p = { 1221, 1212, 2121, 2112 }, see

Fig. 1c. Since Pf (t) = 0 for f -states outside the double-excitation manifold, we can sum over all

polariton states, which leads to the final compact expression for the ETPA signal

SETPA =
∑
p

∫ t

t0

dt2

∫ t2

t0

dt1

∫ t

t0

dt′2

∫ t′2

t0

dt′1Cp(t′1, t
′
2, t2, t1)G

(2)
p (t′1, t

′
2, t2, t1) (S6)

where Cp(t′1, t
′
2, t2, t1) =

〈
Vp4(t′1)Vp3(t′2)V †p2(t2)V †p1(t1)

〉
is the four-point dipole correlation function,

and where we have used I =
∑

f |f〉 〈f |.

S2. EQ. 5 - SUM-OVER-STATES EXPRESSION FOR THE TRANSITION AMPLITUDE

For initially pure two-photon state ρR(0) = |Φ〉 〈Φ|, the ETPA signal can be recast as the

modulus square of a transition amplitude SETPA =
∑

f

∣∣Tfg∣∣2. The transition amplitude for the

entangled two-photon absorption reads

Tfg =
∑
p1,p2

∫ t

t0

dt2

∫ t2

t0

dt1 〈f |V †p2(t2)V †p1(t1)|g〉 〈0|Êp2(t2)Êp1(t1)|Φ〉 (S7)

Using the many-body eigenstates of the polariton Hamiltonian { | i〉, i = 0, 1, · · · } sorted in as-

cending order of energy {ωi }, the raising dipole operator V †n can be written as [1]

V †n (t) = −
∑
i<j

eiωjitµji · en |j〉 〈i| . (S8)
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where µji = 〈j|µ|i〉 is the dipole matrix element. Inserting Eq. (S8) into Eq. (S7) yields Eq. (5)

in the main text

Tfg(t) =
∑
p1 6=p2

∑
e

D(e)
p2p1

∫ t

t0

dt2e
iωfet2

∫ t2

t0

dt1e
iωegt1Φp2p1(t2, t1) (S9)

where Φp2p1(t2, t1) = 〈0|Êp2(t2)Êp1(t1)|Φ〉 is proportional to the amplitude of detecting photon p1

at t1 and photon p2 at t2. Intuitively, the matter can be taken as a photon detector with a complex

inner structure.

It is useful to have the frequency-domain expression for the transition amplitude. The two-

photon amplitude in the time domain can be written as

Φp2p1(t2, t1) =

∫∫
dω2dω1e

−iωp1 t1e−iωp2 t2Φp2p1(ωp2 , ωp1) (S10)

where Φp2p1(ω2, ω1) ≡ 〈0|Êp2(ω2)Êp1(ω1)|Φ〉, Êj(t) =
∫

dωÊj(ω)e−iωt, and Êj(ω) = i
√

ω
2ε0V bj(ω).

Inserting Eq. (S10) into Eq. (S9) leads to the frequency-domain expression for the transition am-

plitude (up to a global phase)

Tfg =
∑
e

∫∫
dω1 dω2

1

ωfg − iγf − ω1 − ω2

D(e)
12

〈
0
∣∣∣ Ê1(ω1)Ê2(ω2)

∣∣∣Φ〉
ωeg − ω2 − iγe

+D
(e)
21

〈
0
∣∣∣ Ê2(ω2)Ê1(ω1)

∣∣∣Φ〉
ωeg − ω1 − iγe


(S11)

S3. THE TWIN-PHOTON WAVEFUNCTION

We consider the following twin-photon wavefunction produced by parametric down conversion

(PDC) [2, 3]

φ(ω1, ω2) = NA(ω1 + ω2)sinc
(
∆kL/2

)
(S12)

where L is the crystal length, ∆k = kp − (k1 + k2), A(ω1 + ω2) =
(

1
σ
√
π

)1/2
exp

(
− (ω1+ω2−ωp)2

σ2

)
is

the normalized pump pulse envelope with bandwidth σ, sinc(x) = sin(x)/x, N the normalization

constant. For a narrow-band pump σ → 0, the spectral envelope

A(ω1 + ω2) ≈ δ(ω1 + ω2 − ωp) (S13)

which reflects energy conservation in the PDC process. In type-II down-conversion where e1 and

e2 are orthogonal, we can expand the wave vector in a Taylor series around the central frequency

kj(∆ωj + ω0
j ) ≈ kj(ω0

j ) + v−1
j ∆ωj , (S14)
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and the phase-matching condition may be approximated to linear order as

∆kL/2 =
1

2
(∆ω1T1 + ∆ω2T2) (S15)

where ∆ωj = ωj − ω0
j , and the transit time difference Tj = L/vp − L/vj for j = 1, 2 with vj =

∇kjωj(k0
j ) is the group velocity. With Eqs. (S15) and (S13), The PDC two-photon wavefunction

generated from a monochromatic pump becomes Eq. (7)

φ(ω1, ω2) = N δ(ω1 + ω2 − ωp)sinc

(
∆ω1T

2

)
(S16)

where T = T1 − T2 is the entanglement time characterising the arrival time delay between the two

photons.

In the time domain, the two-photon wavefunction reads

φ(t1, t2) ≡
∫

dω1

∫
dω2e

−iω1t1−iω2t2φ(ω1, ω2) =
2πN
T

e−iω
0
1t1−iω0

2t2Π

(
t1 − t2
T

)
(S17)

where the rectangular function Π (x) = 1 for −1
2 < x < 1

2 and 0 otherwise and ω0
i is the central

frequency of the i-th beam. Equation (S17) reflects the time-correlation between the entangled

photons: the arrival time of each photon is random, but they must arrive together within the

entanglement time. Note that the two photons are not time-ordered (ω1 can come before or after

ω2) as in the quantum light generated by atomic cascade [4].

S3.A. The correlation amplitude

Here we establish the connection between the two-photon correlation amplitude Φ and the

two-photon wavefunction φ. The two-photon correlation amplitude can be obtained by

Φ21(ω2, ω1) =

∫∫
dω′1 dω′2φ(ω′1, ω

′
2) 〈0|Ê2(ω2)Ê1(ω1)a†1(ω′1)a†2(ω′2)|0〉

= −
√
ω2ω1

2ε0V

∫∫
dω′1 dω′2φ(ω′1, ω

′
2) 〈0|a2(ω2)a1(ω1)a†1(ω′1)a†2(ω′2)|0〉

(S18)

For distinguishable photons,

〈0|a2(ω2)a1(ω1)a†1(ω′1)a†2(ω′2)|0〉 = δ(ω1 − ω′1)δ(ω2 − ω′2). (S19)

Then

Φ21(ω2, ω1) = −
√
ω2ω1

2ε0V
φ(ω1, ω2) (S20)

and in the time-domain

Φ21(t2, t1) ≈ −
√
ω0

2ω
0
1

2ε0V
φ(t1, t2) (S21)
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where we have invoked the slowly varying approximation

√
ω2ω1

2ε0V
≈
√
ω0

2ω
0
1

2ε0V
. (S22)

Similarly,

Φ12(ω2, ω1) = −
√
ω2ω1

2ε0V
φ(ω2, ω1), (S23)

and

Φ12(t2, t1) =

∫∫
dω2dω1e

−iω2t1e−iω1t2Φ12(ω1, ω2) ≈ −
√
ω0

2ω
0
1

2ε0V
φ(t2, t1) (S24)

These relations allow us to obtain the correlation amplitude from the two-photon wavefunction.

1. Indistinguishable photons

The distinguishing characteristics by polarization or arrival time in the entangled photons can

be eliminated such that they become indistinguishable [5].

For indistinguishable photons, we can suppress the photon index such that

〈0|a(ω2)a(ω1)a†(ω′1)a†(ω′2)|0〉 = δ(ω1 − ω′1)δ(ω2 − ω′2) + δ(ω1 − ω′2)δ(ω2 − ω′1). (S25)

Then

Φ21(ω2, ω1) = Φ12(ω2, ω1) = −
√
ω2ω1

2ε0V
(
φ(ω1, ω2) + φ(ω2, ω1)

)
. (S26)

It follows that Φ12(t2, t1) = Φ21(t2, t1) meaning that the transition amplitudes associated with

pathways involving the same intermediate state but a different photon sequences coincide. This

implies that matter cannot distinguish the interacting photons.

S3.B. Uncorrelated photons

For uncorrelated single photons, the two-photon wavefunction can be factorized as

φ(ω1, ω2) = φ1(ω1)φ2(ω2), (S27)

and so is the detection amplitude Φ̃p2p1(t, t′) ≡ 〈0|ap2(t)ap1(t′)|Φ〉 representing the probability

ampliutude of observing photon p1 at time t′ and photon p2 at time t,

Φ̃p2p1(t, t′) ≡ 〈0|ap2(t)|φp2〉 〈0|ap1(t′)|φp1〉 . (S28)

S6



The detection amplitude is proportional to the correlation amplitude under the approximation in

Eq. (S22). The single-photon state reads

|φj〉 =

∫
dωjφj(ωj)b

†
j(ωj) |0〉 (S29)

where the vaccum corresponds to the modes associated with j-th photon. Inserting Eq. (S29) into

Eq. (S28) leads to

Φ̃12(t1, t2) = 〈0|b1(t1)|ϕ〉 〈0|b2(t2)|χ〉

=

∫
dω

∫
dω1e

−iωt1ϕ(ω1) 〈0|b1(ω)a†1(ω1)|0〉
∫

dω′
∫

dω2χ(ω2)e−iω
′t2 〈0|b2(ω′)a†2(ω2)|0〉

= φ1(t1)φ2(t2)

(S30)

where φ(t) =
∫

dωe−iωtφ(ω). Similarly,

Φ̃21(t1, t2) = φ1(t2)φ2(t1) (S31)

Insering Eqs. (S30) and (S31) into Eq. (S9) leads to the transition amplitude for uncorrelated

photons

Tfg =

√
ω0

1ω
0
2

2Vε0

∑
e

∫∫
dω1 dω2

φ1(ω1)φ2(ω2)

ω1 + ω2 − ωfg + iγf

 D
(e)
12

ωeg − ω2 − iγe
+

D
(e)
21

ωeg − ω1 − iγe

 (S32)

If the two photons are narrowband with central frequencies ω0
j such that

φ(ω1) ≈ φ(ω0
1)δ(ω1 − ω0

1) (S33)

the transition amplitude reduces to

Tfg =

√
ω0

1ω
0
2

2Vε0
1

ω0
1 + ω0

2 − ωfg + iγf
φ1(ω0

1)φ2(ω0
2)
∑
e

(
D

(e)
12

1

∆
(2)
e − iγe

+D
(e)
21

1

∆
(1)
e − iγe

)
(S34)

S3.C. Coherent states

If the photons are in coherent states corresponding to the semiclassical light, the detection

amplitude is given by

φp2p1(t, t′) = 〈φp2 |ap2(t)|φp2〉 〈φp1 |ap1(t′)|φp1〉 (S35)

The difference between the coherent state and the single-photon state is that annihilation of an

photon does not change the photon state in the former whereas it projects the photon state to the

vacuum for the latter.

S7



Coherent states can be generally defined as

|φj〉 = eαA
†
j−α

∗
jAj |0〉 (S36)

where A†j ≡
∫∞

0 dωA(ω)b†j(ω) is a single-photon creation operator. For a single photon mode,

Aj(t) = bj(ω). (S37)

This corresponds to a monochromatic light. For a continuum of modes,

A†j =

∫
dωφj(ω)b†j(ω) (S38)

where φj(ω) is the normalized spectral envelope. It follows that Eq. (S35) becomes

φ21(t, t′) =

∫
dω2e

−iω2tα2φ2(ω2)

∫
dω1e

−iω1t′α1φ1(ω1) (S39)

Realizing that the expectation value of the electric field operator is given by

Ej(ω) = i

√
~ω

2ε0V
αjφj(ω), (S40)

Eq. (S39) becomes

Φ21(t, t′) =

∫
dω2e

−iω2tE2(ω2)

∫
dω1e

−iω1t′E1(ω1) = E2(t)E1(t′). (S41)

Equation (S41) implies that the detection amplitude is simply the product of the electric fields,

consistent with a semiclassical picture of photon detection theory [6].

The two-photon transition amplitude can be then obtained by inserting Eq. (S41) into Eq. (S34)

Tfg(t) =
∑
p1 6=p2

∑
e

D(e)
p2p1

∫ t

t0

dt2e
iωfet2Ep2(t2)

∫ t2

t0

dt1e
iωegt1Ep1(t1) (S42)

The corresponding frequency-domain expression reads

Tfg =
∑
e

∫∫
dω1 dω2

E1(ω1)E2(ω2)

ωfg − iγf − ω1 − ω2

 D
(e)
12

ωeg − ω2 − iγe
+

D
(e)
21

ωeg − ω1 − iγe

 . (S43)

Thus, we have obtained the classical two-photon absorption amplitude from a fully quantum me-

chanical treatment. For monochromatic fields Ej(ωj) = Ejδ(ωj − ω0
j ), Eq. (S43) reduces to

Tfg =
∑
e

E1(ω0
1)E2(ω0

2)

ωfg − iγf − ω0
1 − ω0

2

 D
(e)
12

∆
(2)
e − iγe

+
D

(e)
21

∆
(1)
e − iγe

 . (S44)
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TABLE S1. Expressions for two-photon-absorption signal with quantum and classical light. The photon

indexes p2p1 = { 21, 12 } depending on which photon interacts with the matter first.

Time domain

classical light Tfg(t) =
∑
p1 6=p2

∑
eD

(e)
p2p1

∫ t
t0

dt2e
iωfet2Ep2(t2)

∫ t2
t0

dt1e
iωegt1Ep1(t1)

quantum light Tfg(t) =
∑
p1 6=p2

∑
eD

(e)
p2p1

∫ t
t0

dt2e
iωfet2

∫ t2
t0

dt1e
iωegt1Φp2p1(t2, t1)

Frequency domain

classical light Tfg = −
∑
p1 6=p2

∑
e

∫∫
dω1 dω2

E1(ω1)E2(ω2)
ωfg−iγf−ω1−ω2

(
D(e)

p2p1

ωeg−ωp1−iγe

)
quantum light Tfg = −

∑
e

∑
p2 6=p1

∫∫
dω1 dω2

1
ωfg−iγf−ω1−ω2

(
D

(e)
p2p1
〈0 |Ep2

(ωp2
)Ep1

(ωp1
) |Φ〉

ωeg−ωp1
−iγe

)

1. Classical light with the same spectral function with quantum light

If the classical light have the same spectral function as in the quantum light,

Ej(ωj) = E0
j

T

2π
sinc

(
∆ωjT/2

)
. (S45)

Using the identity
∫ +∞
−∞ sinc

(
ωT/2

)
e−iωt dω = 2π

T Π
(
t
T

)
, the pulse envelope reads

Ej(t) = E0
j e
−iω0

j tΠ

(
t

T

)
(S46)

Inserting Eq. (S46) into Eq. (S42) leads to the two-photon transition amplitude with two rectan-

gular pulses (t0 → −∞, t→∞)

Tfg = E0
2E

0
1

∑
p1 6=p2

∑
e

D(e)
p2p1

∫ ∞
−∞

dt2e
i(ωfe−ω0

p2
)t2Π

(
t2
T

)∫ t2

−∞
dt1e

i
(
ωeg−ω0

p1

)
t1Π

(
t1
T

)

= E0
2E

0
1

∑
p1 6=p2

∑
e

D(e)
p2p1

∫ T/2

−T/2
dt2e

i(ωfe−ω0
p2

)t2 1

i∆
(p1)
e

(
ei∆

(p1)
e t2 − e−i∆

(p1)
e T/2

)

= −E0
2E

0
1

∑
p1 6=p2

∑
e

D(e)
p2p1

2isinc
(
(ωfg − ω0

1 − ω0
2)T/2

)
ωeg − ω0

p1

+
e−i(ωeg−ω0

p1
)T/22isinc

(
(ωfe − ω0

p2)T/2
)

ωeg − ω0
p1


(S47)

We have assumed that the pulse duration is shorter than the lifetime, i.e., T � γ−1
e . The first

term contains the two-photon resonance condition and thus represents the TPA process whereas

the second term contains two single-photon resonances representing a sequential excitation. As

shown, for the uncorrelated light, varying the spectral width 1/T does not allow modifying the

transition amplitude for each transition pathways.
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S4. THE BLOCK DIAGONAL POLARITON HAMILTONIAN

S4.A. Two molecules with different transition frequencies

1. Single-polariton block

For N = 2 molecules, the subspace Hamiltonian in single-polariton subspace reads

H(1) =


ωc g0 g0

g0 ωa 0

g0 0 ωb

 (S48)

where g0 is the single-molecule coupling strength.

2. Two-polariton block

The two-polariton block Hamiltonian spanned by the basis |gg2〉 , |eg1〉 , |ge1〉 , |ee0〉 reads

H(2) =


2ωc

√
2g0

√
2g0 0

√
2g0 ωa + ωc 0 g0
√

2g0 0 ωb + ωc g0

0 g0 g0 ωa + ωb


(S49)

Solving det
(
ω −H(2)

)
= 0 yields the polariton energies ω = 2ωc ±

√
δ2 + 6g2

0, 2ωc.

S4.B. Two-polariton block for N identical molecules

We now consider N identical molecules with transition frequency ω0 and coupling gj = g0. To

understand the structure of the two-polariton states, it is convenient to introduce the collective

exciton operators

X†j =
1√
N

N∑
n=1

eikjnσ†n, j = 0, 1 · · · , N − 1, (S50)

where kj = 2πj/N, j = 0, 1, · · · , N − 1. The collective exciton operators satisfy the commutation

relations

[Xi, X
†
j ] = − 1

N

∑
n

ei(ki−kj)nσzn = δij −
2

N

∑
n

ei(ki−kj)nσ†nσn (S51)

S10



Since these are different from the boson commutation relations, the excitons cannot in general

be considered as bosons. In the low excitation limit of many molecules, i.e.,
∑N

n=1 σ
†
nσn � N ,

Eq. (S51) becomes [
Xi, X

†
j

]
= δij +O(N−1) (S52)

and the collective excitons are approximately bosons.

The upper and lower polaritons are admixtures of the bright exciton state |X0〉 = X†0 |G〉, where

|G〉 is the ground state for all molecules, and the cavity mode, with an enhanced splitting 2g0

√
N .

The double-excitation manifold contains N(N+1)
2 + 1 states. The polariton Hamiltonian can be

recasted in terms of the collective exciton operators

Hp = ω0

N−1∑
j=0

X†jXj + ωca
†a+ g0

√
N
(
X†0a+X0a

†
)
. (S53)

The double-excitation space can be decomposed into three subspaces spanned, respectively, by

{ | 2〉, | X01〉, | X0X0〉 =

√
N − 1

N

(
X†0

)2
| g〉 } , (S54)

{ | XjX0〉, | Xj1〉, j 6= 0 }, and { | XjXk〉, j, k 6= 0 }. The first block comes from excitations of bright

excitons and cavity photons and contains three two-polariton states. The subblock Hamiltonian

reads

H =


2ωc g0

√
2N 0

g0

√
2N ω0 + ωc g0N/

√
N − 1

0 g0N/
√
N − 1 2ω0

 . (S55)

Eigenvalues of this Hamiltonian Eq. (S55) leads to a pair of upper and lower two-polaritons and

one middle two-polariton

|fM〉 =

[√
2(N − 1)

3N − 2
, 0,

√
N

3N − 2

]
(S56)

at 2ωc. The enhanced coupling between |2〉 and |X01〉 due to the presence of cavity photons is

responsible for the enhanced upper and lower two-polariton splitting.

In addition to this splitting, there is another polariton pair from the second subspace involving

dark exciton excitation and cavity photons. The Hamiltonian in this subblock spanned by states

|Xj1〉 and |XjX0〉 is given by (for each j)

H =

 ω0 + ωc g
√

N−2
N

g
√

N−2
N 2ω0

 (S57)
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where g = g0

√
N . The splitting is slightly reduced compared to the vacuum Rabi splitting by

a factor of
√

N−2
N . Such states are not dipole connected to the upper and lower polaritons, and

cannot be observed in the TPA. The third block involves only dark exciton excitations.
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