Supporting Information

Synthesis of Acyl Fluorides *via* DAST-Mediated Fluorinative C–C Bond Cleavage of Activated Ketones

Danhee Kim^{a,b} and Hee Nam Lim^{a,*}

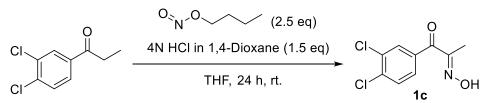
^aEco-Friendly New Materials Research Center, Therapeutics&Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea

^bDepartment of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

Table of Contents

1. Materials and Methods	
2. Experimental Procedures and Characterization Data	
1) Compounds 1a-n, 3a-s	1
2) Compounds 2a-n, 4a-s	5
3) Compounds 5-11)
3. ¹ H-NMR, ¹⁹ F-NMR, ¹³ C-NMR	4

1. Materials and Methods


Dichloromethane (CH₂Cl₂), tetrahydrofuran (THF), and acetonitrile (CH₃CN) were directly used from SPS system (Hansen, Puresolve MD) without further purification. Thin layer chromatography (TLC) analysis was run on silica gel plates. Spots were visualized by exposure to ultraviolet (UV) light (254 nm) or by staining with KMnO₄ aq. solution and then heating. High Resolution Mass Spectrometric analysis were performed on JEOL JMS-700 [Ionization mode: EI and FAB; Mass analyzer type: Double-focusing type (magnetic sector-electrostatic sector)]. High-resolution mass spectra were reported for the molecular ion [M]⁺, [M+H]⁺. Nuclear magnetic resonance (NMR) spectra were recorded either on Ascend 400, Bruker 300 or 500 UltraShield (either on 300, 400, 500 MHz for ¹H, 376 MHz for ¹⁹F NMR, and either on 100 or 125 MHz for ¹³C). The fluorine spectra are unreferenced. Chemical shifts for proton NMR spectra are reported in parts per million (ppm) relative to the singlet at 7.26 ppm for chloroform-d, to the quintet at 3.31 ppm for methanol-d, and to the quintet at 2.50 ppm for dimethylsulfoxide- d_6 . Chemical shifts for carbon NMR spectra are reported in 77.2 ppm with the center line of triplet for chloroform-d, in 49.1 ppm with the center line of the septet for methanol-d and in 39.5 ppm with the center line of the septet for dimethylsulfoxide- d_6 . Data for ¹H NMR were presented as following: chemical shifts (δ , ppm), multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, dd = doublet of doublets, td = triplet of doublets, m = multiplet), coupling constant (Hz), and integration. The chemical shifts of peaks found were reported for ¹³C NMR spectra. Infrared spectra were recorded with a Smith Detection ATR-FTIR instrument.

2. Experimental Procedures and Characterization Data

Preparation of α-oximinoketones (compounds 1 and 3)

The known starting materials 1a,¹ 1b,² 1d,² 3a,³ 3d,³ 3f,⁴ 3g,⁵ 3h,⁶ 3i,⁷ 3l,⁸ 3p,⁹ and 3s¹⁰ were not characterized.

1) Procedure for acid-assisted oximation

To a stirred solution of ketone (606 mg, 3.0 mmol), n-butyl nitrite (0.88 mL, 7.5 mmol) in THF (9.0

⁷ Shukla, S.; Srivastava, R. S.; Shrivastava, S. K.; Sodhi, A.; Kumar, P. Appl. Biochem. 2012, 167, 1430.

¹ Gutierrez, R. U.; Rebollar, A.; Bautista, R.; Pelayo, V.; Vargas, J.; Montenegro, M. M.; Espinoza-Hicks, C.; Ayala, F.; Bernal,

P. M.; Carrasco, C.; Zepeda, L. G.; Delgado, F.; Tamariz, J. Tetrahedron: Asymmetry 2015, 26, 230.

² Reddy, M. K.; Mallik, S.; Ramakrishna, I.; Baidya, M. Org. Lett. 2017, 19, 1694.

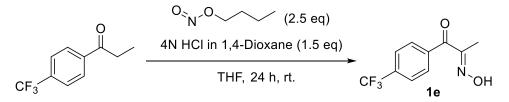
³ Schlegel, M.; Schneider, C. Org. Lett. 2018, 20, 3119.

⁴ Katritzky, A. R.; Wang, Z.; Hall, C. D.; Akhmedov, N.; Shestopalov, A. A.; Steel, P. J. J. Org. Chem. 2003, 68, 9093.

⁵ Cotman, A. E.; Lozinsek, M.; Wang, B.; Stephan, M.; Mohar, B. Org. Lett. 2019, 21, 3644.

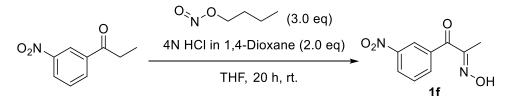
⁶ Chow, Y. L.; Wu, Z. Z. J. Am. Chem. Soc. 1987, 109, 5260.

⁸ Baidya, M. Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 13880.


⁹ Bosiak, M.; Pakulski, M. M. Synthesis 2011, 316.

¹⁰ Berenyi, A.; Minorics, R.; Ivanyi, Z.; Ocsovszki, I.; Ducza, E.; Thole, H.; Messinger, J.; Wolfling, J.; Motyan, G.; Mernyak,

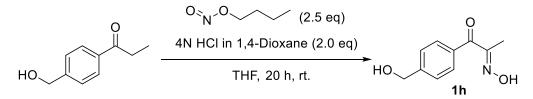
E.; Frank, E.; Schneider, G.; Zupko, I. Steroids 2013, 78, 69.


mL) was added 4N HCl in 1,4-dioxane (1.1 mL, 4.5 mmol). After 24 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **1c** (547 mg, 79%) as a white solid.

(E)-1-(3,4-dichlorophenyl)-2-(hydroxyimino)propan-1-one (1c); $R_f = 0.5$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (br s, 1H), 8.03 (d, J = 1.9 Hz, 1H), 7.76 (dd, J = 8.1 and 1.9 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 157.1, 137.4, 136.0, 132.7, 132.6, 130.3, 129.6, 10.0. IR (neat) v_{max} 3255, 1639, 1442, 1331, 1020 cm⁻¹. HRMS[EI+] calcd for C₉H₇Cl₂NO₂ [M]⁺230.9854, found 230.9864.

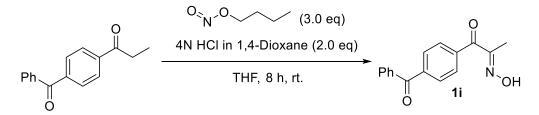
To a stirred solution of ketone (606 mg, 3.0 mmol), n-butyl nitrite (0.88 mL, 7.5 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.1 mL, 4.5 mmol). After 24 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **1e** (499 mg, 72%) as a white solid.

(E)-2-(hydroxyimino)-1-(4-(trifluoromethyl)phenyl)propan-1-one (1e); $R_f = 0.4$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (br s, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 157.3, 139.6, 133.8 (q, $J_{C,F} = 33$ Hz), 130.7, 125.1 (q, $J_{C,F} = 4$ Hz), 122.4, 9.9. IR (neat) v_{max} 3246, 1662, 1312, 1108, 1003 cm⁻¹. HRMS[EI+] calcd for $C_{10}H_8F_3NO_2$ [M]⁺231.0507 found 231.0506.


To a stirred solution of ketone (537 mg, 3.0 mmol), n-butyl nitrite (1.05 mL, 9.0 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.5 mL, 6.0 mmol). After 20 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **1f** (462 mg, 74%) as a white solid.

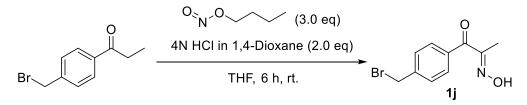
(E)-2-(hydroxyimino)-1-(3-nitrophenyl)propan-1-one (1f); $R_f = 0.5$ (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 8.81 (br s, 1H), 8.39 (d, J = 7.8 Hz, 1H), 8.24 (d, J = 7.7 Hz, 1H), 8.09 (s, 1H), 7.63 (t, J = 8.0 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 157.1, 147.9, 137.8, 136.0, 129.3, 126.9, 125.9, 9.8. IR (neat) v_{max} 3177, 2864, 1610, 1526, 1016 cm⁻¹. HRMS[EI+] calcd for C₉H₈N₂O₄ [M]⁺ 208.0484, found 208.0480.

HO
HO
$$O_N^{O_1}$$
 (1.1 eq)
 $4N$ HCl in 1,4-Dioxane (1.2 eq)
THF, 8 h, rt.
HO
 $1g$

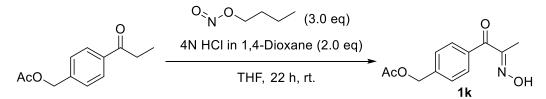

To a stirred solution of ketone (450 mg, 3.0 mmol), n-butyl nitrite (0.38 mL, 3.3 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (0.9 mL, 3.6 mmol). After 8 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **1g** (279 mg, 52%) as a white solid.

(E)-2-(hydroxyimino)-1-(4-hydroxyphenyl)propan-1-one (1g); $R_f = 0.35$ (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, MeOD) δ 7.88 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 2.07 (s, 3H). ¹³C NMR (100 MHz, MeOD) δ 192.4, 163.7, 156.8, 134.5, 129.4, 115.8, 10.5. IR (neat) v_{max} 3323, 1630, 1577, 1460, 1337, 1162 cm⁻¹. HRMS[EI+] calcd for C₉H₉NO₃ [M]⁺ 179.0582, found 178.0588.

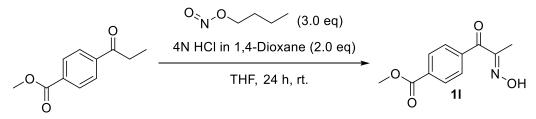
To a stirred solution of ketone (492 mg, 3.0 mmol), n-butyl nitrite (0.88 mL, 7.5 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.5 mL, 6.0 mmol). After 20 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **1h** (481 mg, 83%) as an off-white solid.


(E)-2-(hydroxyimino)-1-(4-(hydroxymethyl)phenyl)propan-1-one (1h); $R_f = 0.4$ (Hex:EtOAc = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 9.13 (br s, 1H), 7.84 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 4.69 (s, 2H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 163.7, 157.1, 132.9, 128.9, 113.6, 55.6, 10.6. IR (neat) v_{max} 3441, 3150, 1644, 1606, 1446, 1326 cm⁻¹. HRMS[EI+] calcd for C₁₀H₁₁NO₃ [M]⁺ 193.0739, found 193.0739.

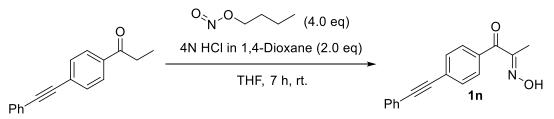
To a stirred solution of ketone (714 mg, 3.0 mmol), n-butyl nitrite (1.05 mL, 9.0 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.5 mL, 6.0 mmol). After 8 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 5:1 to 2:1) to afford **1i** (329 mg, 41%) as a white solid.


(E)-1-(4-benzoylphenyl)-2-(hydroxyimino)propan-1-one (1i); $R_f = 0.45$ (Hex:EtOAc = 3:1); ¹H

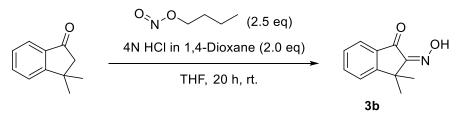
NMR (500 MHz, CDCl₃) δ 8.78 (br s, 1H), 7.97-7.94 (m, 2H), 7.83-7.78 (m, 4H), 7.62 (m, 1H), 7.51-7.47 (m, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 191.3, 157.0, 140.6, 139.8, 137.0, 133.1, 130.3, 130.2, 129.6, 128.6, 9.9. IR (neat) v_{max} 3319, 1639, 1444, 1400, 1284, 1029 cm⁻¹. HRMS[EI+] calcd for C₁₆H₁₃NO₃ [M]⁺ 267.0895, found 267.0893.


To a stirred solution of ketone (678 mg, 3.0 mmol), n-butyl nitrite (1.05 mL, 9.0 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.5 mL, 6.0 mmol). After 6 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **1j** (627 mg, 82%) as a white solid.

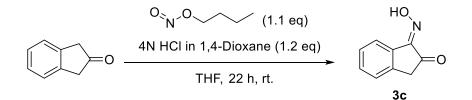
(E)-1-(4-(bromomethyl)phenyl)-2-(hydroxyimino)propan-1-one (1j); $R_f = 0.6$ (Hex:EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 8.36 (br s, 1H), 7.87 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 4.50 (s, 2H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 157.1, 142.5, 136.3, 130.9, 128.8, 32.3, 10.2. IR (neat) v_{max} 3257, 1668, 1637, 1444, 1315, 1178 cm⁻¹. HRMS[EI+] calcd for C₁₀H₁₀BrNO₂ [M]⁺ 254.9895, found 254.9885.


To a stirred solution of ketone (618 mg, 3.0 mmol), n-butyl nitrite (1.05 mL, 9.0 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.5 mL, 6.0 mmol). After 22 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **1k** (480 mg, 68%) as a yellow solid.

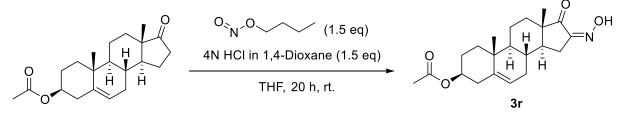
(E)-4-(2-(hydroxyimino)propanoyl)benzyl acetate (1k); $R_f = 0.4$ (Hex:EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 8.55 (br s, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 5.14 (s, 2H), 2.17 (s, 3H), 2.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 171.7, 157.1, 140.7, 136.3, 130.9, 127.5, 65.7, 21.0, 10.2. IR (neat) v_{max} 3368, 1715, 1642, 1606, 1404. 1251 cm⁻¹. HRMS[EI+] calcd for C₁₂H₁₃NO₄ [M]⁺ 235.0845, found 235.0856.


To a stirred solution of ketone (576 mg, 3.0 mmol), n-butyl nitrite (1.05 mL, 9.0 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.5 mL, 6.0 mmol). After 24 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **11** (464 mg, 70%) as a white solid.

Methyl (E)-4-(2-(hydroxyimino)propanoyl)benzoate (11); $R_f = 0.4$ (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (br s, 1H), 8.09 (d, J = 8.5 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H), 3.95 (s, 3H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 166.9, 157.2, 140.4, 133.3, 130.3, 129.3, 52.6, 9.9. IR (neat) v_{max} 3223, 1728, 1648, 1435, 1275, 1109 cm⁻¹. HRMS[EI+] calcd for C₁₁H₁₁NO₄ [M]⁺ 221.0668, found 221.0677.


To a stirred solution of ketone (702 mg, 3.0 mmol), n-butyl nitrite (1.4 mL, 12.0 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.5 mL, 6.0 mmol). After 7 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **1n** (687 mg, 87%) as a white solid.

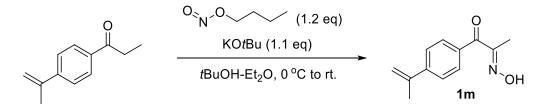
(E)-2-(hydroxyimino)-1-(4-(phenylethynyl)phenyl)propan-1-one (1n); $R_f = 0.35$ (Hex:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.19 (br s, 1H), 7.92 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.56-7.54 (m, 2H), 7.38-7.36 (m, 3H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 157.2, 135.6, 131.9, 131.3, 130.5, 128.9, 128.5, 128.0, 122.8, 92.7, 88.8, 10.2. IR (neat) v_{max} 3241, 1653, 1608, 1439, 1314, 1182 cm⁻¹. HRMS[EI+] calcd for C₁₇H₁₃NO₂ [M]⁺ 263.0946, found 263.0944.


To a stirred solution of ketone (480 mg, 3.0 mmol), n-butyl nitrite (0.88 mL, 7.5 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.5 mL, 6.0 mmol). After 20 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, filtered through a short pad of silica gel, and concentrated. The crude solid product was recrystallized with ethyl acetate and hexane to afford **3b** (448 mg, 79%) as an off-white solid.

(Z)-2-(hydroxyimino)-3,3-dimethyl-2,3-dihydro-1H-inden-1-one (3b); $R_f = 0.3$ (Hex:EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 8.86 (br s, 1H), 7.87 (d, J = 7.7 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 1.68 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 159.9, 159.4, 136.6, 135.2, 128.1, 124.2, 123.7, 42.2, 24.8. IR (neat) v_{max} 3197, 1715, 1644, 1604, 1457, 1295 cm⁻¹. HRMS[EI+] calcd for C₁₁H₁₁NO₂ [M]⁺ 189.0790, found 189.0792.

To a stirred solution of ketone (396 mg, 3.0 mmol), n-butyl nitrite (0.38 mL, 3.3 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (0.9 mL, 3.6 mmol). After 22 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 5:1 to 2:1) to afford **3c** (203 mg, 42%) as a brown solid.

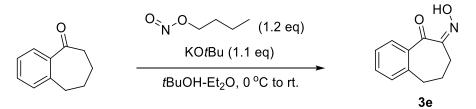
(E)-1-(hydroxyimino)-1,3-dihydro-2H-inden-2-one (3c); $R_f = 0.6$ (Hex:EtOAc = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 7.6 Hz, 1H), 7.49 (m, 1H), 7.43-7.40 (m, 2H), 3.65 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 150.0, 139.1, 133.0, 132.2, 128.9, 128.1, 125.6, 40.9. IR (neat) v_{max} 3075, 1746, 1422, 1324, 1195 cm⁻¹. HRMS[EI+] calcd for C₉H₇NO₂ [M]⁺ 161.0477, found 161.0476.



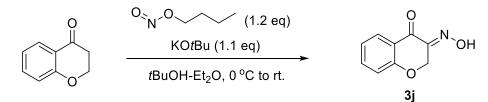
To a stirred solution of ketone (991 mg, 3.0 mmol), n-butyl nitrite (0.53 mL, 4.5 mmol) in THF (9.0 mL) was added 4N HCl in 1,4-dioxane (1.13 mL, 4.5 mmol). After 20 h, the reaction mixture was quenched with sat. NaHCO₃ sol'n and extracted with diethy ether (20 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 5:1 to 1:1) to afford **3r** (571 mg, 53%) as an off-white solid.

(3S,8R,9S,10R,13S,14S,Z)-16-(hydroxyimino)-10,13-di-methyl-17-oxo-

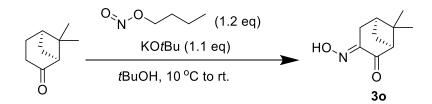
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetrad-ecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (**3r**); $R_f = 0.3$ (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 8.93 (br s, 1H), 5.41 (m, 1H), 4.61 (m, 1H), 2.94 (m, 1H), 2.39-2.28 (m, 2H), 2.91-2.06 (m, 2H), 2.03 (s, 3H), 1.98 (m, 1H), 1.91-1.85 (m, 2H), 1.77 (m, 1H), 1.68-1.55 (m, 2H), 155-1.35 (m, 3H), 1.29-1.05 (m, 3H), 1.05 (s, 3H), 0.97 (s, 3H), ¹³C NMR (100 MHz, CDCl₃) δ 205.0, 170.8, 156.8, 104.2, 121.6, 73.8, 50.1, 48.8, 46.8, 38.1, 36.95, 36.92, 31.1, 31.0, 30.8, 27.7, 25.6, 21.5, 20.2, 19.5, 14.0. IR (neat) v_{max} 3307, 2945, 1740, 1693, 1439, 1267 cm⁻¹. HRMS[FAB] calcd for C₂₁H₃₀NO4 [M+H]⁺ 360.2175, found 360.2179.


2) Procedure for base-assiated oximation

To a stirred solution of ketone (174 mg, 1.0 mmol) and n-butyl nitrite (140 μ L, 1.2 mmol) in the mixed solvent of t-BuOH (3.0 mL) and Et₂O (2.0 mL) was added KO'Bu (123 mg, 1.1 mmol) at 0 °C. The

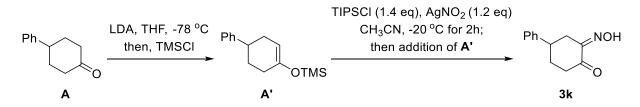

resulting slurry was stirred for 4 hours at rt. Then, the mixture was partitioned with water and diethyl ether. The aqueous solution was acidified with 1N HCl (until pH 2-3) and extracted with diethyl ether (10 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography to afford **1m** (91 mg, 45%) as a white solid.

(E)-2-(hydroxyimino)-1-(4-(prop-1-en-2-yl)phenyl)propan-1-one (1m); $R_f = 0.3$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (br s, 1H), 7.90-7.86 (m, 2H), 7.53-7.50 (m, 2H), 5.47 (m, 1H), 5.20 (m, 1H), 2.18 (s, 3H), 2.17-2.16 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 157.1, 145.7, 142.5, 135.2, 130.5, 125.3, 114.9, 21.7, 10.3. IR (neat) v_{max} 3234, 1659, 1599, 1446, 1309, 1187 cm⁻¹. HRMS[EI+] calcd for C₁₂H₁₃NO₂ [M]⁺ 203.0946, found 203.0945.


To a stirred solution of ketone (160 mg, 1.0 mmol) and n-butyl nitrite (140 μ L, 1.2 mmol) in the mixed solvent of t-BuOH (3.0 mL) and Et₂O (2.0 mL) was added KO'Bu (123 mg, 1.1 mmol) at 0 °C. The resulting slurry was stirred for 4 hours at rt. Then, the mixture was partitioned with water and diethyl ether. The aqueous solution was acidified with 1N HCl (until pH 2-3) and extracted with diethyl ether (10 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography to afford **3e** (159 mg, 84%) as a white solid.

(Z)-6-(hydroxyimino)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (3e); $R_f = 0.3$ (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 9.64 (br s, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 2.88 (t, J = 6.8 Hz, 2H), 2.74 (t, J = 6.9 Hz, 2H), 2.05 (p, J = 6.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 157.2, 140.5, 136.8, 133.7, 129.9, 129.6, 127.3, 32.2, 22.7, 22.4. IR (neat) v_{max} 3210, 2935, 1697, 1597, 1455, 1298 cm⁻¹ HRMS[EI+] calcd for C₁₁H₁₁NO₂ [M]⁺ 189.0790, found 189.0792.

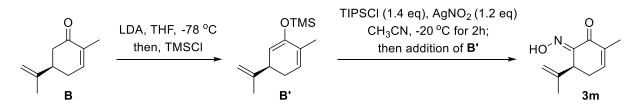
To a stirred solution of ketone (148 mg, 1.0 mmol) and n-butyl nitrite (140 μ L, 1.2 mmol) in the mixed solvent of t-BuOH (3.0 mL) and Et₂O (2.0 mL) was added KO'Bu (123 mg, 1.1 mmol) at 0 °C. The resulting slurry was stirred for 4 hours at rt. Then, the mixture was partitioned with water and diethyl ether. The aqueous solution was acidified with 1N HCl (until pH 2-3) and extracted with diethyl ether (10 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography to afford **3j** (115 mg, 65%) as a light brown solid.


(Z)-3-(hydroxyimino)chroman-4-one (3j); $R_f = 0.6$ (Hex:EtOAc = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 10.20 (br s, 1H), 8.01 (dd, J = 5.2 and 1.7 Hz, 1H), 7.55 (m, 1H), 7.09 (t, J = 8.1 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 5.04 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 161.5, 149.0, 137.2, 127.9, 122.3, 121.5, 118.5, 65.2. IR (neat) v_{max} 3195, 1668, 1602, 1462, 1333, 1049 cm⁻¹. HRMS[EI+] calcd for C₉H₇NO₃ [M]⁺ 177.0426, found 177.0422.

To a stirred solution of ketone (138 mg, 1.0 mmol) and n-butyl nitrite (140 μ L, 1.2 mmol) in t-BuOH (5.0 mL) was added KO'Bu (123 mg, 1.1 mmol) at 10 °C. The resulting slurry was stirred for 4 hours at rt. Then, the mixture was partitioned with water and diethyl ether. The aqueous solution was acidified with 1N HCl (until pH 2-3) and extracted with diethyl ether (10 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography to afford the corresponding **30** (97 mg, 58%) as a white solid.

(18,58,Z)-3-(hydroxyimino)-6,6-dimethylbicyclo[3.1.1]heptan-2-one (30); $R_f = 0.55$ (Hex:EtOAc = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 10.29 (br s, 1H), 2.89-2.80 (m, 2H), 2.76 (m, 1H), 2.71 (m, 1H), 2.33 (m, 1H), 1.53 (d, J = 8.7 Hz, 1H), 1.38 (s, 3H), 0.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 152.8, 56.5, 41.8, 37.7, 31.1, 28.2, 27.9, 26.4. IR (neat) v_{max} 3290, 2935, 1424, 1213, 1031 cm⁻¹. HRMS[EI+] calcd for C₉H₁₃NO₂ [M]⁺ 167.0946, found 167.0934.

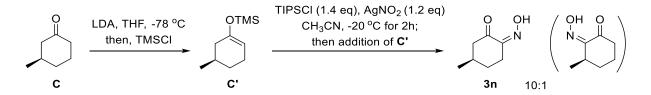
3) Procedure using Yamamoto's method¹¹


Step 1: To a stirred solution of A (174 mg, 1.0 mmol) in THF (3.0 mL) was added a solution of LDA (1.0 M in THF, 1.1 mL, 1.1 mmol) at -78 °C. The reaction mixture was additionally stirred for 0.5 h and TMSCl (0.15 mL, 1.2 mmol) was added to the solution of lithium enolate at the same temperature. Then, the reaction mixture was slowly warmed to 0 °C and quenched with sat. NaHCO₃ sol'n and extracted with hexane (10 X 3 mL). The organic solution was dried over MgSO₄, concentrated, and directly used for the next reaction without further purification.

Step 2: To a stirred solution of silver nitrite (185 mg, 1.2 mmol) in dry CH₃CN (5 mL) was added dropwise TIPSCI (270 mg, 1.4 mmol) in CH₃CN (1.0 mL) at -20 °C. The resulting slurry was stirred additionally for 2 h under darkness and treated with the silylenol ether **A'** freshly prepared in step 1 in CH₃CN (0.5 mL) at -20 °C. After 2 h, the reaction mixture was quenched with 1:1 mixture of brine and sat. NaHCO₃ sol'n and extracted with EtOAc (10 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1 to 1:1) to afford **3k** (132 mg, 65% for 2 steps) as a white solid.

2-(hydroxyimino)-4-phenylcyclohexan-1-one (3k); $R_f = 0.45$ (Hex:EtOAc = 1:1); ¹H NMR (500 MHz, CDCl₃) δ 9.96 (br s, 1H), 7.36 (t, J = 7.6 Hz, 2H), 7.29-7.26 (m, 3H), 3.40 (m, 1H), 3.12 (m, 1H), 2.80 (m, 1H), 2.72-2.61 (m, 2H), 2.22 (m, 1H), 2.15 (m, 1H), ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 153.2,

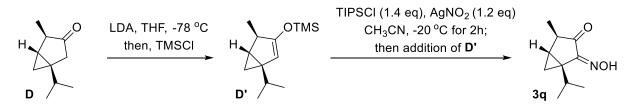
¹¹ Baidya, M.; Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 13880.


143.8, 128.9, 127.1, 126.7, 39.9, 39.3, 32.7, 29.6. IR (neat) v_{max} 3279, 1690, 1568, 1393, 1016 cm⁻¹. HRMS[EI+] calcd for $C_{12}H_{13}NO_2$ [M]⁺ 203.0946, found 203.0946.

Step 1: To a stirred solution of **B** (150 mg, 1.0 mmol) in THF (3.0 mL) was added a solution of LDA (1.0 M in THF, 1.1 mL, 1.1 mmol) at -78 °C. The reaction mixture was additionally stirred for 0.5 h and TMSCl (0.15 mL, 1.2 mmol) was added to the solution of lithium enolate at the same temperature. Then, the reaction mixture was slowly warmed to 0 °C and quenched with sat. NaHCO₃ sol'n and extracted with hexane (10 X 3 mL). The organic solution was dried over MgSO₄, concentrated, and directly used for the next reaction without further purification.

Step 2: To a stirred solution of silver nitrite (185 mg, 1.2 mmol) in dry CH₃CN (5 mL) was added dropwise TIPSCI (270 mg, 1.4 mmol) in CH₃CN (1.0 mL) at -20 °C. The resulting slurry was stirred additionally for 2h under darkness and treated with the silylenol ether **B'** freshly prepared in step 1 in CH₃CN (0.5 mL) at -20 °C. After 2h, the reaction mixture was quenched with 1:1 mixture of brine and sat. NaHCO₃ sol'n and extracted with EtOAc (10 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1 to 1:1) to afford **3m** (75 mg, 42% for 2 steps) as a light brown solid.

6-(hydroxyimino)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-one (3m); $R_f = 0.5$ (Hex:EtOAc = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 10.51 (br s, 1H), 6.80 (m, 1H), 4.83 (s, 1H), 4.67 (s, 1H), 4.40 (d, J = 6.5 Hz, 1H), 2.70 (m, 1H), 2.59 (m, 1H), 1.87-1.86 (m, 3H), 1.75 (s, 3H), ¹³C NMR (100 MHz, CDCl₃) δ 184.3, 154.0, 144.7, 142.5, 137.1, 112.9, 40.1, 28.5, 21.9, 16.0. IR (neat) v_{max} 3250, 2918, 1648, 1576, 1406, 1366 cm⁻¹. HRMS[EI+] calcd for C₁₀H₁₃NO₂ [M]⁺ 179.0946, found 179.0940.

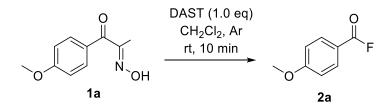


Step 1: To a stirred solution of C (112 mg, 1.0 mmol) in THF (3.0 mL) was added a solution of LDA (1.0 M in THF, 1.1 mL, 1.1 mmol) at -78 °C. The reaction mixture was additionally stirred for 0.5 h and TMSCl (0.15 mL, 1.2 mmol) was added to the solution of lithium enolate at the same temperature. Then, the reaction mixture was slowly warmed to 0 °C and quenched with sat. NaHCO₃ sol'n and extracted with hexane (10 X 3 mL). The organic solution was dried over MgSO₄, concentrated, and directly used for the next reaction without further purification.

Step 2: To a stirred solution of silver nitrite (185 mg, 1.2 mmol) in dry CH₃CN (5 mL) was added dropwise TIPSCI (270 mg, 1.4 mmol) in CH₃CN (1.0 mL) at -20 °C. The resulting slurry was stirred additionally for 2h under darkness and treated with the silylenol ether **C'** freshly prepared in step 1 in CH₃CN (0.5 mL) at -20 °C. After 2h, the reaction mixture was quenched with 1:1 mixture of brine and sat. NaHCO₃ sol'n and extracted with EtOAc (10 X 3 mL). The combined organic solution was dried

over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1 to 1:1) to afford **3n** (106 mg, 75% for 2 steps, regioisomeric ratio = 10:1) as a white solid.

2-(hydroxyimino)-5-methylcyclohexan-1-one (3n); $R_f = 0.45$ (Hex:EtOAc = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 10.30 (br s, 1H), 3.10 (m, 1H), 2.68 (m, 1H), 2.47 (m, 1H), 2.15 (m, 1H), 2.04 (m, 1H), 1.95 (m, 1H), 1.43 (m, 1H), 1.05 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 153.6, 49.0, 29.6, 29.5, 23.8, 21.4. IR (neat) v_{max} 3183, 1701, 1600, 1418, 1278 cm⁻¹. HRMS[EI+] calcd for C₇H₁₁NO₂ [M]⁺ 141.0790, found 141.0791.

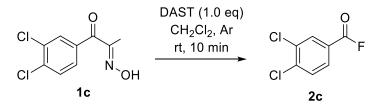


Step 1: To a stirred solution of **D** (152 mg, 1.0 mmol) in THF (3.0 mL) was added a solution of LDA (1.0 M in THF, 1.1 mL, 1.1 mmol) at -78 °C. The reaction mixture was additionally stirred for 0.5 h and TMSCl (0.15 mL, 1.2 mmol) was added to the solution of lithium enolate at the same temperature. Then, the reaction mixture was slowly warmed to 0 °C and quenched with sat. NaHCO₃ sol'n and extracted with hexane (10 X 3 mL). The organic solution was dried over MgSO₄, concentrated, and directly used for the next reaction without further purification.

Step 2: To a stirred solution of silver nitrite (185 mg, 1.2 mmol) in dry CH₃CN (5 mL) was added dropwise TIPSCI (270 mg, 1.4 mmol) in CH₃CN (1.0 mL) at -20 °C. The resulting slurry was stirred additionally for 2h under darkness and treated with the silylenol ether **D**' freshly prepared in step 1 in CH₃CN (0.5 mL) at -20 °C. After 2h, the reaction mixture was quenched with 1:1 mixture of brine and sat. NaHCO₃ sol'n and extracted with EtOAc (10 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1 to 1:1) to afford **3q** (109 mg, 60% for 2 steps) as a light yellow solid.

(18,4R,5R)-2-(hydroxyimino)-1-isopropyl-4,5-dimethylbicyclo[3.1.0]hexan-3-one (3q); $R_f = 0.4$ (Hex:EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 9.78 (br s, 1H), 2.87 (m, 1H), 2.46-2.41 (q, *J* = 7.5 Hz, 1H), 1.44 (m, 1H), 1.37 (m, 1H), 1.23 (d, *J* = 7.5 Hz, 3H), 1.03 (d, *J* = 6.6 Hz, 3H), 0.75 (d, *J* = 6.9 Hz, 3H), 0.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 206.9, 156.2, 44.5, 35.6, 26.1, 22.4, 21.7, 19.3, 17.6, 17.5. IR (neat) v_{max} 3239, 2964, 1740, 1636, 1449, 1296 cm⁻¹. HRMS[EI+] calcd for C₁₀H₁₅NO₂ [M]⁺ 181.1103, found 181.1102.

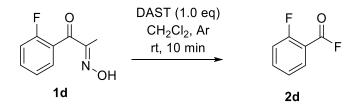
Procedure for DAST-mediated fluorinative C-C bond cleavage


A 10 mL round bottom flask was charged with **1a** (58 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (pentane) to afford **2a** (40 mg, 87%) as a pale yellow oil.

4-methoxybenzoyl fluoride (**2a**); $R_f = 0.5$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 9.3 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 3.90 (s, 3H), ¹⁹F NMR (376 MHz, CDCl₃) δ 15.99 (s, 1F), This spectral data is in agreement with the reported.¹²

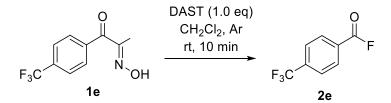
A 10 mL round bottom flask was charged with **1b** (72 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (pentane) to afford **2b** (49 mg, 81%) as a colorless oil.

3-bromobenzoyl fluoride (**2b**); $R_f = 0.65$ (Hex:EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), ¹⁹F NMR (376 MHz, CDCl₃) δ 19.08 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 156.2 (d, $J_{C,F} = 343$ Hz), 138.5, 134.4 (d, $J_{C,F} = 4$ Hz), 130.7 (d, $J_{C,F} = 1$ Hz), 130.0 (d, $J_{C,F} = 4$ Hz), 127.0 (d, $J_{C,F} = 62$ Hz), 123.2 (d, $J_{C,F} = 1$ Hz). IR (neat) ν_{max} 2957, 2857, 1815, 1238, 1029, 734 cm⁻¹. HRMS[EI+] calcd for C₇H₄BrFO [M]⁺ 201.9430, found 201.9425.



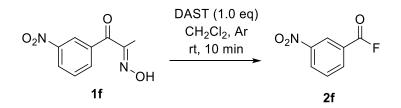
A 10 mL round bottom flask was charged with 1c (70 mg, 0.3 mmol) and dry CH₂Cl₂ (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (pentane) to afford 2c (42 mg, 73%) as a colorless oil.

3,4-dichlorobenzoyl fluoride (2c); $R_f = 0.65$ (Hex:EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 2.0 Hz, 1H), 7.88 (dd, J = 8.2 and 2.1 Hz, 1H), 7.63 (dd, J = 8.3 and 3.4 Hz, 1H), ¹⁹F NMR (376 MHz, CDCl₃) δ 19.16 (s, 1F), ¹³C NMR (100 MHz, CDCl₃) δ 155.7 (d, $J_{C,F} = 342$ Hz), 140.7, 134.1,

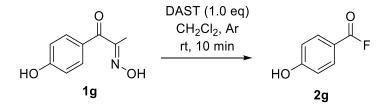

¹² Arisawa, M.; Igarashi, Y.; Kobayashi, H.; Yamada, T.; Bando, K.; Ichikawa, T.; Yamaguchi, M. Tetrahedron 2011, 67, 7846.

133.2 (d, $J_{C,F} = 3$ Hz), 131.5 (d, $J_{C,F} = 1$ Hz), 130.3 (d, $J_{C,F} = 3$ Hz), 124.8 (d, $J_{C,F} = 63$ Hz), IR (neat) v_{max} 3039, 1817, 1611, 1467, 1270, 1054 cm⁻¹. HRMS[EI+] calcd for C₇H₃Cl₂FO [M]⁺ 191.9545, found 191.9546.

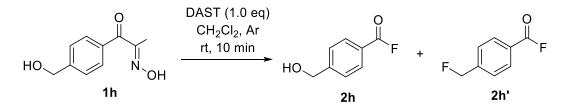
A 10 mL round bottom flask was charged with **1d** (54 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (pentane) to afford **2d** (34 mg, 80%) as a colorless oil.


2-fluorobenzoyl fluoride (2d); $R_f = 0.5$ (Hex:EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (t, J = 6.7 Hz, 1H), 7.72 (m, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.26 (t, J = 9.3 Hz, 1H), ¹⁹F NMR (376 MHz, CDCl₃) δ 31.56 (s, 1F), 106.2 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 163.3 (dd, $J_{C,F} = 264$ and 2 Hz), 154.1 (dd, $J_{C,F} = 342$ and 4 Hz), 137.5 (d, $J_{C,F} = 9$ Hz), 133.5 (d, $J_{C,F} = 3$ Hz), 124.8 (d, $J_{C,F} = 4$ Hz), 117.7 (dd, $J_{C,F} = 19$ and 2 Hz), 113.5 (dd, $J_{C,F} = 113$ and 53 Hz). IR (neat) ν_{max} 3089, 1819, 1613, 1585, 1490, 1289 cm⁻¹. HRMS[EI+] calcd for C₇H₄F₂O [M]⁺ 142.0230, found 142.0222.

A 10 mL round bottom flask was charged with **1e** (69 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (pentane) to afford **2e** (42 mg, 73%) as a colorless oil.


4-(trifluoromethyl) benzoyl fluoride (2e); $R_f = 0.6$ (Hex:EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 8.5 Hz, 2H), ¹⁹F NMR (376 MHz, CDCl₃) δ 19.9 (s, 1F), -63.5 (s, 3F), This spectral data is in agreement with the reported.¹³

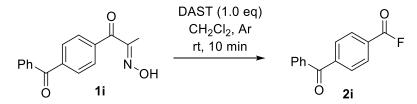
¹³ Stavber, S.; Planinšek, Z.; Zupan, M. J. Org. Chem. 1992, 57, 5334.


A 10 mL round bottom flask was charged with **1f** (62 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 50:1) to afford **2f** (42 mg, 83%) as a white solid.

3-nitrobenzoyl fluoride (2f); $R_f = 0.4$ (Hex:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.89 (t, J = 2.0 Hz, 1H), 8.57 (m, 1H), 8.39 (d, J = 7.8 Hz, 1H), 7.79 (td, J = 7.9 and 1.3 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ 20.19 (s, 1F). ¹³C NMR (125 MHz, CDCl₃) δ 155.3 (d, $J_{C,F} = 343$ Hz), 148.5, 136.7 (d, $J_{C,F} = 4$ Hz), 130.5, 129.7, 126.8 (d, $J_{C,F} = 65$ Hz), 126.3 (d, $J_{C,F} = 4$ Hz). IR (neat) v_{max} 3094, 1813, 1584, 1535, 1350, 1247cm⁻¹. HRMS[EI+] calcd for C₇H₄FNO₃ [M]⁺ 169.0175, found 169.0165.

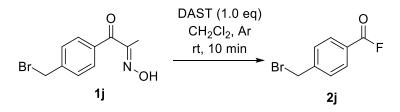
A 10 mL round bottom flask was charged with **1g** (54 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1 to 1:1) to afford **2g** (31 mg, 74%) as a white solid.

4-hydroxybenzoyl fluoride (2g); $R_f = 0.25$ (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 7.2 Hz, 2H), 5.80 (s, 1H), ¹⁹F NMR (376 MHz, CDCl₃) δ 18.2 (s, 1F). This spectral data is in agreement with the reported.¹⁴


A 10 mL round bottom flask was charged with 1h (58 mg, 0.3 mmol) and dry CH₂Cl₂ (1.0 mL) under

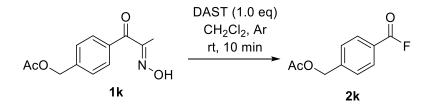
¹⁴ Munoz, S. B.; Dang, H.; Ispizua-Rodriguez, X.; Mathew, T.; Prakash, G. K. S. Org. Lett. 2019, 21, 1659.

Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 μ L, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 1:1) to afford **2h** (19 mg, 41%) and **2h'** (14 mg, 30%).

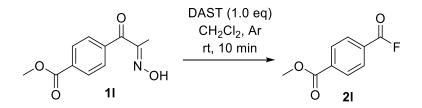

4-(hydroxymethyl) benzoyl fluoride (2h); white solid; $R_f = 0.25$ (Hex:EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 8.3 Hz , 2H), 7.53 (d, J = 7.5 Hz , 2H), 4.83 (s, 2H), ¹⁹F NMR (376 MHz, CDCl₃) δ 18.18 (s, 1F), ¹³C NMR (100 MHz, CDCl₃) δ 157.4 (d, $J_{C,F} = 341$ Hz), 148.9, 131.8 (d, $J_{C,F} = 4$ Hz), 126.9 (d, $J_{C,F} = 1$ Hz), 124.0 (d, $J_{C,F} = 60$ Hz), 64.5. IR (neat) v_{max} 3414, 2960, 1808, 1714, 1612, 1419, 1273 cm⁻¹. HRMS[EI+] calcd for C₈H₇FO₂ [M]⁺ 154.0430, found 154.0425.

4-(fluoromethyl) benzoyl fluoride (2h'); colorless oil; $R_f = 0.55$ (Hex:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 7.5 Hz , 2H), 7.51 (d, J = 7.5 Hz , 2H), 5.49 (d, J = 46.8 Hz, 2H), ¹⁹F NMR (376 MHz, CDCl₃) δ 18.52 (s, 1F), - 216.09 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 157.1 (d, $J_{C,F} = 342$ Hz), 144.1 (d, $J_{C,F} = 17$ Hz), 131.8 (d, $J_{C,F} = 4$ Hz), 126.8 (dd, $J_{C,F} = 5$ and 1 Hz), 125.0 (dd, $J_{C,F} = 59$ and 2 Hz), 83.3 (d, $J_{C,F} = 169$ Hz). IR (neat) v_{max} 2955, 1811, 1615, 1257, 1038, 1010 cm⁻¹. HRMS[EI+] calcd for C₈H₆F₂O [M]⁺156.0387, found 156.0383.

A 10 mL round bottom flask was charged with **1i** (80 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1) to afford **2i** (65 mg, 95%) as a white solid.

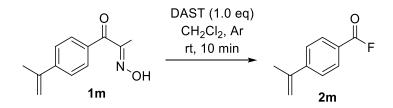

4-benzoylbenzoyl fluoride (2i); $R_f = 0.5$ (Hex:EtOAc = 10:1); ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz , 2H), 7.92-7.89 (m, 2H), 7.82-7.79 (m , 2H), 7.65 (m, 1H), 7.55-7.49 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ 19.97 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 156.7 (d, $J_{C,F}$ = 343 Hz), 143.6, 136.5, 133.5, 131.5 (d, $J_{C,F}$ = 3 Hz), 130.26, 130.27, 128.7, 127.9 (d, $J_{C,F}$ = 62 Hz). IR (neat) ν_{max} 1819, 1805, 1745, 1317, 1026 cm⁻¹. HRMS[EI+] calcd for C₁₄H₉FO₂ [M]⁺ 228.0587, found 228.0592.

A 10 mL round bottom flask was charged with **1j** (77 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 μ L, 0.3 mmol) was added to the solution via a

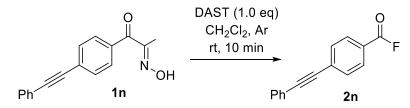

microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 50:1) to afford **2j** (57 mg, 87%) as a white solid.

4-(bromomethyl) benzoyl fluoride (2j); $R_f = 0.4$ (Hex:EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 8.5 Hz , 2H), 7.55 (d, J = 8.5 Hz , 2H), 4.50 (s, 2H), ¹⁹F NMR (376 MHz, CDCl₃) δ 18.63 (s, 1F), ¹³C NMR (100 MHz, CDCl₃) δ 156.9 (d, $J_{C,F} = 342$ Hz), 145.4, 132.0 (d, $J_{C,F} = 4$ Hz), 129.8 (d, $J_{C,F} = 1$ Hz), 124.9 (d, $J_{C,F} = 61$ Hz), 31.5. IR (neat) ν_{max} 3060, 1808, 1636, 1578, 1259, 1012 cm⁻¹. HRMS[EI+] calcd for C₈H₆BrFO [M]⁺ 215.9586, found 215.9589.

A 10 mL round bottom flask was charged with **1k** (71 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1) to afford **2k** (51 mg, 86%) as a white solid.


4-(fluorocarbonyl) benzyl acetate (2k); $R_f = 0.4$ (Hex:EtOAc = 10:1); ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, J = 8.3 Hz , 2H), 7.27 (d, J = 8.3 Hz , 2H), 5.19 (s, 2H), 2.14 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 18.4. (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 157.2 (d, $J_{C,F} = 342$ Hz), 143.9, 131.8 (d, $J_{C,F} = 4$ Hz), 128.2 (d, $J_{C,F} = 1$ Hz), 124.7(d, $J_{C,F} = 61$ Hz), 65.2, 20.9. IR (neat) v_{max} 1804, 1745, 1511, 1419, 1122, 1029 cm⁻¹. HRMS[EI+] calcd for C₁₀H₉FO₃ [M]⁺ 196.0536, found 196.0533.

A 10 mL round bottom flask was charged with **11** (66 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 5:1 to 3:1) to afford **21** (41 mg, 74%) as a white solid.

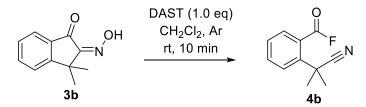

methyl 4-(fluorocarbonyl) benzoate (2l); $R_f = 0.5$ (Hex:EtOAc = 1:3); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.0 Hz , 2H), 8.12 (d, J = 8.5 Hz , 2H), 3.97 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 20.07

(s, 1F). This spectral data is in agreement with the reported.¹⁵

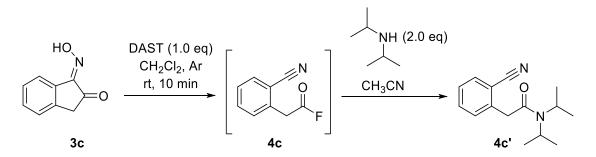
A 10 mL round bottom flask was charged with **1m** (61 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 50:1) to afford **2m** (40 mg, 82%) as a white solid.

4-(prop-1-en-2-yl) benzoyl fluoride (2m); $R_f = 0.5$ (Hex:EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 6.6 Hz , 2H), 7.59 (d, J = 7.2 Hz , 2H), 5.52 (m, 1H), 5.27 (m, 1H), 2.18 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 17.89 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 157.4 (d, $J_{C,F} = 341$ Hz), 148.2, 142.1, 131.6 (d, $J_{C,F} = 4$ Hz), 126.2, 123.6 (d, $J_{C,F} = 61$ Hz), 116.1, 21.6. IR (neat) v_{max} 2978, 1807, 1462, 1159, 1038 cm⁻¹. HRMS[EI+] calcd for C₁₀H₉FO [M]⁺ 164.0637, found 164.0652.

A 10 mL round bottom flask was charged with **1n** (79 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 50:1) to afford **2n** (61 mg, 91%) as a white solid.

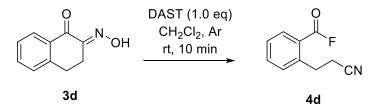

4-(phenylethynyl) benzoyl fluoride (2n); $R_f = 0.5$ (Hex:EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 6.6 Hz , 2H), 7.66 (d, J = 7.5 Hz , 2H), 7.57-7.55 (m, 2H), 7.40-7.38 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 18.29 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 157.0 (d, $J_{C,F} = 341$ Hz), 132.2, 132.0, 131.5 (d, $J_{C,F} = 3$ Hz), 130.8, 129.3, 128.6, 124.1 (d, $J_{C,F} = 61$ Hz), 122.4, 94.4, 88.1. IR (neat) v_{max} 2216, 1812, 1601, 1255, 1247 cm⁻¹. HRMS[EI+] calcd for C₁₅H₉FO [M]⁺ 224.0637, found.224.0645.

¹⁵ Boreux, A.; Indukuri, K.; Gagosz, F.; Riant, O. ACS Catal. 2017, 7, 8200.

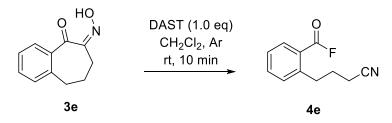

A 10 mL round bottom flask was charged with **3a** (48 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 5:1) to afford **4a** (41 mg, 83%) as a white solid.

2-(cyanomethyl) benzoyl fluoride (4a); $R_f = 0.25$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.1 Hz , 1H), 7.75 (m, 2H), 7.54 (m, 1H), 4.23 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ 27.81 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 156.1 (d, $J_{C,F} = 343$ Hz), 135.9, 134.8 (d, $J_{C,F} = 8$ Hz), 133.3 (d, $J_{C,F} = 1$ Hz), 130.6 (d, $J_{C,F} = 4$ Hz), 129.1, 122.8 (d, $J_{C,F} = 57$ Hz), 116.9, 23.2. IR (neat) v_{max} 2922, 2252, 1795, 1577, 1411, 1236 cm⁻¹. HRMS[EI+] calcd for C₉H₆FNO [M]⁺ 163.0433, found 163.0453.

A 10 mL round bottom flask was charged with **3b** (57 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 5:1) to afford **4b** (42 mg, 73%) as a white solid.


2-(2-cyanopropan-2-yl) benzoyl fluoride (4b); $R_f = 0.25$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.9 Hz , 1H), 7.68-7.66 (m , 2H), 7.49 (t, J = 7.4 Hz, 1H), 1.91 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ 39.70 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 156.8 (d, $J_{C,F} = 347$ Hz), 143.0 (d, $J_{C,F} = 6$ Hz), 134.6, 133.1 (d, $J_{C,F} = 1$ Hz), 128.5, 127.1 (d, $J_{C,F} = 3$ Hz), 124.7 (d, $J_{C,F} = 59$ Hz), 123.7, 36.7, 28.74, 28.72. IR (neat) v_{max} 2984, 2227, 2161, 1808, 1573, 1220 cm⁻¹. HRMS[EI+] calcd for C₁₁H₁₀FNO [M]⁺ 191.0746, found 191.0761.

A 10 mL round bottom flask was charged with 3c (48 mg, 0.3 mmol) and dry CH₂Cl₂ (1.0 mL) under


Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 μ L, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄ and concentrated. The crude product was dissolved in CH₃CN (3.0 mL) and treated with diisopropylamine (84 μ L, 0.6 mmol). After 5 min, the reaction mixture was diluted with ethyl acetate (10 mL) and washed with H₂O (10 mL). The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1) to afford **4c'** (50 mg, 68%) as a light brown solid.

2-(2-cyanophenyl)-N,N-diisopropylacetamide (4c'); $R_f = 0.3$ (Hex:EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 7.65 (dd, J = 7.7 and 1.4 Hz, 1H), 7.55 (td, J = 7.7 and 1.4 Hz, 1H), 7.42 (d, J = 7.9 Hz, 1H), 7.34 (td, J = 7.7 and 1.4 Hz, 1H), 4.02 (p, J = 6.7 Hz, 1H), 3.88 (s, 2H), 3.47 (s, 1H), 1.41 (d, J = 6.7 Hz, 6H), 1.20 (d, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 140.1, 132.8, 132.7, 130.5, 127.3, 117.9, 113.2, 49.3, 46.3, 40.8, 20.9, 20.6. IR (neat) v_{max} 2962, 2214, 1644, 1448, 1342, 1280 cm⁻¹. HRMS[EI+] calcd for C₁₅H₂₀N₂O [M]⁺ 244.1576, found 244.1582.

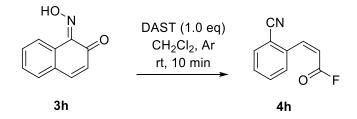
A 10 mL round bottom flask was charged with **3d** (53 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 7:1 to 5:1) to afford **4d** (42 mg, 79%) as a light orange solid.

2-(2-cyanoethyl)benzoyl fluoride (4d); $R_f = 0.3$ (Hex:EtOAc = 7:1); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.5 Hz , 1H), 7.68 (t, J = 7.5 Hz , 1H), 7.47 (t, J = 7.0 Hz , 2H), 3.34 (t, J = 7.0 Hz , 2H), 2.73 (t, J = 7.0 Hz , 2H), ¹⁹F NMR (376 MHz, CDCl₃) δ 28.68 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 156.4 (d, $J_{C,F} = 344$ Hz), 143.0 (d, $J_{C,F} = 9$ Hz), 135.6, 133.2 (d, $J_{C,F} = 2$ Hz), 132.4 (d, $J_{C,F} = 4$ Hz), 128.3, 123.2 (d, $J_{C,F} = 56$ Hz), 118.9, 30.5, 18.5. IR (neat) v_{max} 2247, 1795, 1597, 1453, 1231 cm⁻¹. HRMS[EI+] calcd for C₁₀H₈FNO [M]⁺ 177.0590, found 177.0580.

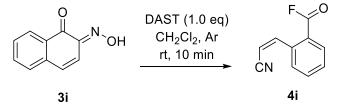
A 10 mL round bottom flask was charged with **3e** (57 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 5:1) to afford **4e** (57 mg, 99%) as a colorless oil.


2-(3-cyanopropyl)benzoyl fluoride (4e); $R_f = 0.3$ (Hex:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃)

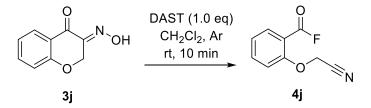
δ 8.03 (d, J = 7.9 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.42-7.37 (m, 2H), 3.15 (t, J = 7.8 Hz, 2H), 2.41 (t, J = 7.1 Hz, 2H), 1.98 (p, J = 7.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ 29.39 (s, 1F), ¹³C NMR (100 MHz, CDCl₃) δ 156.3 (d, $J_{C,F}$ = 344 Hz), 145.4 (d, $J_{C,F}$ = 8 Hz), 135.2, 133.1 (d, $J_{C,F}$ = 2 Hz), 131.9 (d, $J_{C,F}$ = 5 Hz), 127.4, 123.2 (d, $J_{C,F}$ = 56 Hz), 119.4, 33.5, 26.6, 17.0. IR (neat) v_{max} 2946, 2229, 1803, 1599, 1231 cm⁻¹. HRMS[EI+] calcd for C₁₁H₁₀FNO [M]⁺ 191.0746, found 191.0761.


A 10 mL round bottom flask was charged with **3f** (67 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 5:1) to afford **4f** (52 mg, 77%) as a colorless oil.

2'-cyano-[1,1'-biphenyl]-2-carbonyl fluoride (4f); $R_f = 0.35$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, J = 8.0 and 1.4 Hz , 1H), 7.79-7.75 (m, 2H), 7.68-7.60 (m, 2H), 7.51 (td, J = 7.8 and 1.2 Hz, 1H), 7.42 (m, 1H), 7.37 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ 29.28 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 156.2 (d, $J_{C,F} = 344$ Hz), 144.1, 142.0 (d, $J_{C,F} = 4$ Hz), 134.8, 132.8, 132.8, 132.6, 131.9 (d, $J_{C,F} = 3$ Hz), 129.6, 129.4, 128.4, 124.1 (d, $J_{C,F} = 58$ Hz), 117.8, 112.4. IR (neat) v_{max} 2181, 1799, 1439, 1227, 1007 cm⁻¹. HRMS[EI+] calcd for C₁₄H₈FNO [M]⁺ 225.0590, found 225.0577.


A 10 mL round bottom flask was charged with **3g** (59 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 5:1 to 3:1) to afford **4g** (50 mg, 83%) as a white solid.

8-cyano-1-naphthoyl fluoride (4g); $R_f = 0.25$ (Hex:EtOAc = 7:1); ¹H NMR (500 MHz, CDCl₃) δ 8.21-8.12 (m, 4H), 7.72-7.68 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ 46.13 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 157.0 (d, $J_{C,F}$ = 348 Hz), 137.3, 135.0, 134.4, 133.9,133.2, 128.4 (d, $J_{C,F}$ = 2 Hz), 126.5, 126.3, 124.0 (d, $J_{C,F}$ = 62 Hz), 117.3, 109.0. IR (neat) v_{max} 2225, 1799, 1573, 1511, 1260 cm⁻¹. HRMS[EI+] calcd for C₁₂H₆FNO [M]⁺ 199.0433, found 199.0441.

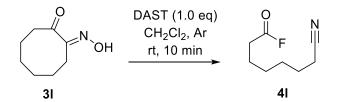

A 10 mL round bottom flask was charged with **3h** (52 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 5:1) to afford **4h** (35 mg, 67%) as an orange oil.

(Z)-3-(2-cyanophenyl)acryloyl fluoride (4h); $R_f = 0.3$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.69 (m, 2H), 7.66-7.62 (td, J = 7.3 and 1.4 Hz, 1H), 7.58-7.49 (m, 2H), 6.20 (dd, J = 12.2 and 1.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ 43.07 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 154.6 (d, $J_{C,F} = 340$ Hz), 146.5 (d, $J_{C,F} = 2$ Hz), 137.0, 132.9, 132.7, 130.1, 129.8 (d, $J_{C,F} = 2$ Hz), 118.2 (d, $J_{C,F} = 72$ Hz), 117.1, 112.4. IR (neat) $v_{max} 2227$, 1815, 1635, 1480, 1097 cm⁻¹. HRMS[EI+] calcd for C₁₀H₆FNO [M]⁺ 175.0433, found 175.0422.

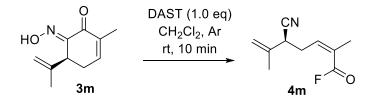
A 10 mL round bottom flask was charged with **3i** (52 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 5:1) to afford **4i** (39 mg, 74%) as a white solid.


(Z)-2-(2-cyanovinyl)benzoyl fluoride (4i); $R_f = 0.3$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 7.8 and 1.4 Hz, 1H), 7.93-7.89 (m, 2H), 7.80 (td, J = 7.6 and 1.4 Hz, 1H), 7.63-7.59 (td, J = 7.7 and 1.2 Hz, 1H), 5.70 (d, J = 11.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ 27.66 (s, 1F) ¹³C NMR (100 MHz, CDCl₃) δ 155.9 (d, $J_{C,F} = 343$ Hz), 148.1, 137.7 (d, $J_{C,F} = 7$ Hz), 135.5, 132.8 (d, $J_{C,F} = 1$ Hz). 130.5, 130.2 (d, $J_{C,F} = 3$ Hz), 123.1 (d, $J_{C,F} = 58$ Hz), 116.2, 100.1, IR (neat) v_{max} 2219, 1804, 1567, 1483, 1303 cm⁻¹.HRMS[EI+] calcd for C₁₀H₆FNO [M]⁺ 175.0433, found 175.0438.

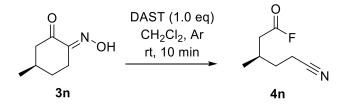
A 10 mL round bottom flask was charged with **3j** (53 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 μ L, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10


mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1 to 1:1) to afford **4j** (44 mg, 81%) as a light yellow solid.

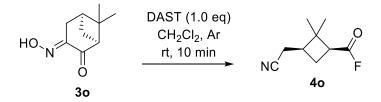
2-(cyanomethoxy)benzoyl fluoride (4j); $R_f = 0.35$ (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.8 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.28 (m, 1H), 7.20 (d, J = 8.4 Hz, 1H), 4.95 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ 32.61 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 158.0 (d, $J_{C,F} = 4$ Hz), 154.3 (d, $J_{C,F} = 342$ Hz), 136.9, 134.3 (d, $J_{C,F} = 3$ Hz), 123.6, 115.4 (d, $J_{C,F} = 61$ Hz), 114.8 (d, $J_{C,F} = 3$ Hz), 114.4, 54.5. IR (neat) v_{max} 3015, 2245, 1812, 1790, 1597, 1488 cm⁻¹. HRMS[EI+] calcd for C₉H₆FNO₂ [M]⁺ 179.0383, found 179.0369.


A 10 mL round bottom flask was charged with **3k** (61 mg, 0.3 mmol) and dry CH₂Cl₂ (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 μ L, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 7:1 to 3:1) to afford **4k** (47 mg, 77%) as a light brown oil.

5-cyano-4-phenylpentanoyl fluoride (4k); $R_f = 0.25$ (Hex:EtOAc = 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.30 (m, 3H), 7.22-7.20 (m, 2H), 3.05 (m, 1H), 2.66-2.64 (m, 2H), 2.43-2.35 (m, 2H), 2.27 (m, 1H), 2.08 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ 45.82 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, $J_{C,F}$ = 357 Hz), 139.5, 129.4, 128.3, 127.2, 117.9, 41.1, 29.9 (d, $J_{C,F}$ = 52 Hz), 29.03 (d, $J_{C,F}$ = 3 Hz), 25.3. IR (neat) v_{max} 2926, 2263, 1832, 1451, 1087cm⁻¹. HRMS[FAB] calcd for C₁₂H₁₃FNO [M+H]⁺ 206.0981, found 206.1001.


A 10 mL round bottom flask was charged with **3l** (47 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1 to 2:1) to afford **4l** (38 mg, 81%) as a light yellow oil.

5-cyano-2-phenylpentanoyl fluoride (41); $R_f = 0.4$ (Hex:EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 2.53 (t, J = 7.3 Hz, 2H), 2.35 (t, J = 7.1 Hz, 2H), 1.71-1.65 (m, 4H), 1.51-1.40 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ 45.60 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, $J_{C,F} = 358$ Hz), 119.6, 32.0 (d, $J_{C,F} = 50$ Hz), 28.3, 28.0, 25.2, 23.7 (d, $J_{C,F} = 2$ Hz), 17.2. IR (neat) v_{max} 2935, 2238, 1834, 1464, 1069 cm⁻¹. HRMS[FAB] calcd for C₈H₁₃FNO [M+H]⁺ 158.0981, found 158.0960.

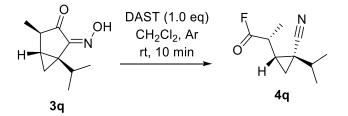

A 10 mL round bottom flask was charged with **3m** (54 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 7:1) to afford **4m** (34 mg, 63%) as a light yellow oil.

(**R**,**Z**)-5-cyano-2,6-dimethylhepta-2,6-dienoyl fluoride (4m); $R_f = 0.4$ (Hex:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 6.34 (m, 1H), 5.13 (m, 1H), 5.06 (m, 1H), 3.33 (m, 1H), 3.03-2.88 (m, 2H), 2.01-2.00 (m, 3H), 1.84 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 38.08 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 156.6 (d, $J_{C,F} = 347$ Hz), 144.6 (d, $J_{C,F} = 6$ Hz), 137.8, 126.2 (d, $J_{C,F} = 58$ Hz), 119.4, 115.9, 38.3, 31.2 (d, $J_{C,F} = 3$ Hz), 20.0, 19.9. IR (neat) v_{max} 2982, 2243, 1804, 1650, 1456, 1072 cm⁻¹. HRMS[FAB] calcd for C₁₀H₁₃FNO [M+H]⁺ 182.0981, found 182.0979.

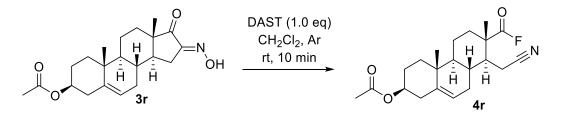
A 10 mL round bottom flask was charged with **3n** (42 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (pentane:dther = 7:1 to 5:1) to afford **4n** (27 mg, 62%) as a colorless oil.


(**R**)-5-cyano-3-methylpentanoyl fluoride (4n); (rr = 10:1); $R_f = 0.35$ (Hex:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 2.54 (m, 1H), 2.46-2.34 (m, 3H), 2.15 (m, 1H), 1.83 (m, 1H), 1.61 (m, 1H), 1.08 (d, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 48.65 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, $J_{C,F} = 359$ Hz), 119.1, 38.8 (d, $J_{C,F} = 49$ Hz), 31.4 (d, $J_{C,F} = 2$ Hz), 28.9 (d, $J_{C,F} = 2$ Hz), 18.6, 15.1. IR (neat) v_{max} 2966, 2935, 2248, 1840, 1710, 1425 cm⁻¹. HRMS[EI+] calcd for C₇H₁₀FNO [M]⁺ 143.0746, found 143.0758.

A 10 mL round bottom flask was charged with **30** (50 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic


solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 7:1 to 5:1) to afford **40** (43 mg, 85%) as a light yellow oil.

(18,38)-3-(cyanomethyl)-2,2-dimethylcyclobutane-1-carbonyl fluoride (40); $R_f = 0.4$ (Hex:EtOAc = 7:1); ¹H NMR (500 MHz, CDCl₃) δ 2.82 (m, 1H), 2.35-2.31 (m, 3H), 2.20 (m, 1H), 1.97 (m, 1H), 1.32 (s, 3H), 1.08 (s, 3H), ¹⁹F NMR (376 MHz, CDCl₃) δ 42.92 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, $J_{C,F} = 358$ Hz), 118.0, 44.5 (d, $J_{C,F} = 52$ Hz), 43.4 (d, $J_{C,F} = 2$ Hz), 38.5 (d, $J_{C,F} = 3$ Hz), 29.7, 24.4 (d, $J_{C,F} = 4$ Hz), 17.8 (d, $J_{C,F} = 2$ Hz), 17.7. IR (neat) v_{max} 2959, 2245, 1828, 1371, 1238 cm⁻¹. HRMS[FAB] calcd for C₉H₁₃FNO [M+H]⁺ 170.0981, found 170.0981.


A 10 mL round bottom flask was charged with **3p** (54 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 5:1 to 3:1) to afford **4p** (51 mg, 93%) as a light yellow oil.

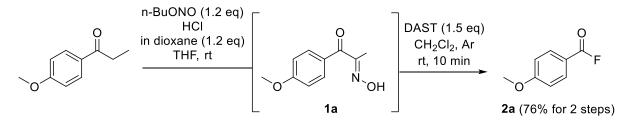
(1R,3S)-3-cyano-1,2,2-trimethylcyclopentane-1-carbonyl fluoride (4p); $R_f = 0.6$ (Hex:EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 2.83 (t, J = 9.9 Hz, 1H), 2.62 (m, 1H), 2.18 (m, 1H), 2.06 (m, 1H), 1.72 (m, 1H), 1.29 (s, 3H), 1.26 (s, 3H), 1.19 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 35.77 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 164.9 (d, $J_{C,F} = 369$ Hz), 119.9, 54.6 (d, $J_{C,F} = 44$ Hz), 46.7 (d, $J_{C,F} = 3$ Hz), 39.4 (d, $J_{C,F} = 5$ Hz), 32.9 (d, $J_{C,F} = 2$ Hz), 24.8, 22.0, 21.9 (d, $J_{C,F} = 3$ Hz), 21.0. IR (neat) v_{max} 2977, 2243, 1826, 1462, 1384, 1049 cm⁻¹. HRMS[EI+] calcd for C₁₀H₁₄FNO [M]⁺ 183.1059, found 183.1075.

A 10 mL round bottom flask was charged with 3q (54 mg, .3 mmol) and dry CH₂Cl₂ (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 5:1) to afford 4q (40 mg, 72%) as a colorless oil.

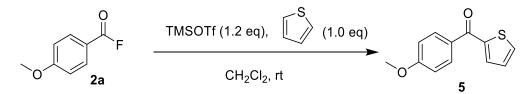

(**R**)-2-((1**R**,2**S**)-2-cyano-2-isopropylcyclopropyl) propanoyl fluoride (4q) ; $R_f = 0.4$ (Hex:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.39 (m, 1H), 1.44 (d, J = 7.2 Hz, 3H), 1.38-1.25 (m, 2H), 1.17 (d, J = 5.2 Hz, 3H), 1.14-1.12 (m, 3H), 1.05 (m, 1H), 0.97 (t, J = 6.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ 38.44 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 164.5 (d, $J_{C,F} = 365$ Hz), 199.8, 40.4 (d, $J_{C,F} = 50$ Hz), 35.0, 27.1 (d, $J_{C,F} = 1$ Hz), 24.4, 20.0, 19.7, 18.3, 16.2. IR (neat) v_{max} 2965, 2228, 1834, 1739, 1459, 1045 cm⁻¹. HRMS[EI+] calcd for C₁₀H₁₄FNO [M]⁺ 183.1059, found 183.1059.

A 10 mL round bottom flask was charged with **3r** (108 mg, 0.3 mmol) and dry CH₂Cl₂ (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 μ L, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 7:1 to 3:1) to afford **4r** (64 mg, 59%) as a white solid.

(2S,4aR,4bS,7S,8S,8aR)-8-(cyanomethyl)-7-(fluorocarbonyl)-4a,7-dimethyl-

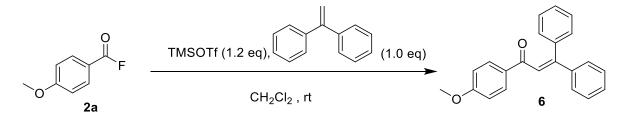

1,2,3,4,4a,4b,5,6,7,8,8a,9-dodecahydrophenanthren-2-yl acetate (4r); $R_f = 0.6$ (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 5.39 (m, 1H), 4.60 (m, 1H), 2.60 (dd, J = 17.8 and 6.0 Hz, 1H), 2.40-2.25 (m, 4H), 2.03 (s, 3H), 1.99-1.85 (m, 4H), 1.82-1.69 (m, 4H), 1.38 (s, 3H), 1.58 (m, 1H), 1.47 (m, 1H), 1.21-1.11 (m, 2H), 1.04 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 27.31 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 167.0 (d, $J_{C,F} = 372$ Hz), 139.5, 121.0, 118.0, 73.5, 48.5, 47.0 (d, $J_{C,F} = 40$ Hz), 43.0, 37.8, 36.8, 36.7, 35.76, 35.74, 31.4, 31.3, 27.6, 21.5, 19.2 (d, $J_{C,F} = 1$ Hz), 18.2, 15.2. IR (neat) v_{max} 2948, 2247, 1821, 1730, 1635, 1251 cm⁻¹. HRMS[FAB] calcd for C₂₁H₂₉FNO₃ [M+H]⁺ 362.2131, found 362.2159.

A 10 mL round bottom flask was charged with **3s** (90 mg, 0.3 mmol) and dry CH_2Cl_2 (1.0 mL) under Ar. Then, (diethylamino)sulfur trifluoride (DAST, 40 µL, 0.3 mmol) was added to the solution via a microsyringe at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1 to 1:1) to afford **4s** (67 mg, 74%) as a white solid.


(18,28,4a8,10aR)-1-(cyanomethyl)-7-hydroxy-2-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbonyl fluoride (4s) ; $R_f = 0.3$ (Hex:EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 7.12 (d, J = 8.5 Hz, 1H), 6.65 (dd, J = 8.5 and 2.7 Hz, 1H), 6.58 (d, J = 2.7 Hz, 1H), 4.89 (s, 1H), 2.97-2.84 (m, 2H), 2.69 (dd, J = 17.8 and 5.9 Hz, 1H), 2.46-2.37 (m, 3H), 2.20 (m, 1H), 2.12 (m, 1H), 2.06-1.94 (m, 2H), 1.67 (m, 1H), 1.54-1.43 (m, 2H), 1.39 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 27.55 (s, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 167.1 (d, $J_{C,F} = 372$ Hz), 154.0, 137.6, 130.5, 126.6, 118.2, 115.3, 113.3, 47.4 (d, $J_{C,F} = 40$ Hz), 42.4, 41.7, 38.7, 35.9 (d, $J_{C,F} = 1$ Hz), 29.5, 26.7, 25.2, 18.5, 15.2. IR (neat) v_{max} 3342, 2942, 2261, 1817, 1714, 1503 cm⁻¹. HRMS[EI+] calcd for C₁₈H₂₀FNO₂ [M]⁺ 301.1478, found 301.1473.

A procedure for one-pot reaction

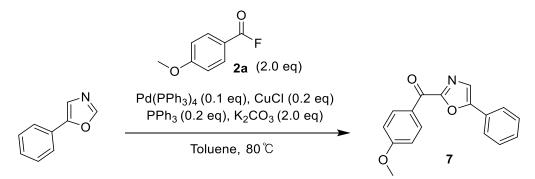
To a stirred solution of ketone (328 mg, 2.0 mmol) and n-butyl nitrite (0.28 mL, 2.4 mmol) in THF (6.0 mL) was added 4N HCl in 1,4-dioxane (0.6 mL, 2.4 mmol) under Ar. After 3 h, (diethylamino)sulfur trifluoride (DAST, 0.4 mL, 3.0 mmol) was added to the solution at room temperature. After 10 min, the reaction mixture was diluted with diethyl ether (10 mL), washed with 1N HCl solution (5.0 mL) and subsequently with sat. NaHCO₃ sol'n. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (pentane) to afford **2a** (234 mg, 76%) as a pale yellow oil.


Preparation of ketone 5

A 10 mL round bottom flask was filled with argon gas and charged with **2a** (154 mg, 1.0 mmol) and TMSOTf (215 μ L, 1.2 mmol) in CH₂Cl₂ (2.0 mL) at room temperature. Then, a solution of thiophene (80 μ L, 1.0 mmol) in CH₂Cl₂ (1.0 mL) was added to the reaction mixture. After for 30 min, the reaction mixture was concentrated under reduced pressure and directly subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 5:1) to afford the ketone **5** (185 mg, 85%) as a white solid.

 $R_f = 0.45$ (Hex:EtOAc = 7:1); ¹H NMR (500 MHz, CDCl₃) δ 7.91-7.88 (m, 2H), 7.68 (dd, J = 5.0 and 1.2 Hz, 1H), 7.64 (dd, J = 4.9 and 3.8 Hz, 1H), 7.15 (m, 1H), 6.99-6.67 (m, 2H), 3.89 (s, 3H). This spectral data is in agreement with the reported.¹⁶

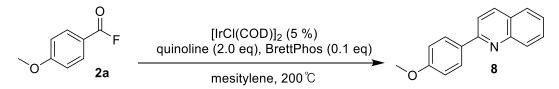
Preparation of ketone 6


A 10 mL round bottom flask was filled with argon gas and charged with **2a** (154 mg, 1.0 mmol) and TMSOTf (215 μ L, 1.2 mmol) in CH₂Cl₂ (2.0 mL) at room temperature. Then, a solution of 1,1-

¹⁶ Zhao, W.; Carreira, E. M. Chem. Eur. J. 2007, 13, 2671.

diphenylethylene (176 μ L, 1.0 mmol) in CH₂Cl₂ (1.0 mL) was added to the reaction mixture. After 30 min, the reaction mixture was concentrated under reduced pressure and directly subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 5:1) to afford the ketone **6** (226 mg, 72%) as a white solid.

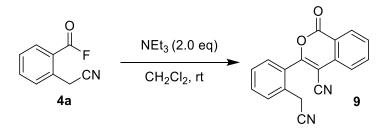
 $R_f = 0.4$ (Hex:EtOAc = 7:1); ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.91 (m, 2H), 7.40-7.37 (m, 5H), 7.29-7.26 (m, 3H), 7.20-7.18 (m, 2H), 7.08 (s, 1H), 6.88-6.85 (m, 2H), 3.84 (s, 3H). This spectral data is in agreement with the reported.¹⁷


Preparation of ketone 7

A 7 mL vial was charged with Pd(PPh₃)₄ (58 mg, 0.05 mmol), PPh₃ (26 mg, 0.1 mmol), CuCl (10 mg, 0.1 mmol), and K₂CO₃ (138 mg, 1.0 mmol) and it was flushed with argon gas. Then, a solution of **2a** (154 mg, 1.0 mmol) and 5-phenyloxazole (73 mg, 0.5 mmol) in toluene (2.0 mL) was added to the vial. The reaction mixture was heated at 80 °C in oil bath for 24h. After completion of the reaction, the reaction mixture was cooled down to room temperature, diluted with H₂O (10 mL), and extracted with ethyl acetate (10 X 3 mL). The organic solution was dried over anhydrous MgSO₄, concentrated, and the crude product was subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 3:1) to afford the ketone 7 (106 mg, 76%) as white solid.

 $R_f = 0.45$ (Hex:EtOAc = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 8.5 Hz , 2H), 7.82 (d, J = 7.5 Hz , 2H), 7.59 (s, 1H), 7.49-7.39 (m, 3H), 7.01(d, J = 8.5 Hz , 2H), 3.90 (s, 3H). This spectral data is in agreement with the reported.¹⁸

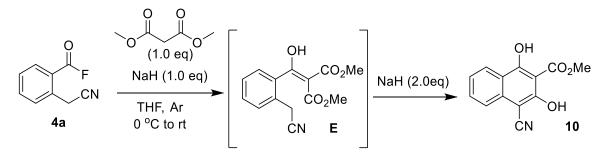
Preparation of 2-arylquinoline 8


A 7 mL vial was charged with $[IrCl(COD)]_2$ (33 mg, 0.05 mmol), BrettPhos (53 mg, 0.1 mmol), quinolone (236 µL, 2.0 mmol), and mesitylene (3.0 mL) under Ar. To the stirred mixture was added a solution of **2a** (154 mg, 1.0 mmol) in mesitylene (1.0 mL). The mixture was heated at 200 °C for 16 h in heating mantle. Then, the reaction mixture was cooled down to room temperature, filtered through a short pad of silica gel and eluted with EtOAc. The filtrate was concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 20:1 to 10:1) to afford the 2-arylquinoline **8** (132 mg, 56%) as a white solid.

¹⁷ Liu, Y.; Chen, Z.; Wang, Q. L.; Chen, P.; Xie, J.; Xiong, B. Q.; Zhang, P. L.; Tang, K. W. J. Org. Chem. 2020, 85, 2385.

¹⁸ Wu, X. F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 7316.

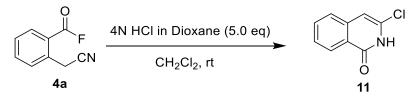
 $R_f = 0.4$ (Hex:EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.12 (m, 4H), 7.83 (d, J = 8.6 Hz, 1H), 7.79 (m, 1H), 7.70 (m, 1H), 7.50 (m, 1H), 7.06-7.04 (m, 2H), 3.88 (s, 3H). This spectral data is in agreement with the reported.¹⁹


Preparation of isocoumarin 9

To a stirred solution of **4a** (163 mg, 1.0 mmol) in CH₂Cl₂ (3.0 mL) was added trimethylamine (279 μ L, 2.0 mmol) at room temperature. After 1h, the reaction mixture was diluted with ethyl acetate (20 mL) and washed with H₂O. The organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 3:1) to afford the isocoumarin **9** (209 mg, 73%) as a white solid.

 $\begin{array}{l} R_{f} = 0.4 \ (Hex:EtOAc = 3:1); \ ^{1}H \ NMR \ (500 \ MHz, \ CDCl_{3}) \ \delta \ 8.35 \ (m, \ 1H), \ 7.94 \ (m, \ 1H), \ 7.86 \ (m, \ 1H), \ 7.76 \ (m, \ 1H), \ 7.71 \ (m, \ 1H), \ 7.63 \ -7.62 \ (m, \ 2H), \ 7.54 \ (m, \ 1H), \ 4.98 \ (s, \ 2H). \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_{3}) \ \delta \ 162.7, \ 158.9, \ 136.4, \ 133.3, \ 132.7, \ 131.1, \ 130.7, \ 130.4, \ 130.2, \ 129.67, \ 129.62, \ 128.9, \ 124.8, \ 119.0, \ 116.7, \ 113.9, \ 94.9, \ 22.5. \ IR \ (neat) \ \nu_{max} \ 2227, \ 1763, \ 1615, \ 1489, \ 1237, \ 1033 \ cm^{-1}. \ HRMS[EI+] \ calcd \ for \ C_{18}H_{10}N_2O_2 \ [M]^+ \ 286.0742, \ found \ 286.0749. \end{array}$

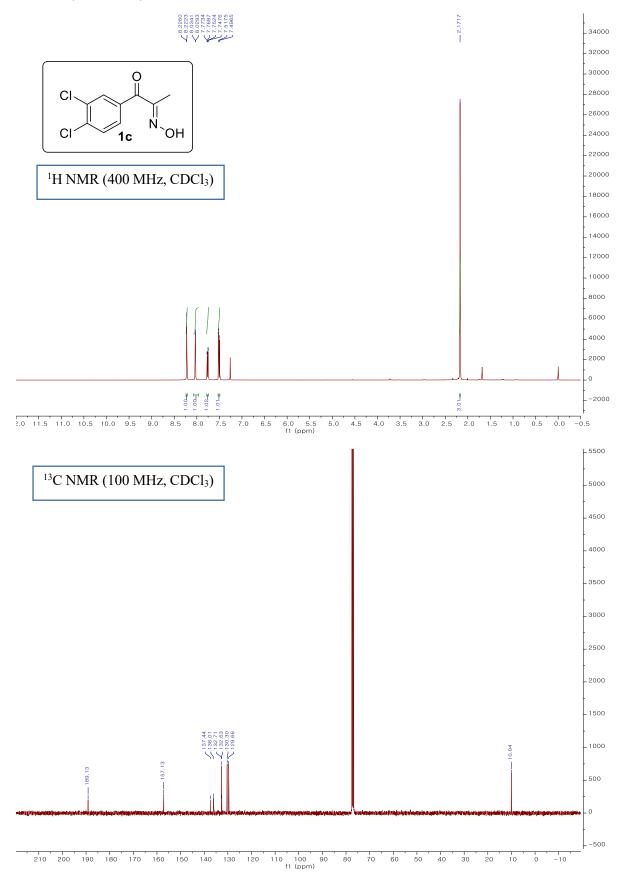
Preparation of 1,3-naphthalenediol 10

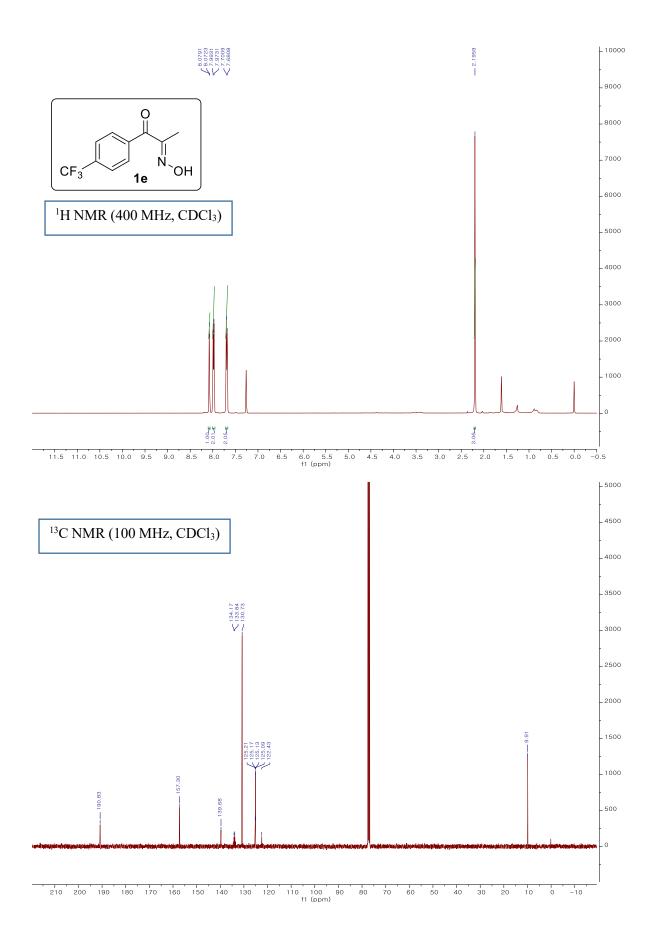


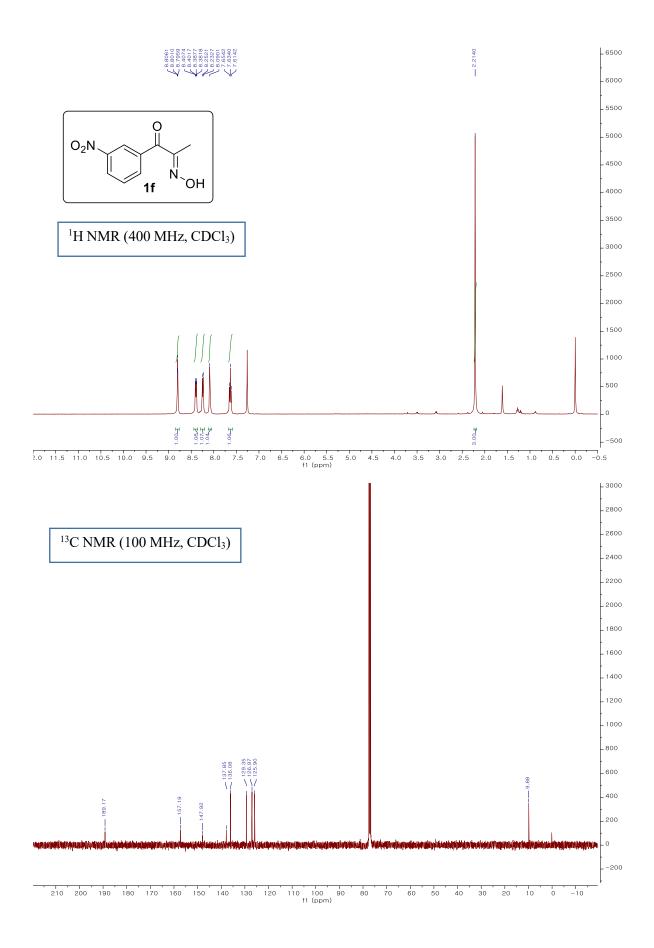
To a stirred solution of dimethylmalonate (132 mg, 1.0 mmol) in dry THF (3.0 mL) was added NaH (60% dispersion in mineral oil, 40 mg, 1.0 mmol) at 0 °C under Ar. After stirring for 20 min, the acyl fluoride **4a** (163 mg, 1.0 mmol) in THF (1.0 mL) was slowly added to the reaction mixture. After being kept in the ice-bath for 1h, **4a** disappeared and formation of intermediate **E** was monitored by tlc. Subsequently, NaH (60% dispersion in mineral oil, 80 mg, 2.0 mmol) was added and the ice-bath was removed. Upon completion of the reaction (3 h), it was quenched with sat. NH₄Cl sol'n and extracted with ethyl aceate (10 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 3:1 to 1:1) to afford the naphthalenediol **10** (151 mg, 62%) as an off-white solid.

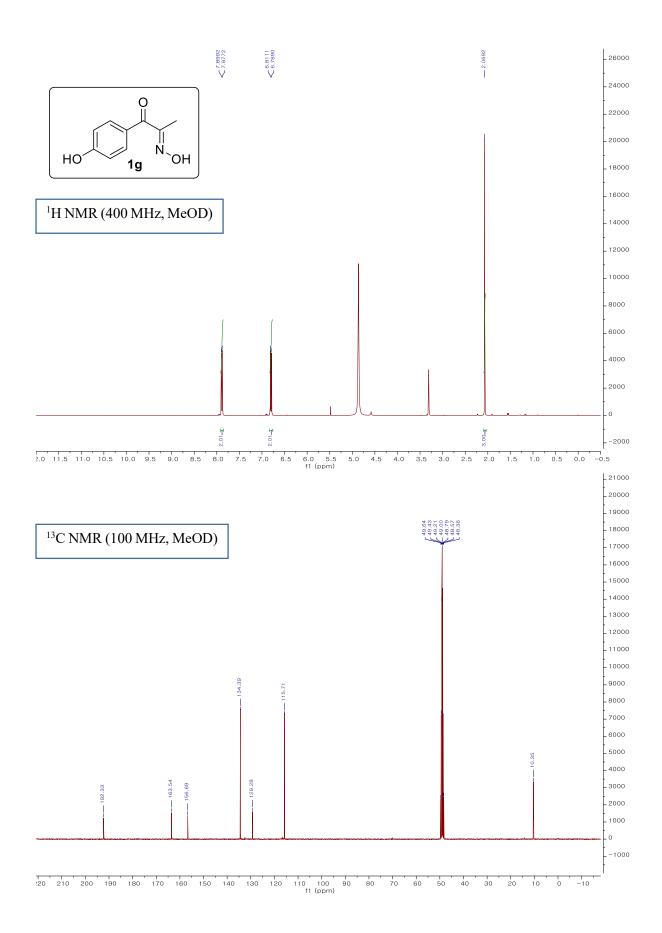
¹⁹ Rahul, P.; Nitha, P. R.; Omanakuttan, V. K.; Babu, S. A.; P. Sasikumar.; Vakayil, K. P.; Henning, H.; Jubi, J. *Eur. J. Org. Chem.* **2020**, 3081.

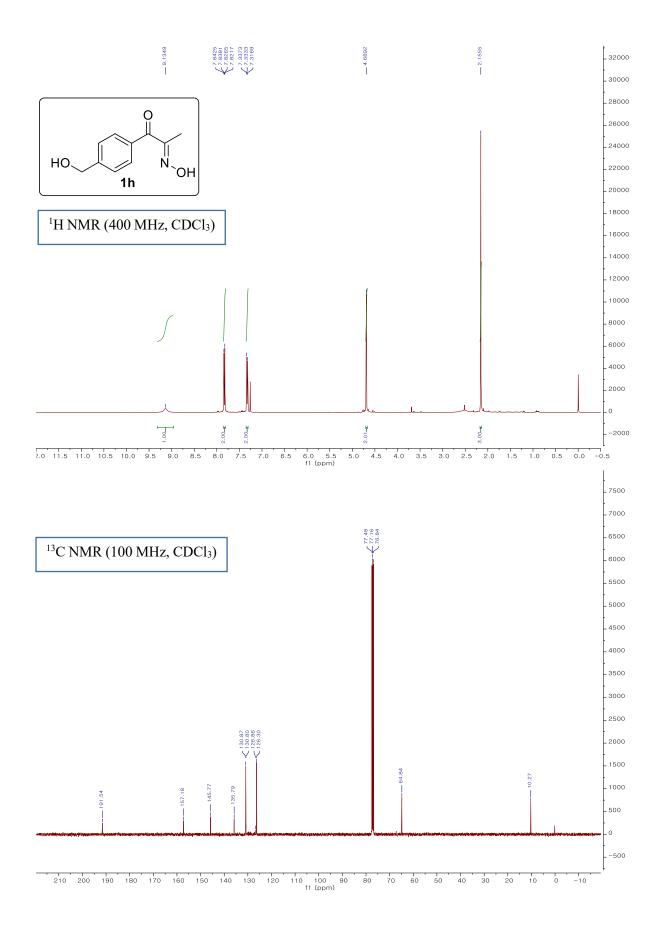
 R_f = 0.5 (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.13 (br s, 2H), 8.25 (d, *J* = 8.2 Hz, 1H), 7.81-7.77 (m, 2H), 7.50 (m, 1H), 3.99 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.6, 162.2, 160.6, 134.5, 132.4, 124.74, 124.46, 122.8, 119.6, 115.8, 100.9, 85.0, 53.3. IR (neat) v_{max} 3394, 2219, 1660, 1633, 1502, 1241 cm⁻¹. HRMS[EI+] calcd for C₁₃H₉NO₄ [M]⁺ 243.0532, found 243.0541.

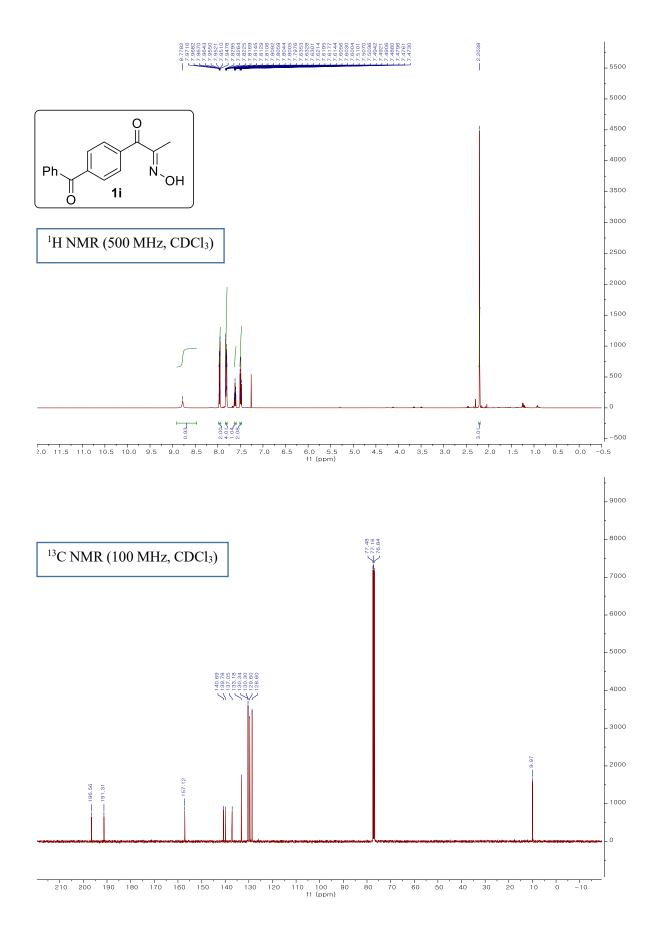

Preparation of isoquinolone 11

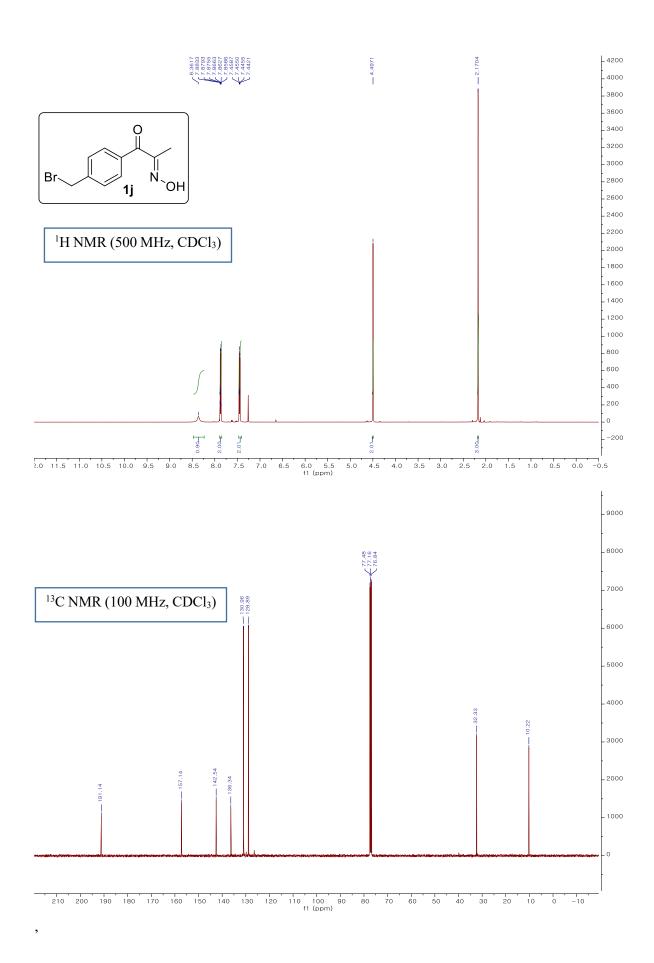


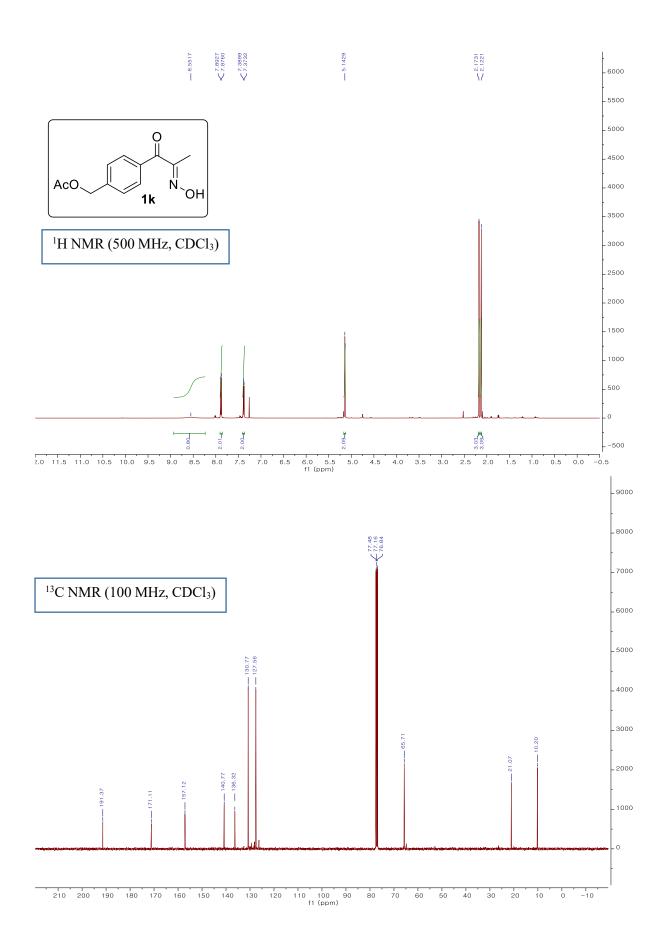

To a stirred solution of **4a** (163 mg, 1.0 mmol) in CH_2Cl_2 (3.0 mL) was added 4N HCl in Dioxane (1.25 mL, 5.0 mmol) at room temperature under Ar. After 2 days, the reaction mixture was quenched with sat. NaHCO₃ sol'n, extracted with ethyl acetate (10 X 3 mL). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (Hex:EtOAc = 10:1 to 3:1) to afford the isoquinolone **11** (98 mg, 55%) as a white solid.

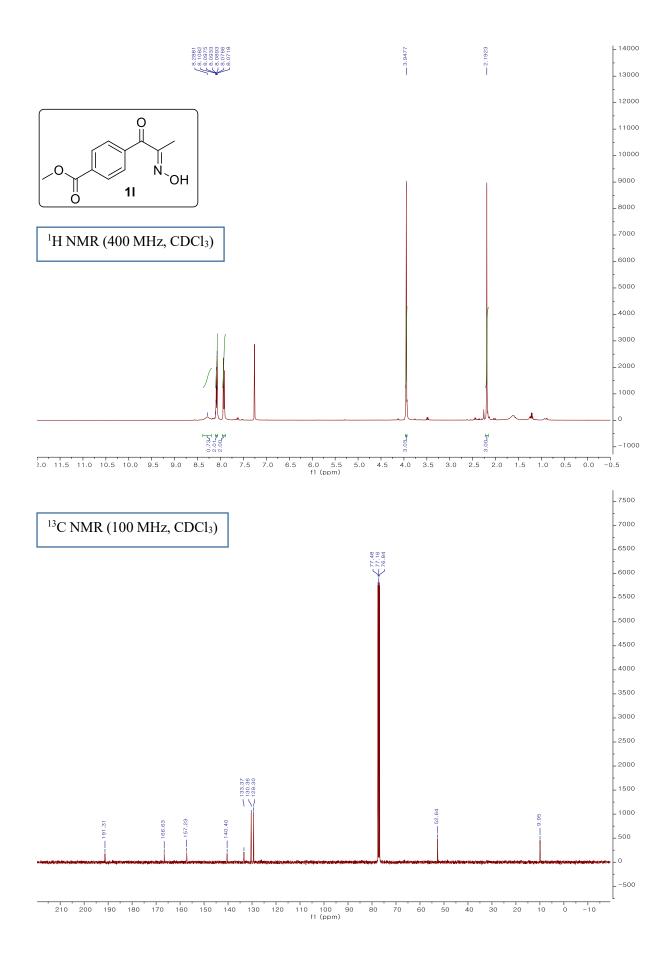

 $R_f = 0.4$ (Hex:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 11.12 (br s, 1H), 8.40 (d, J = 7.6 Hz, 1H), 7.67 (m, 1H), 7.49 (t, J = 7.8 Hz, 2H), 6.58 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 138.0, 133.5, 128.6, 127.9, 127.1, 125.8, 124.4, 105.5. IR (neat) v_{max} 2817, 1651, 1625, 1442, 1338, 1148 cm⁻¹. HRMS[EI+] calcd for C₉H₆CINO [M]⁺ 179.0138, found 179.0141.

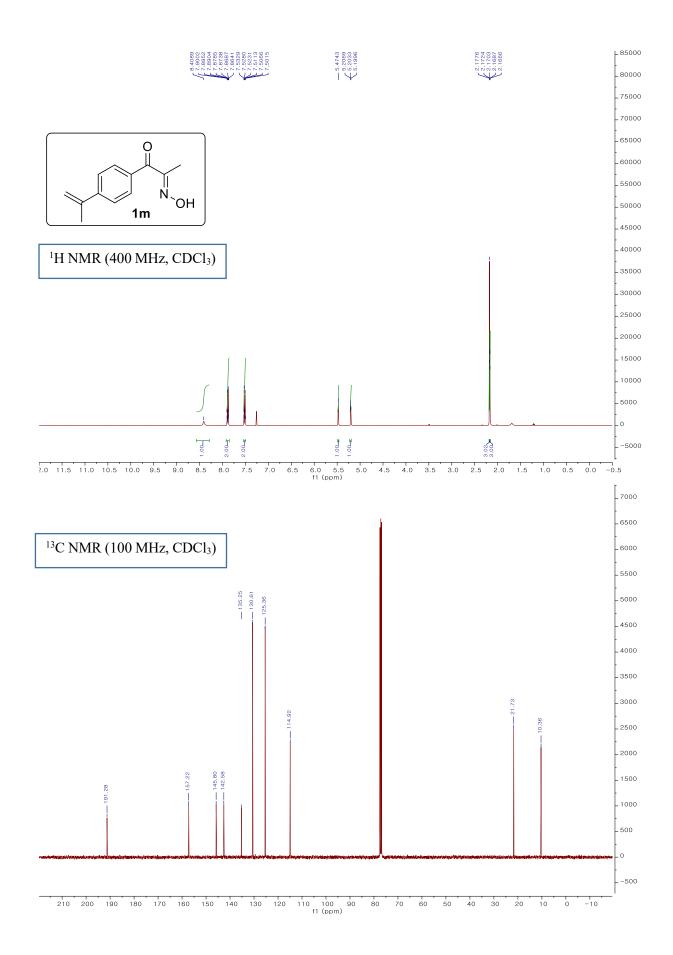

¹H-NMR, ¹³C-NMR, ¹⁹F-NMR

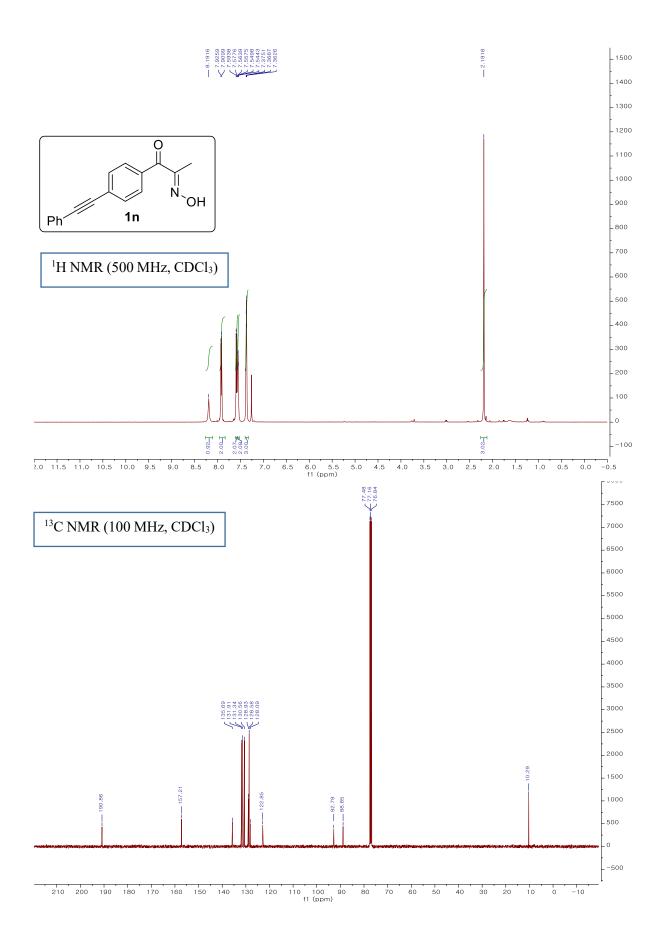


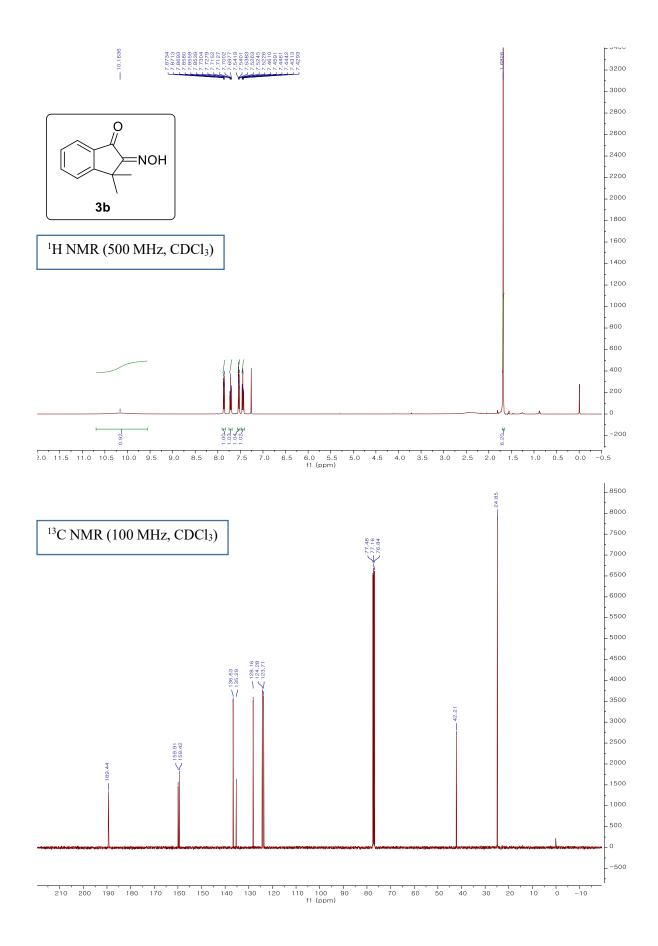


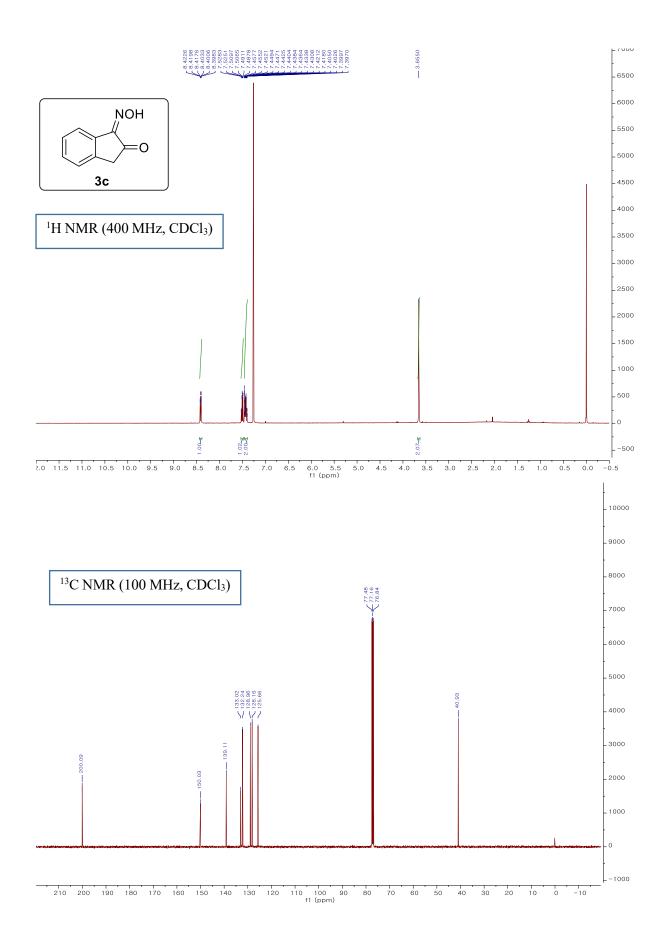


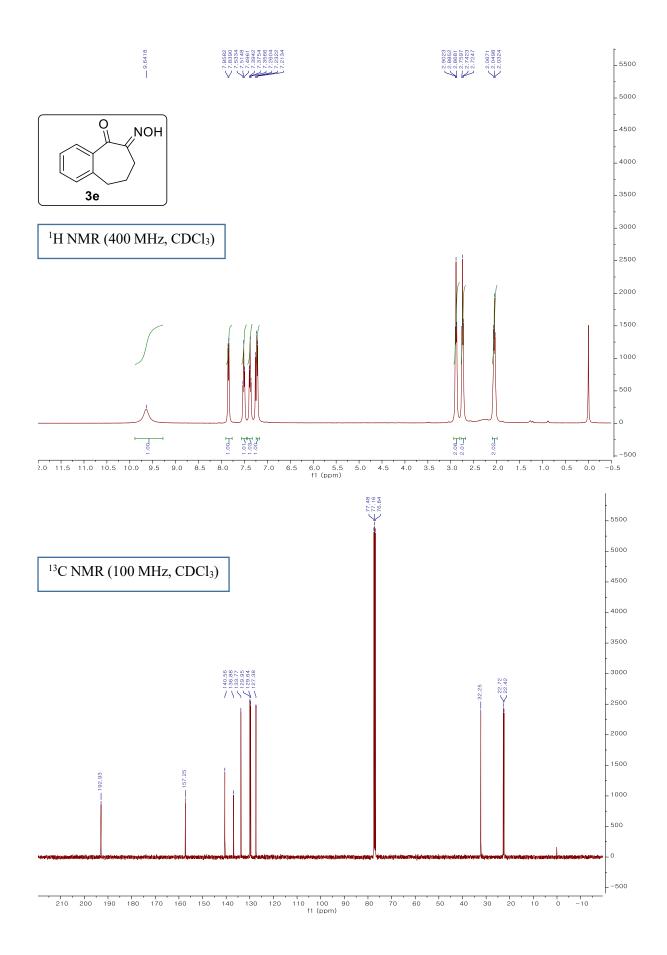


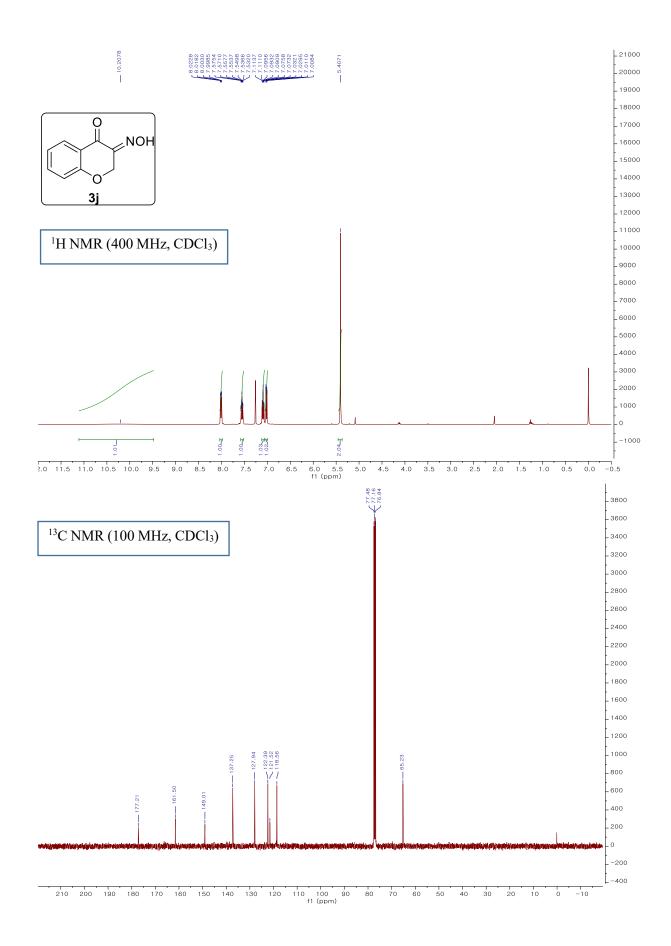


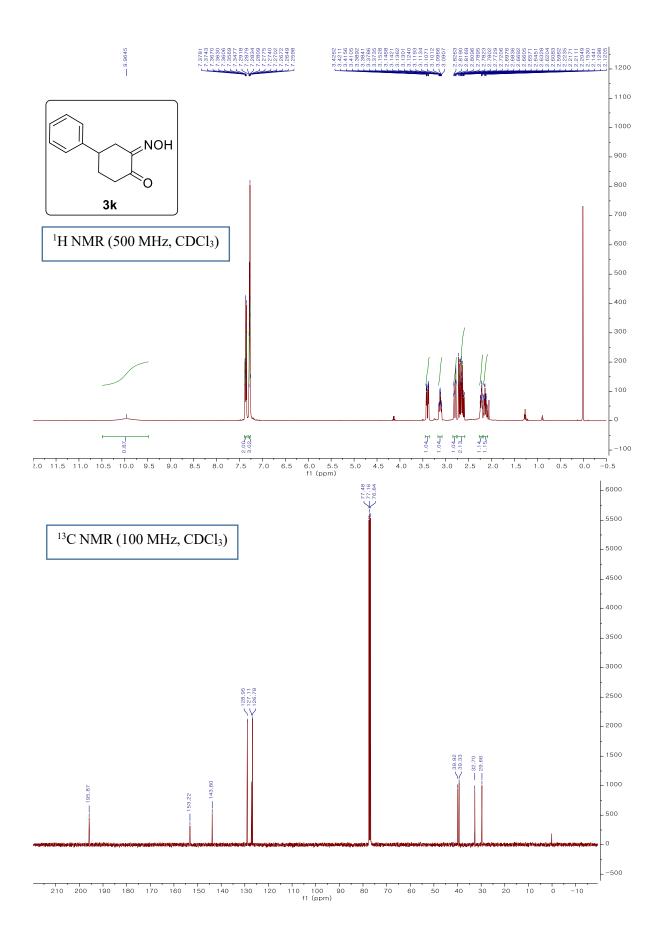


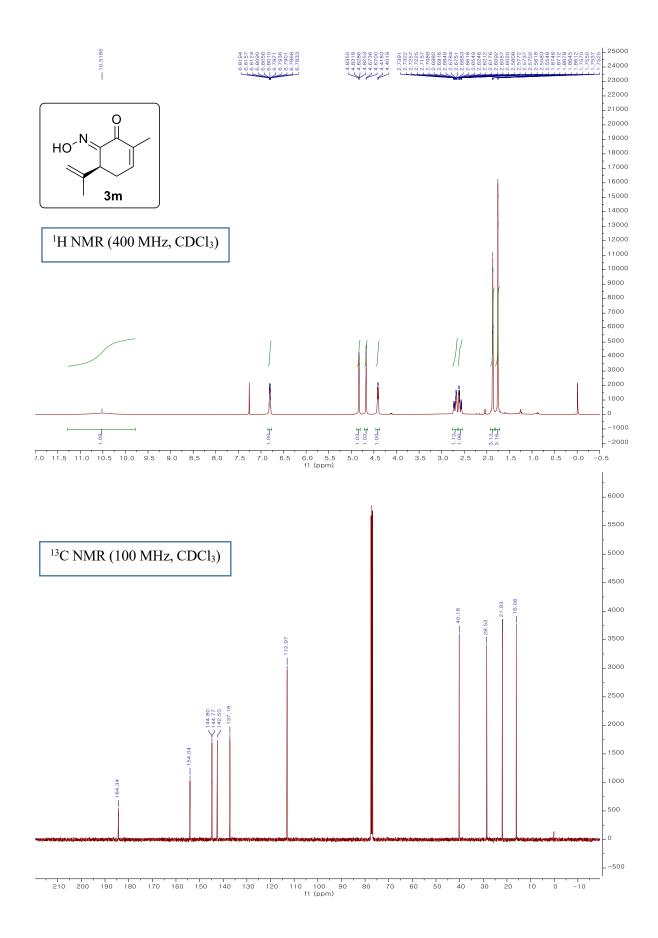

S36

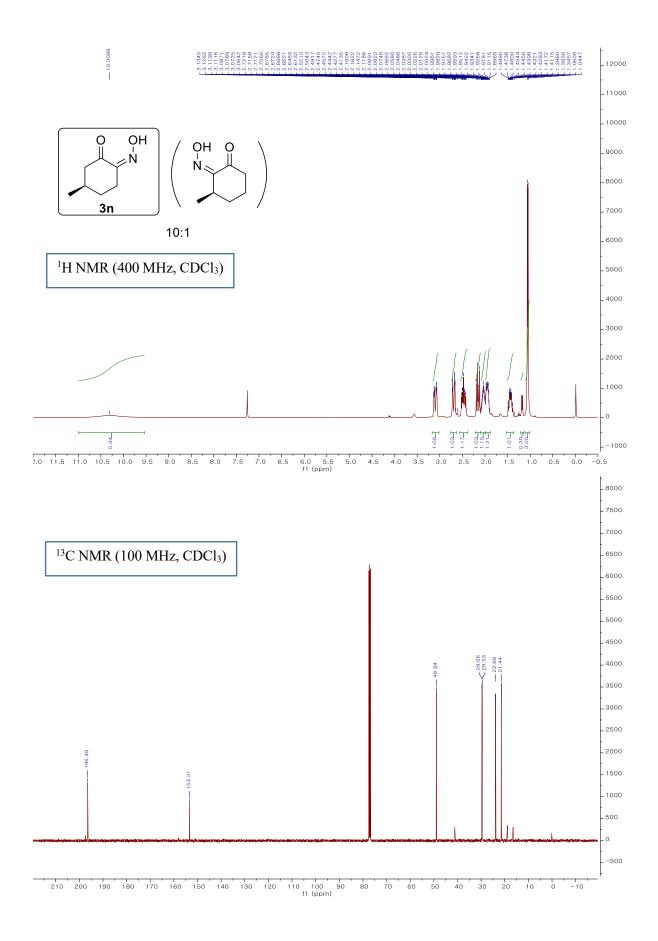


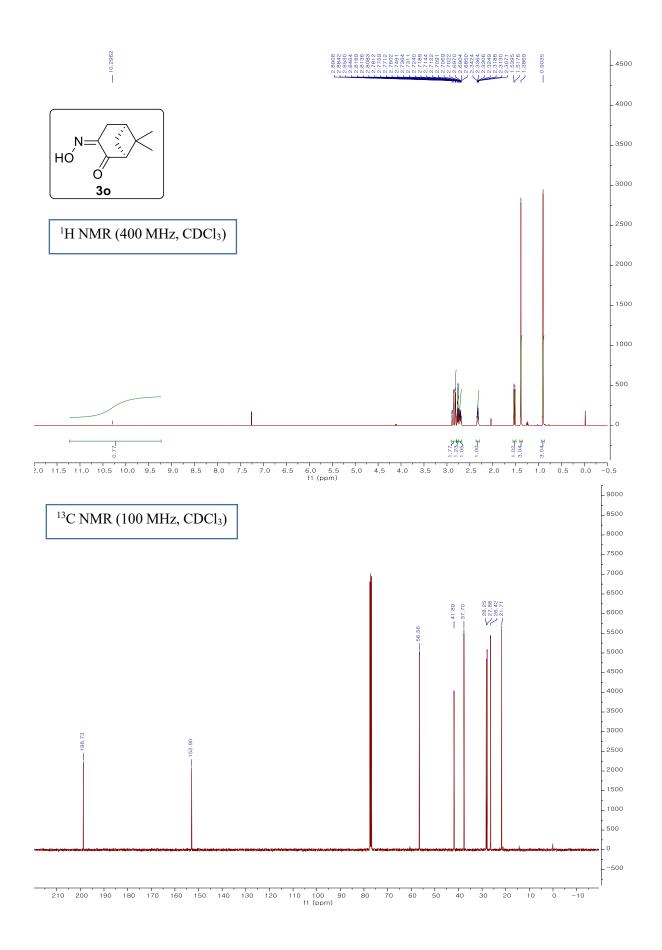


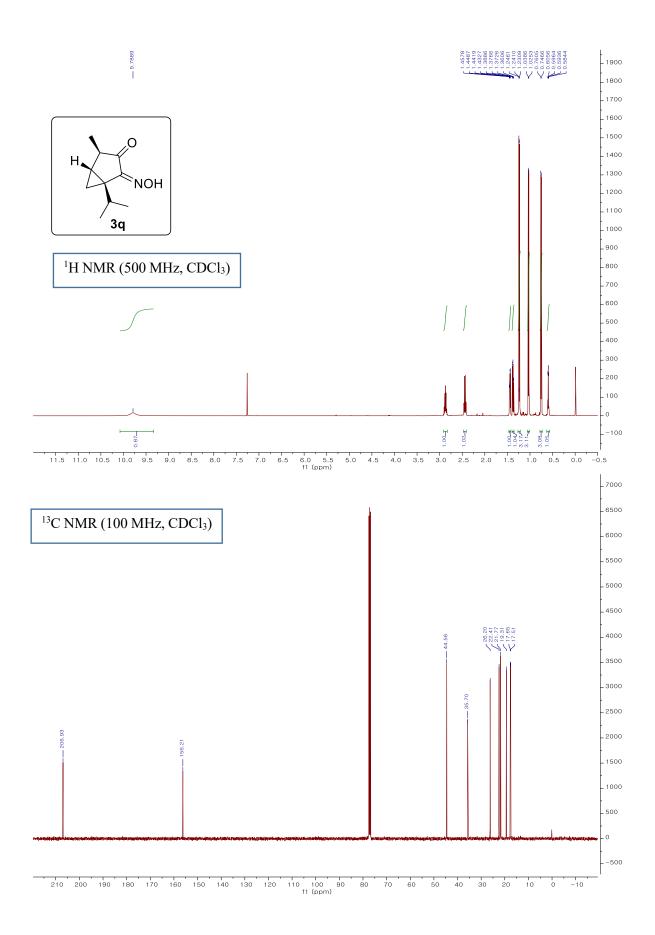


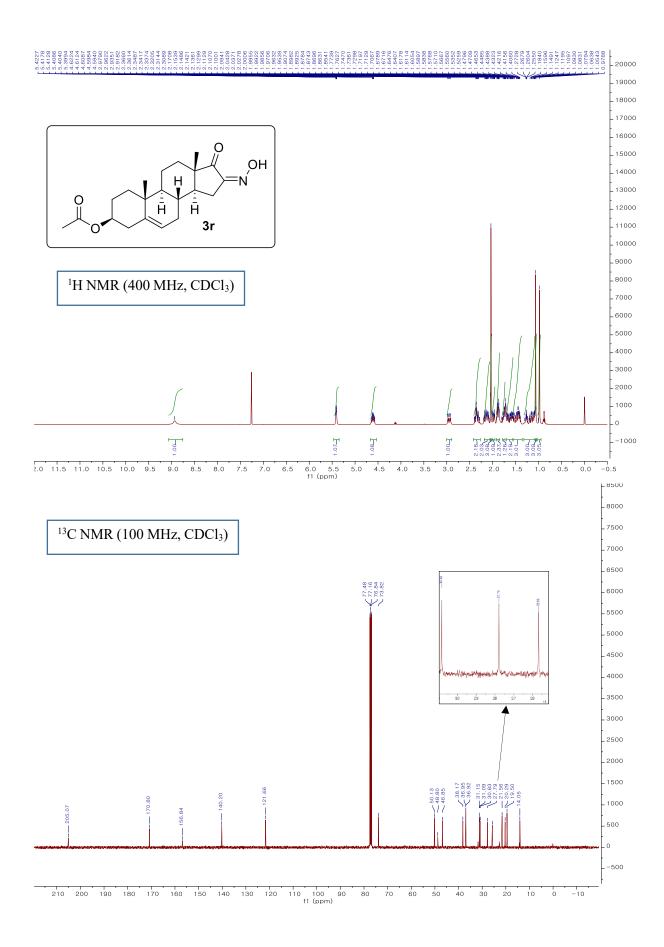


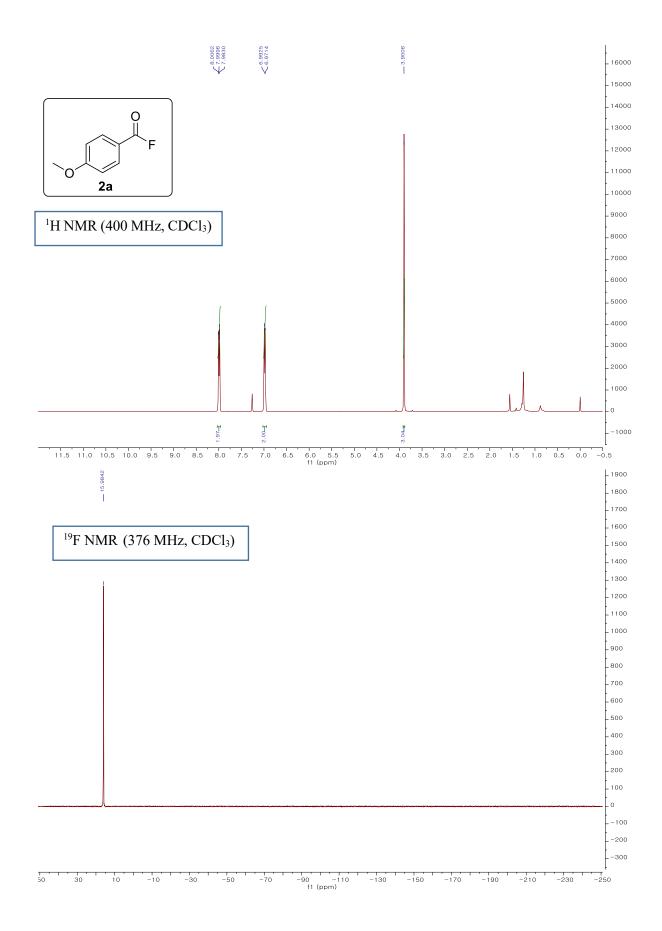


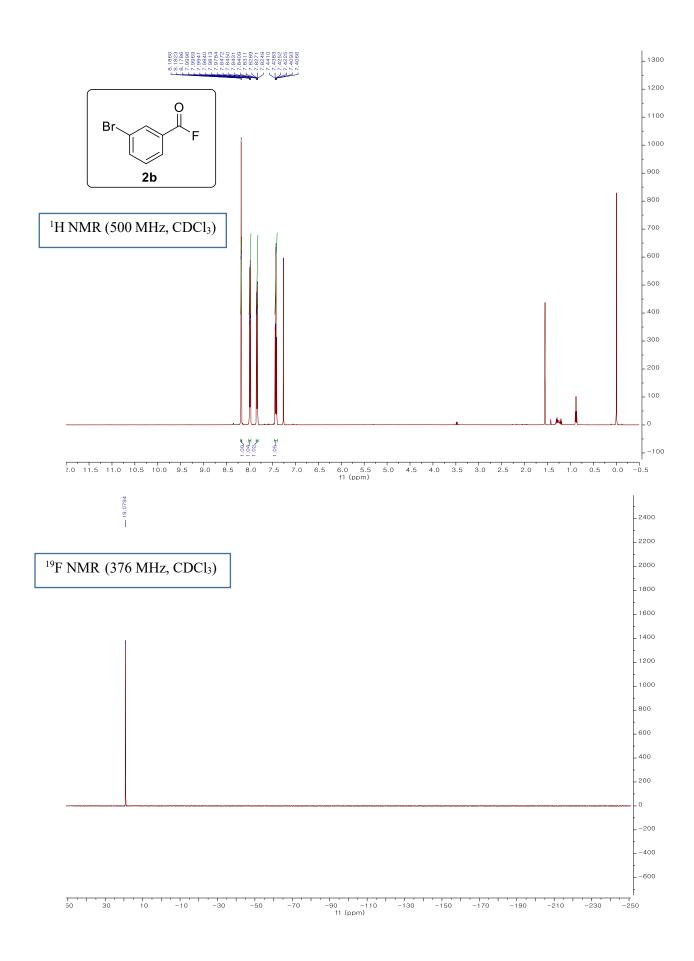


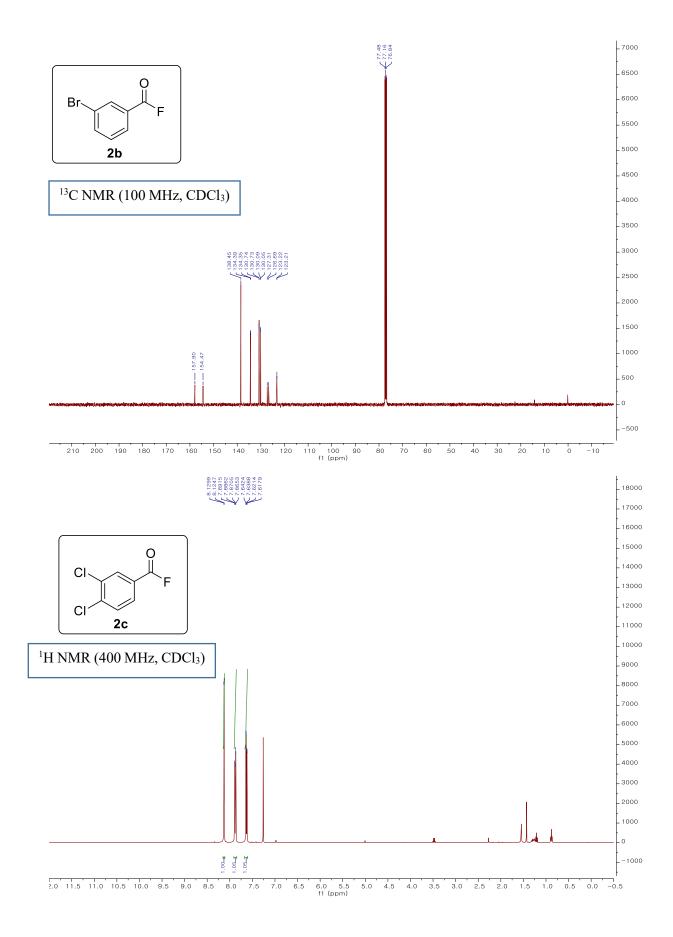


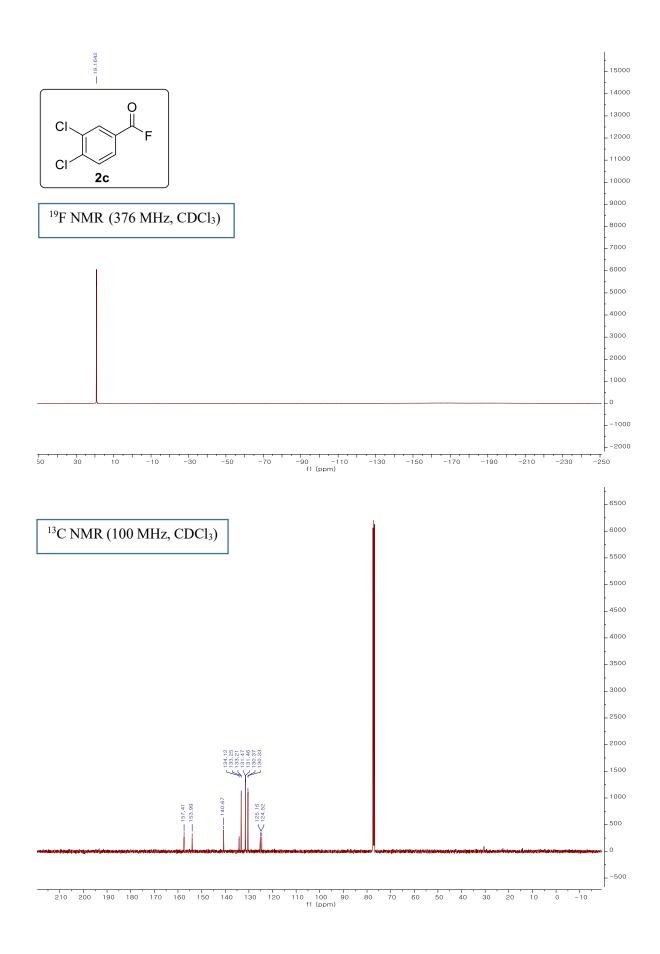


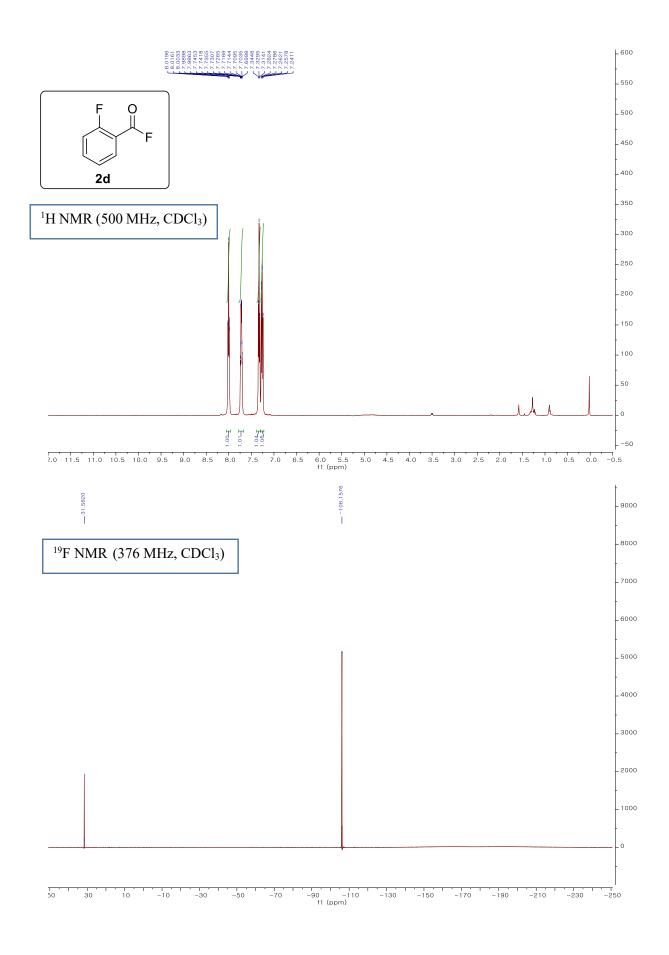


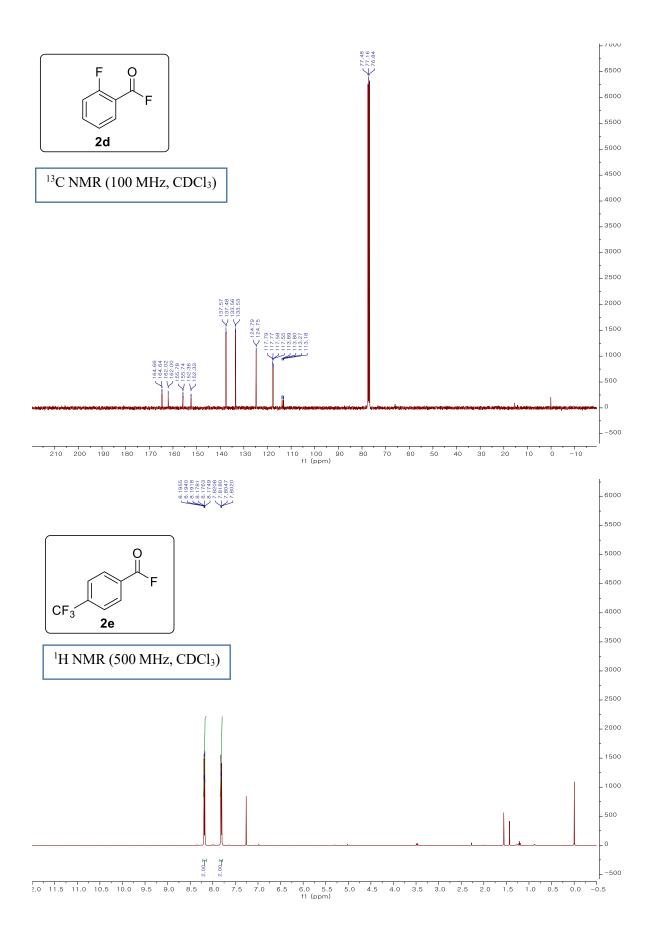


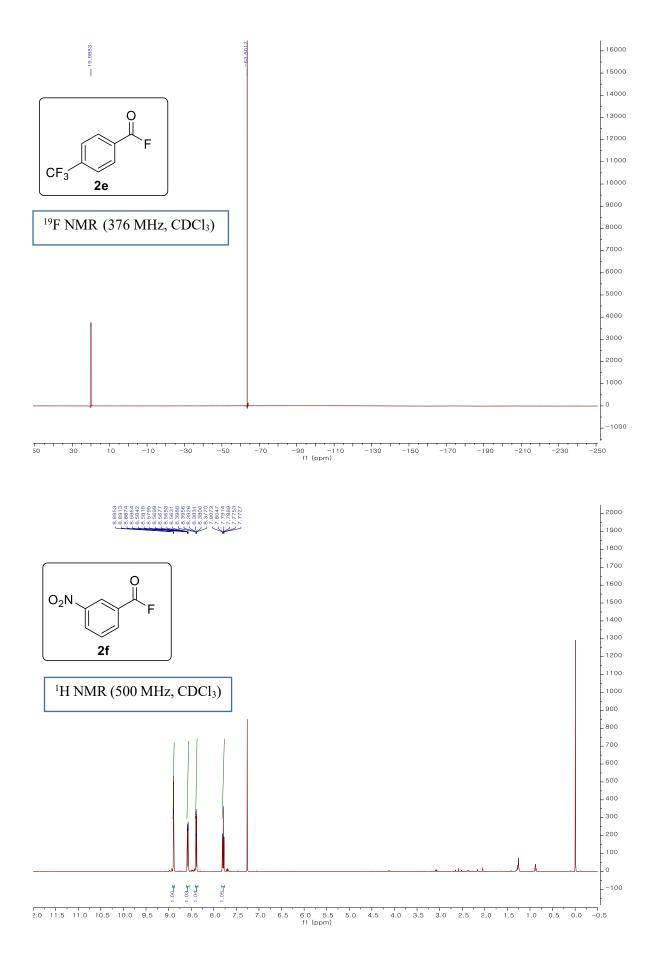


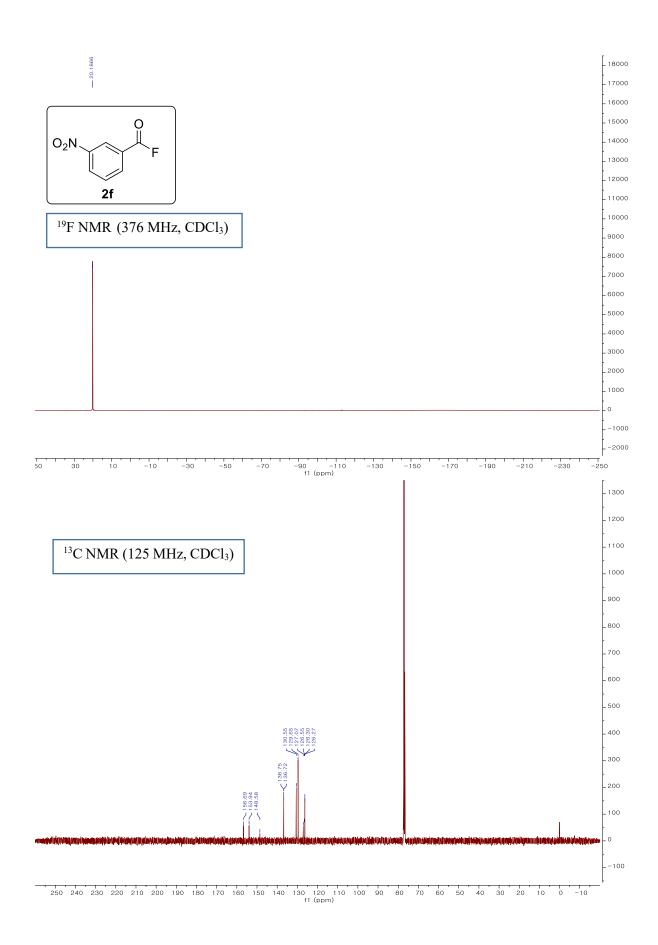


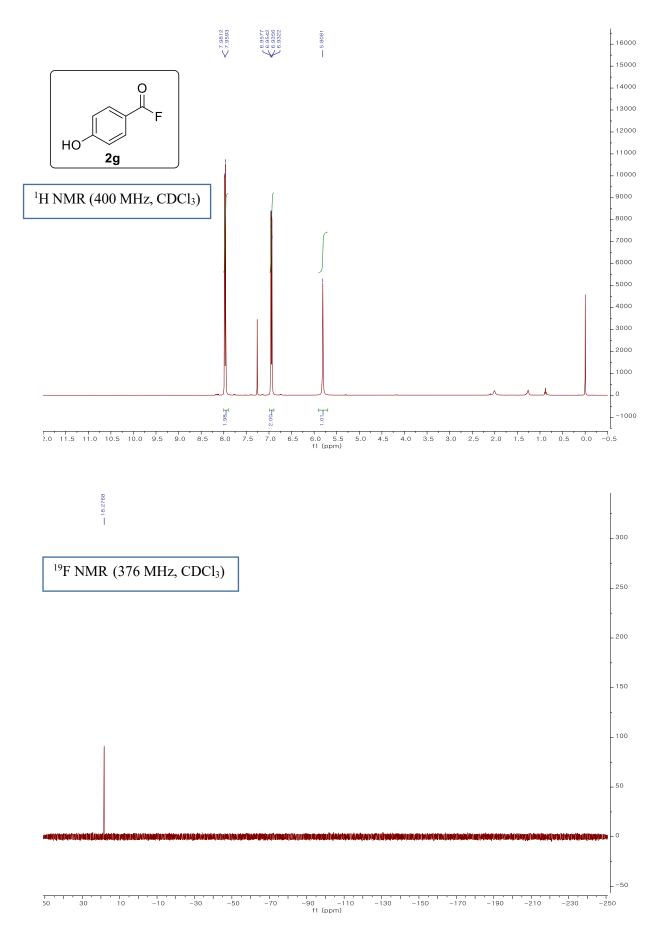


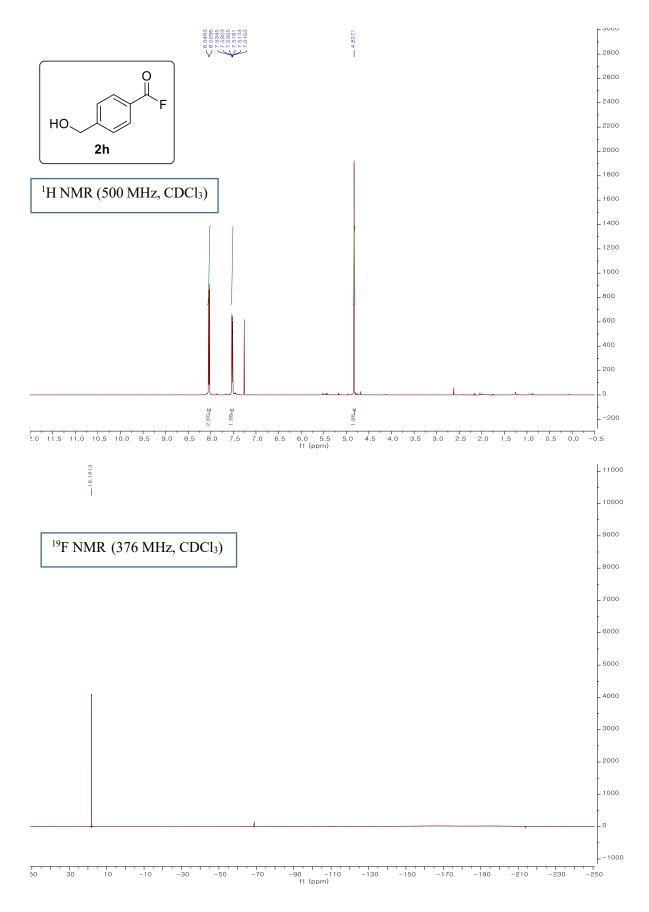


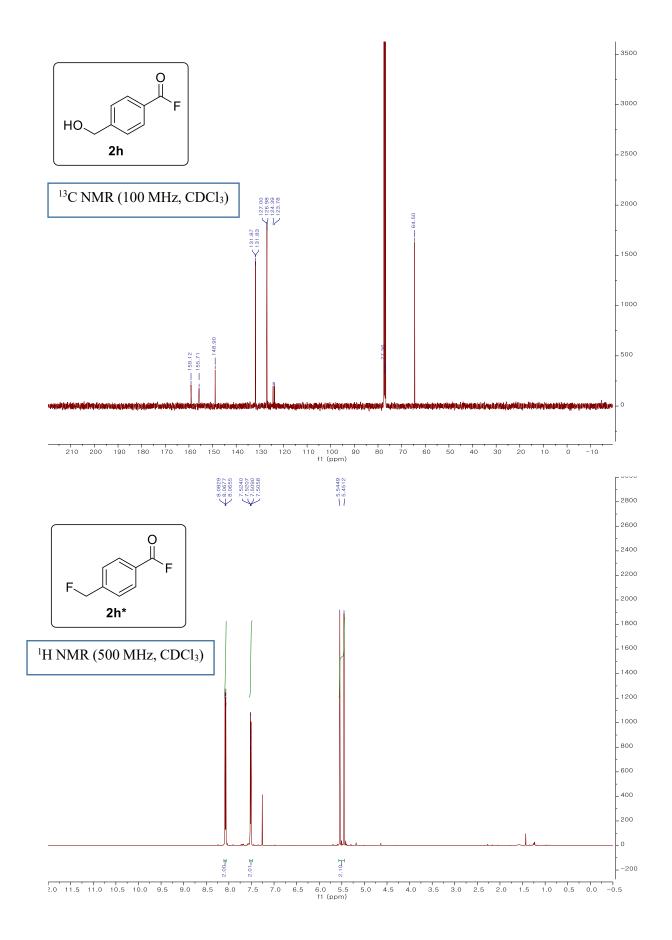


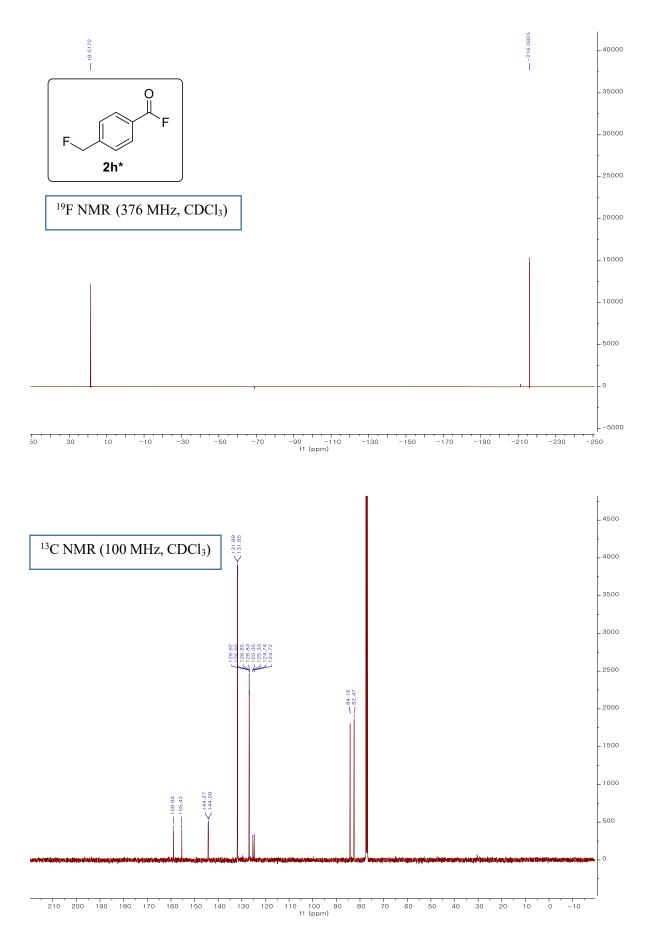


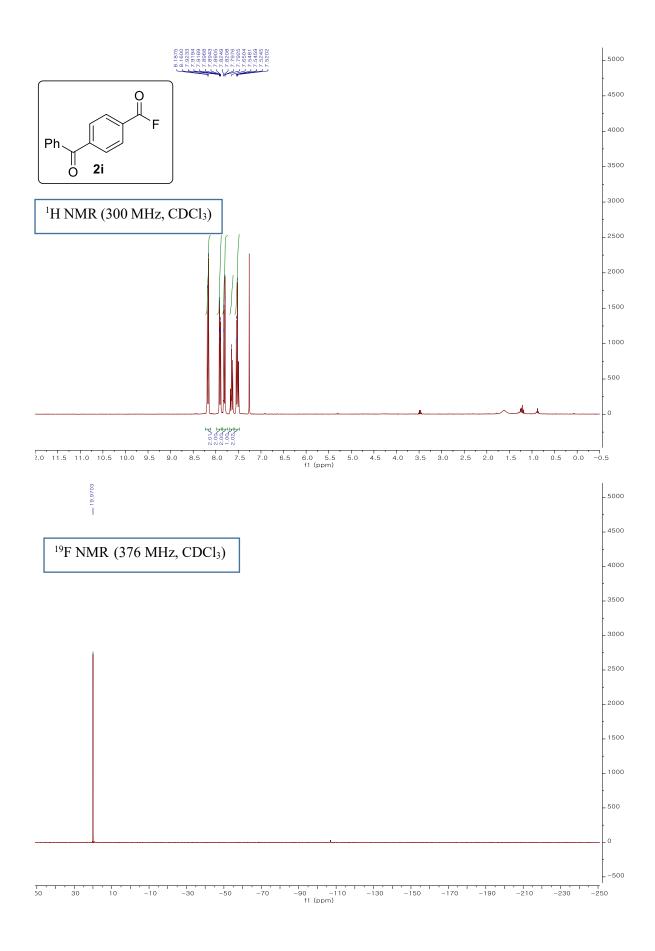


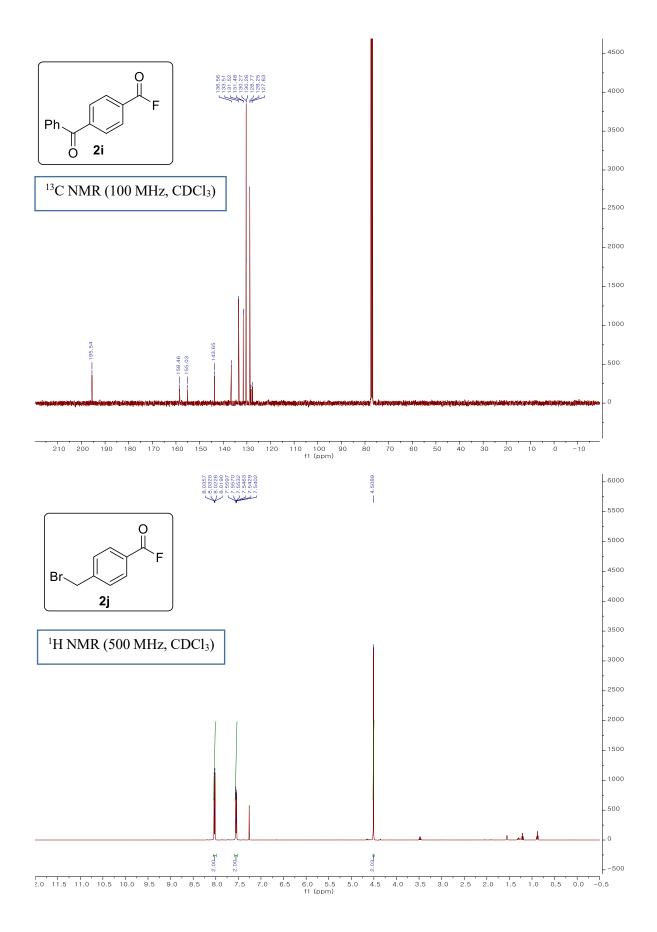


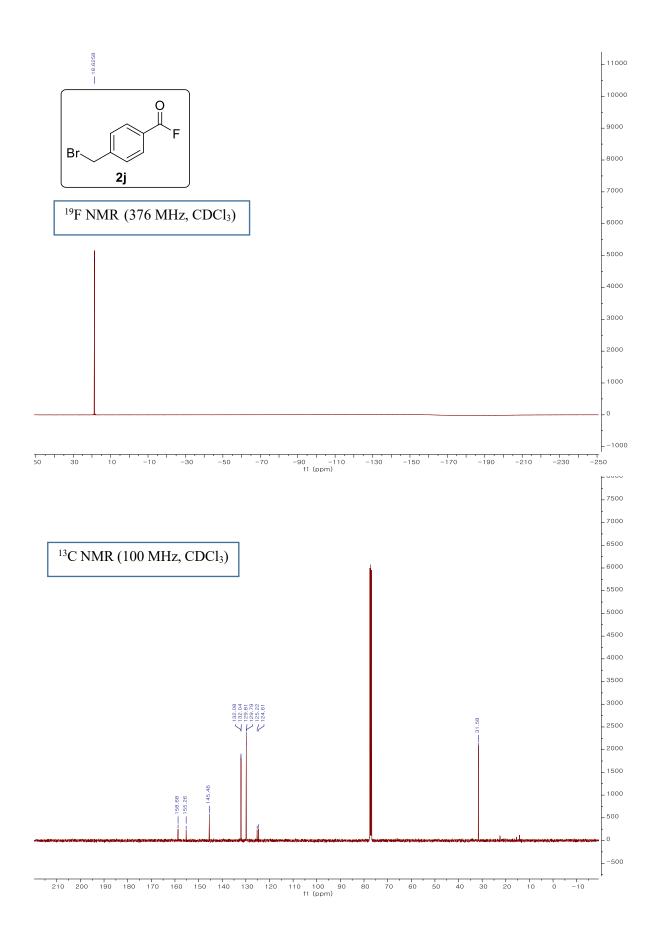


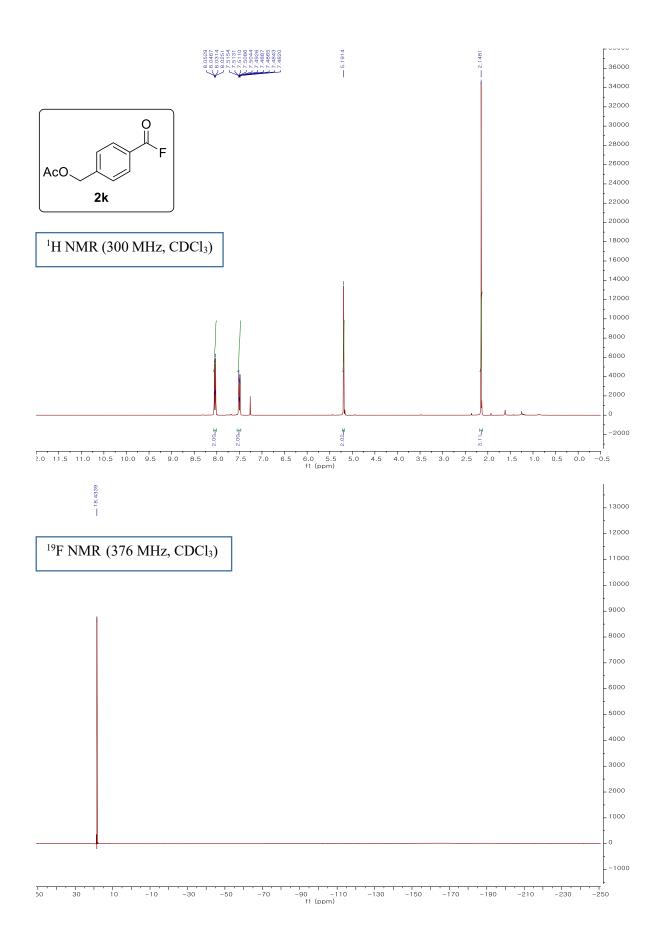


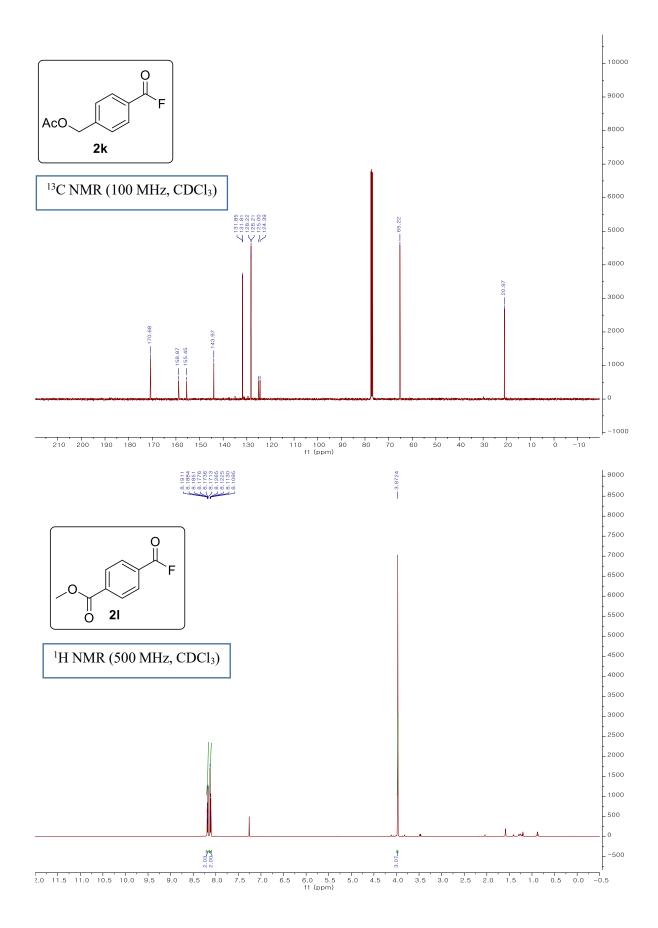


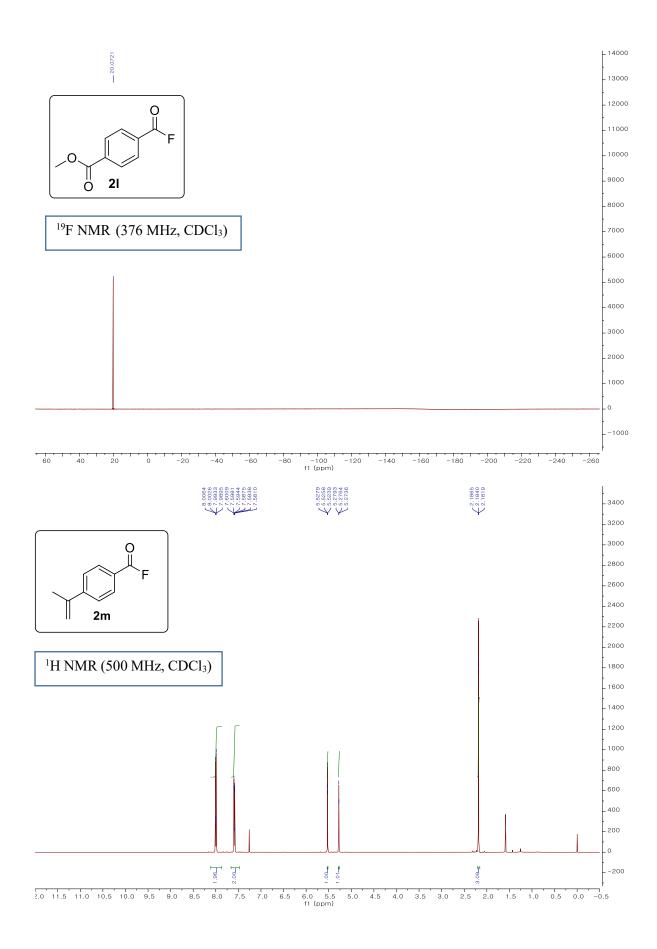


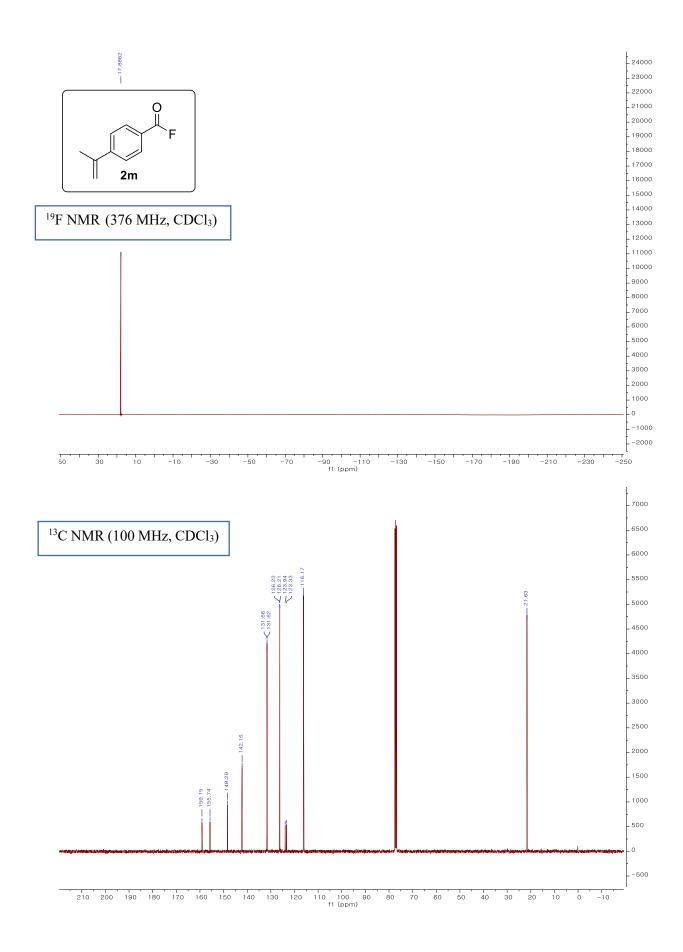


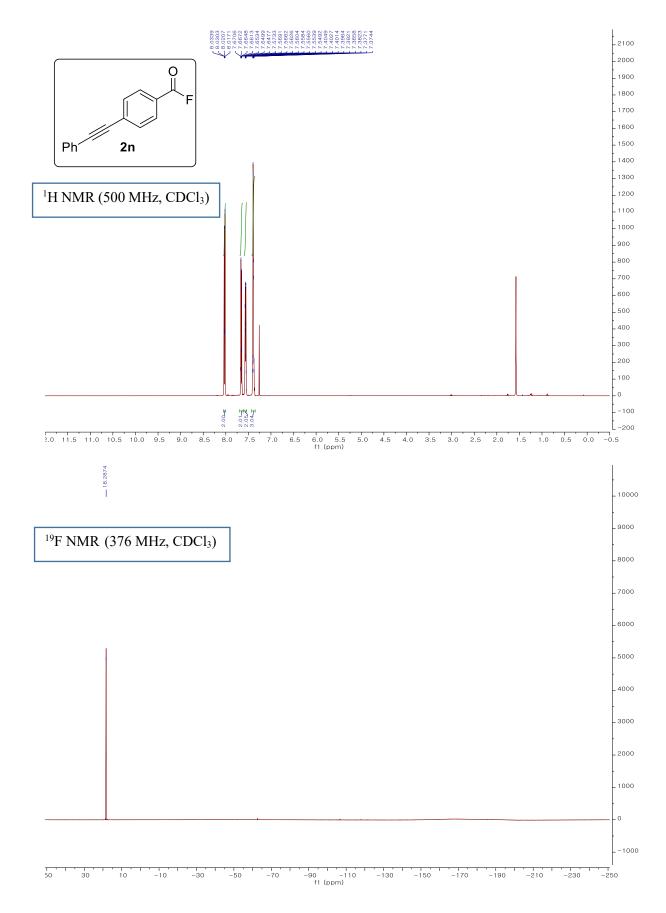


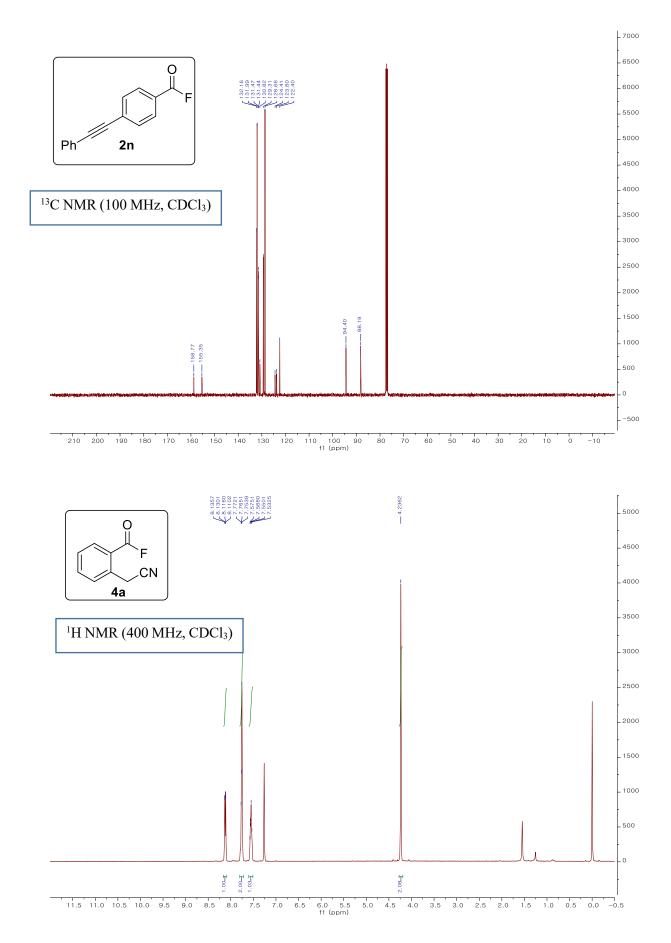


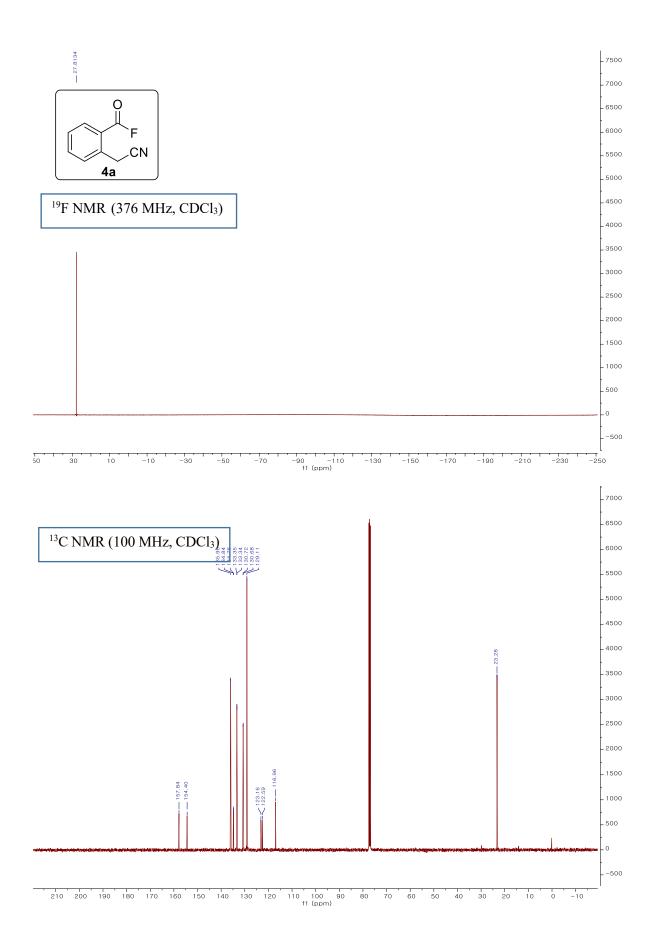


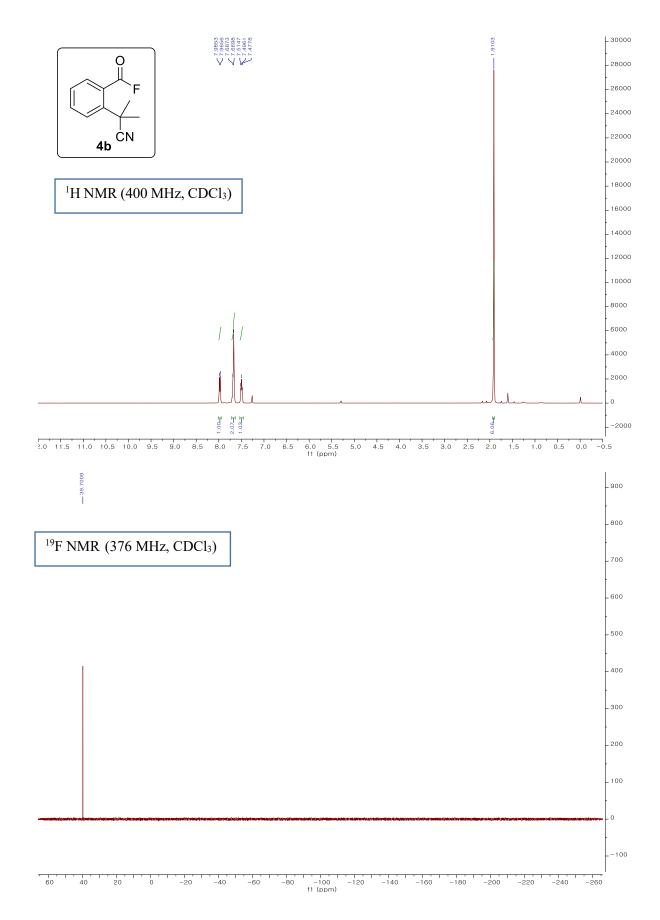


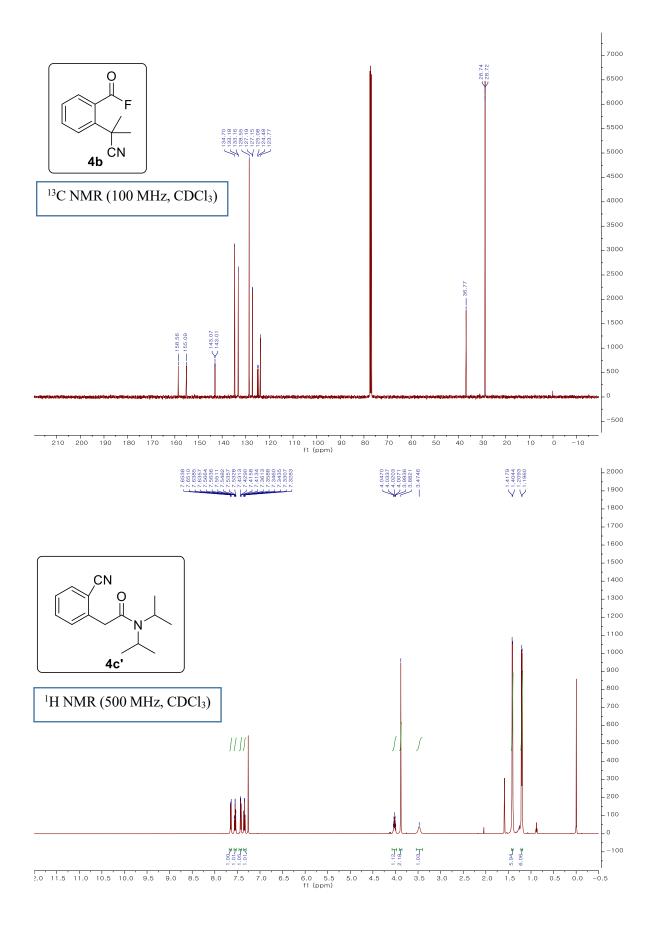


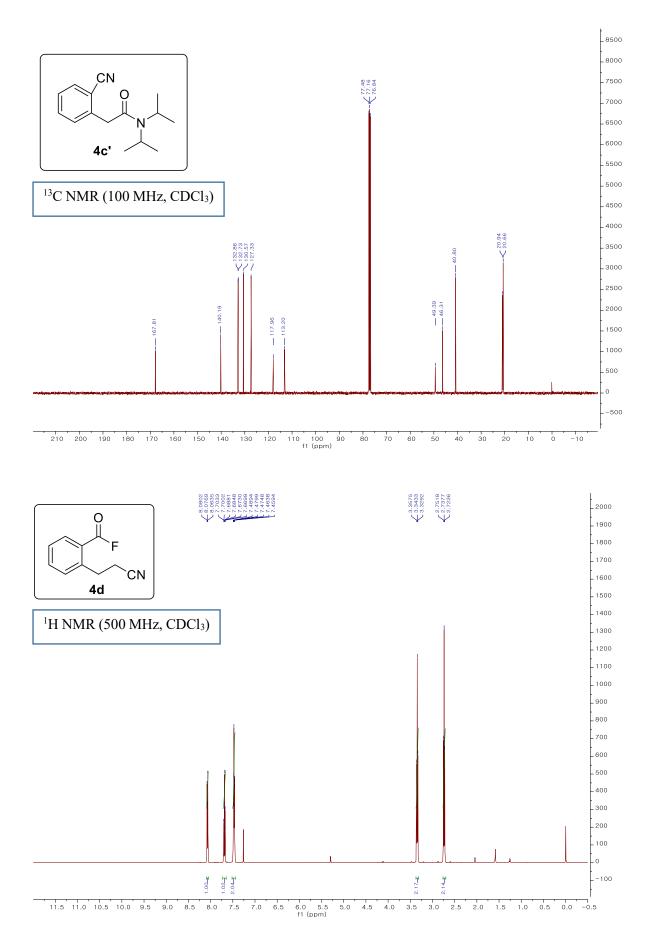


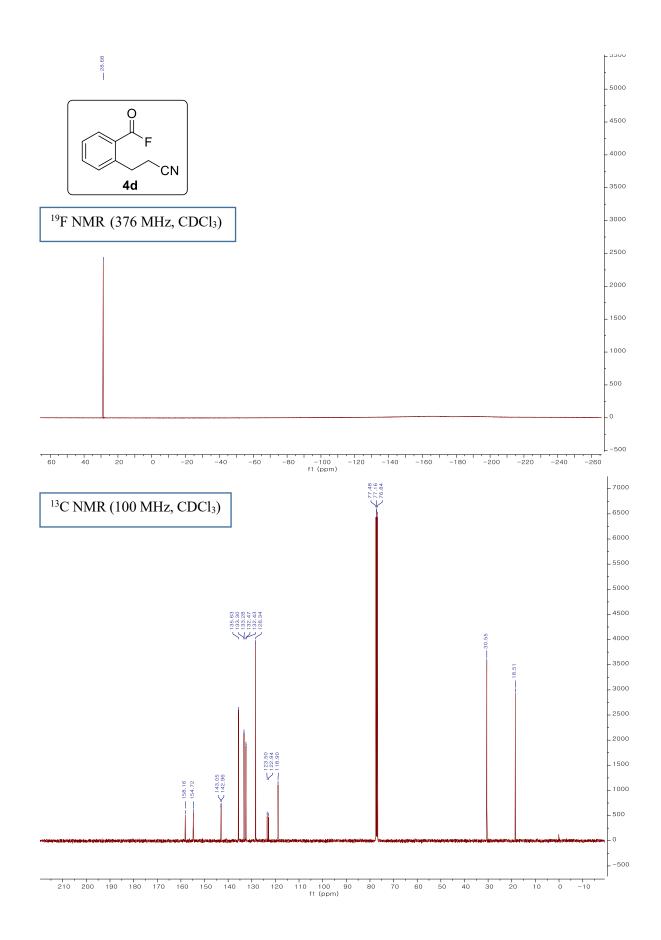


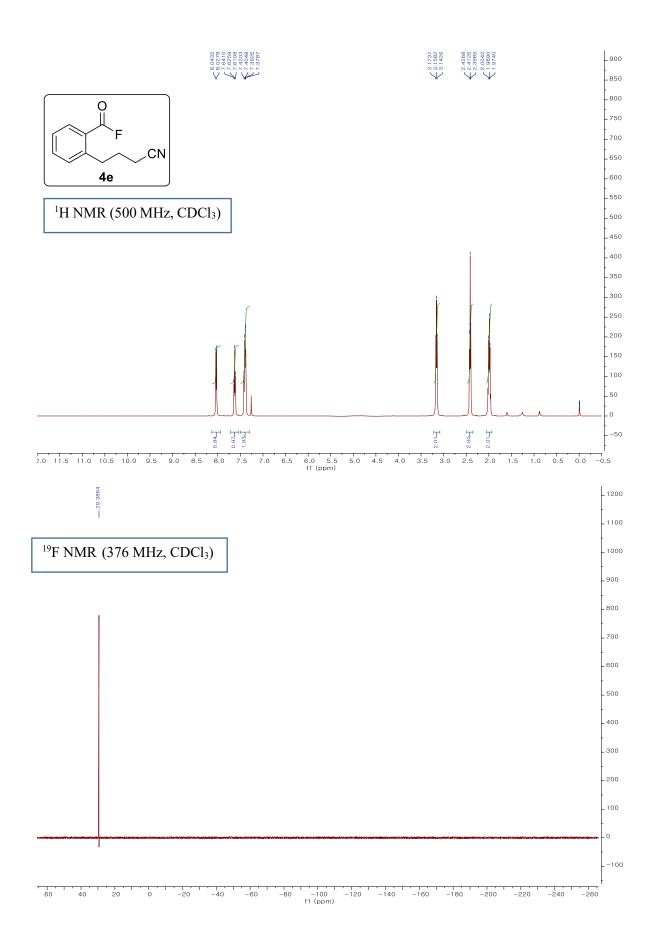


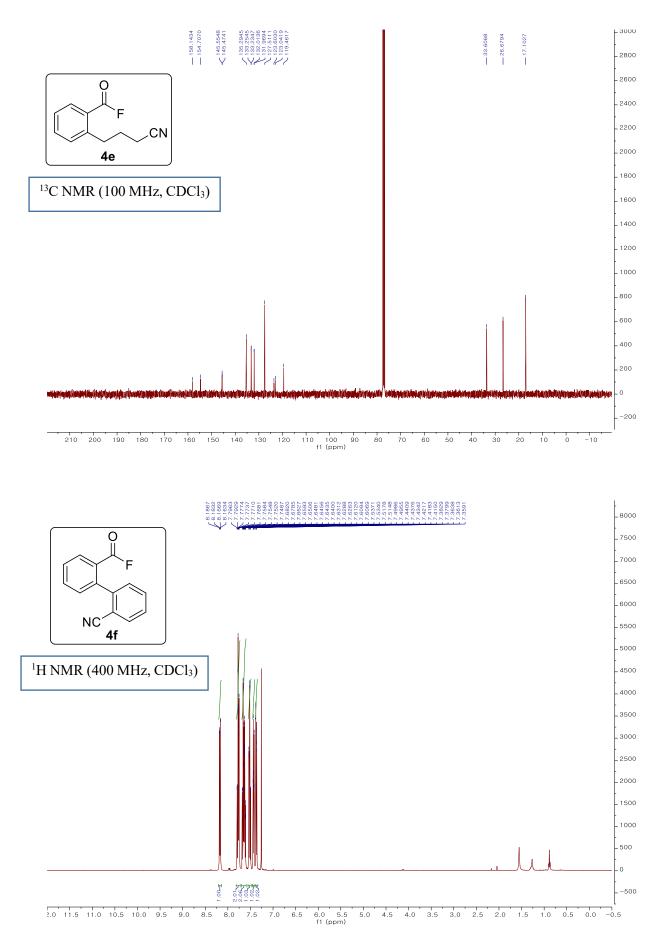


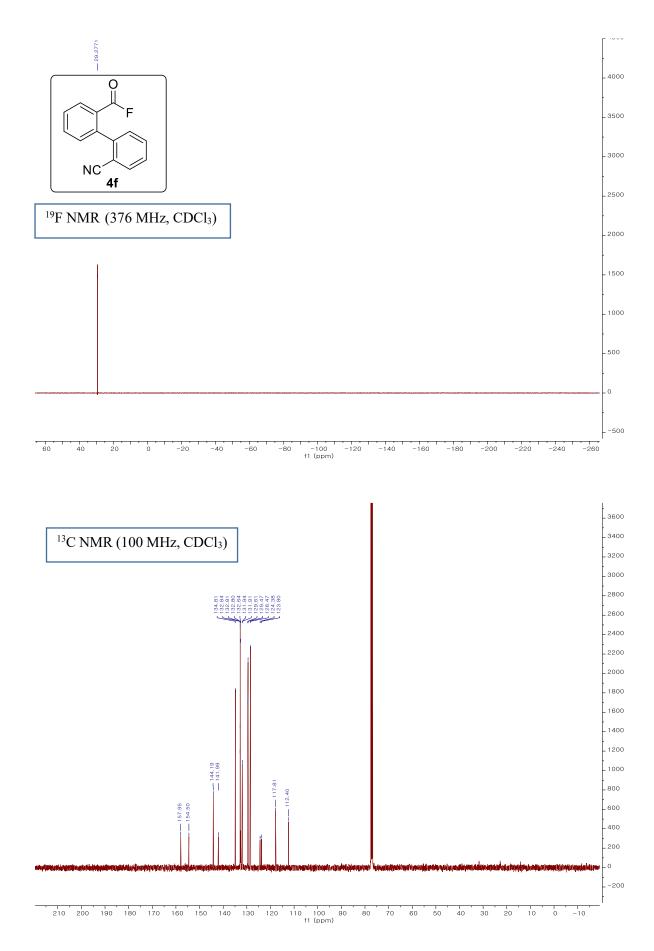


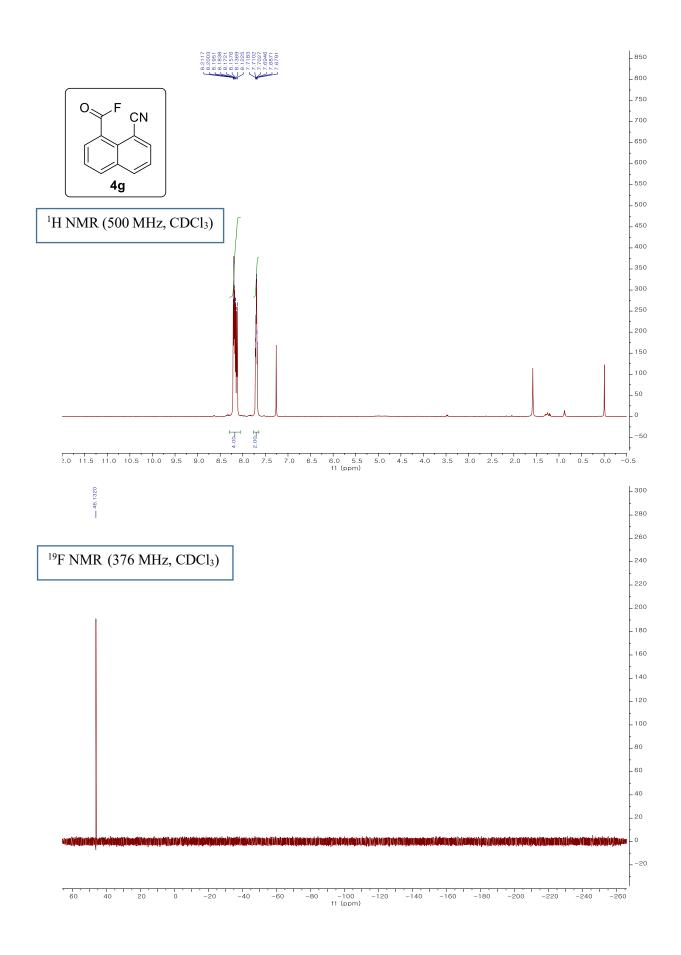


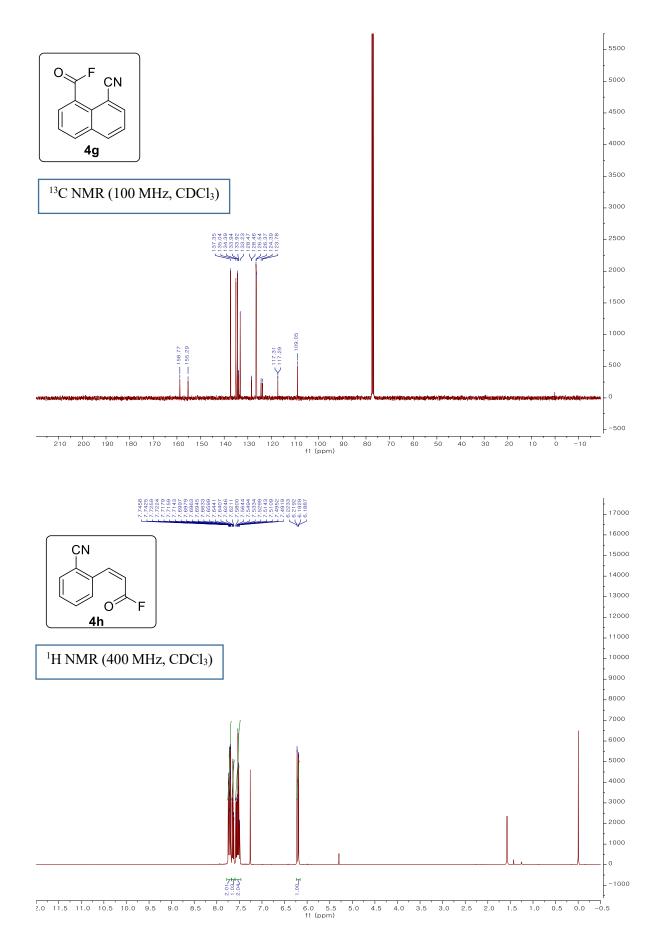


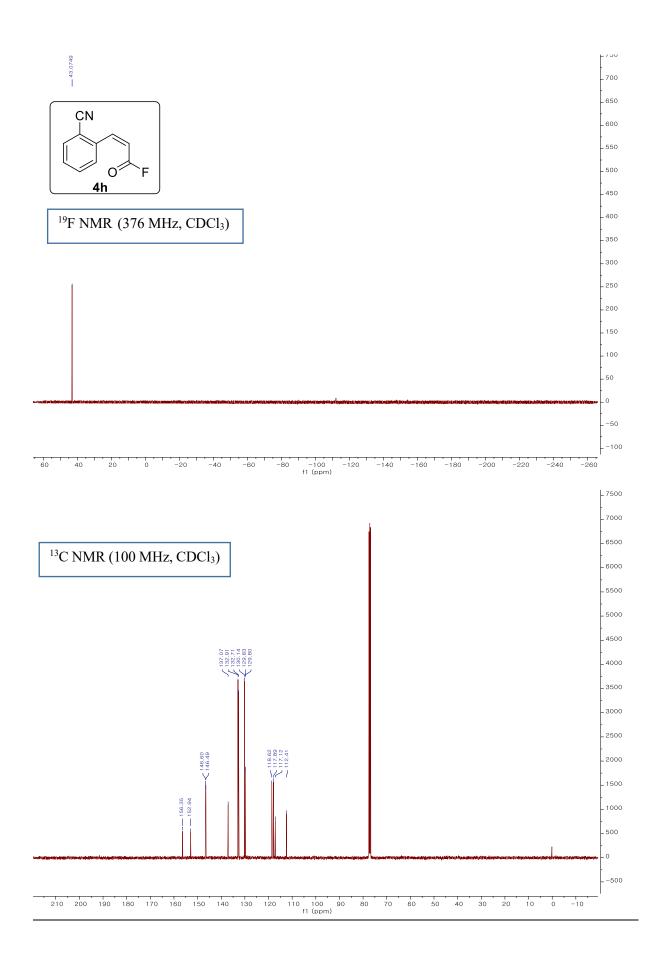


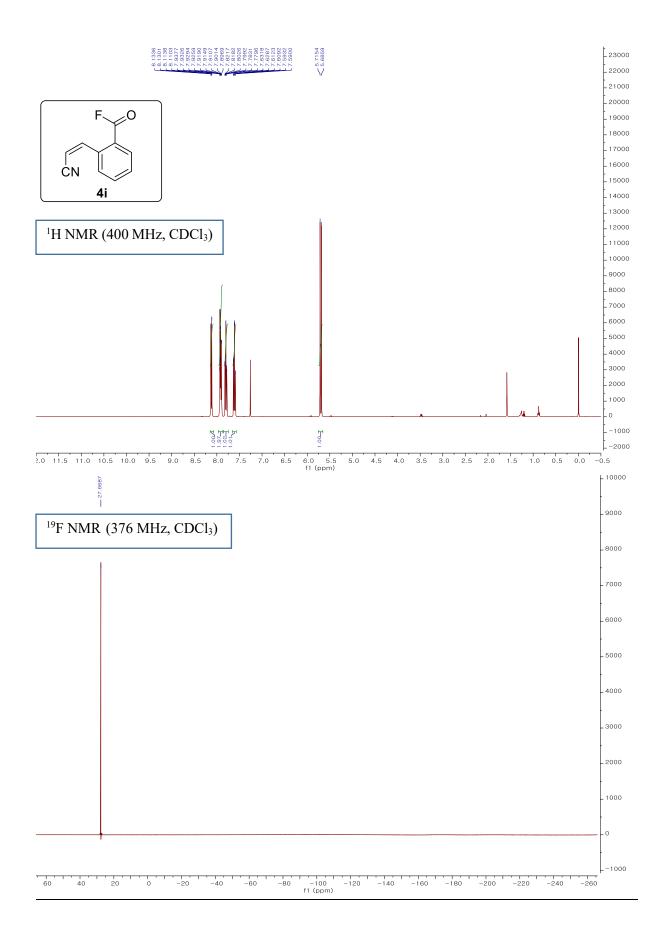

S73

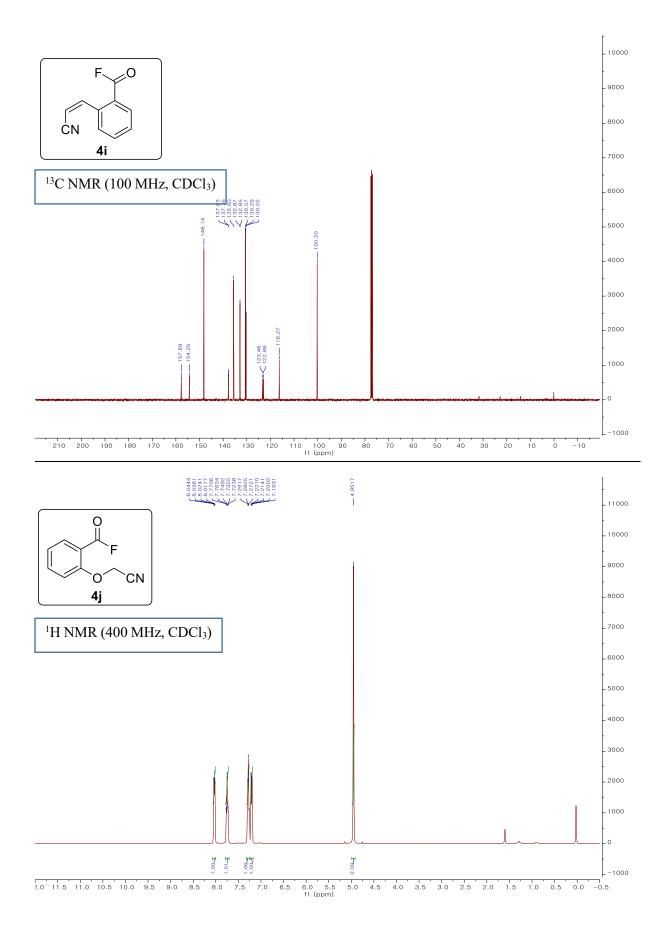


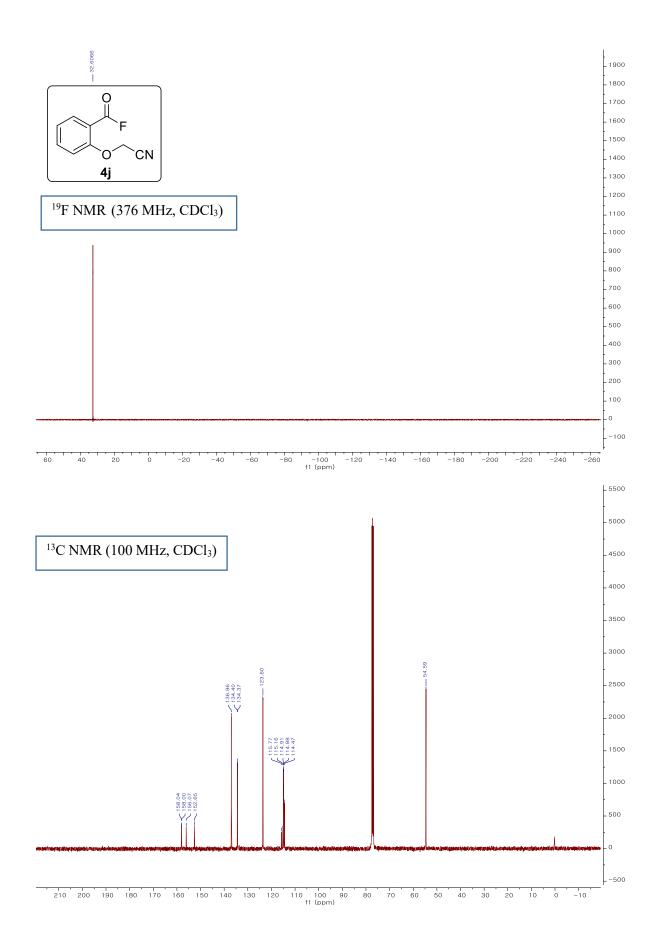


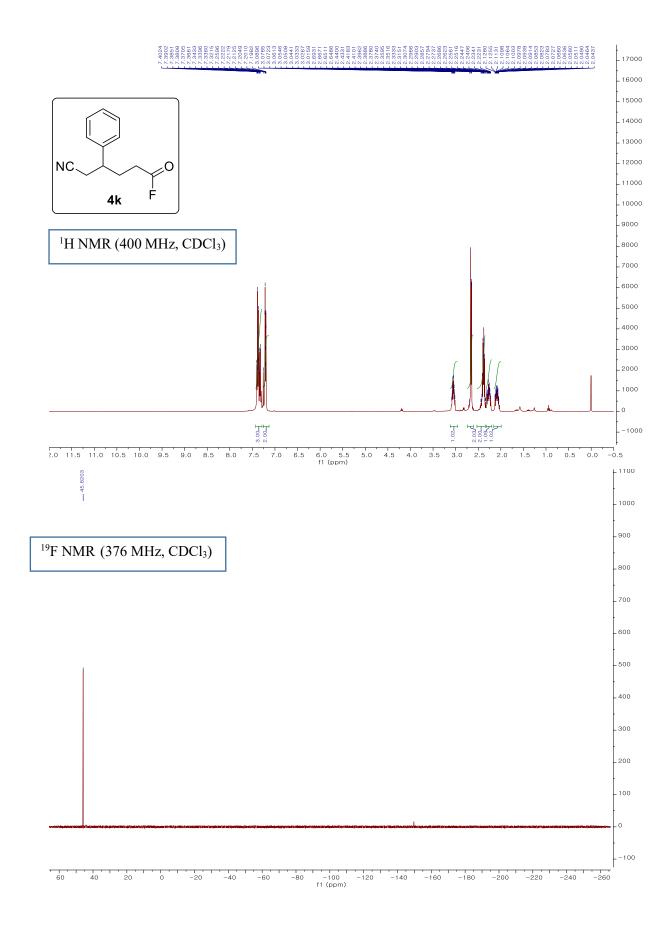


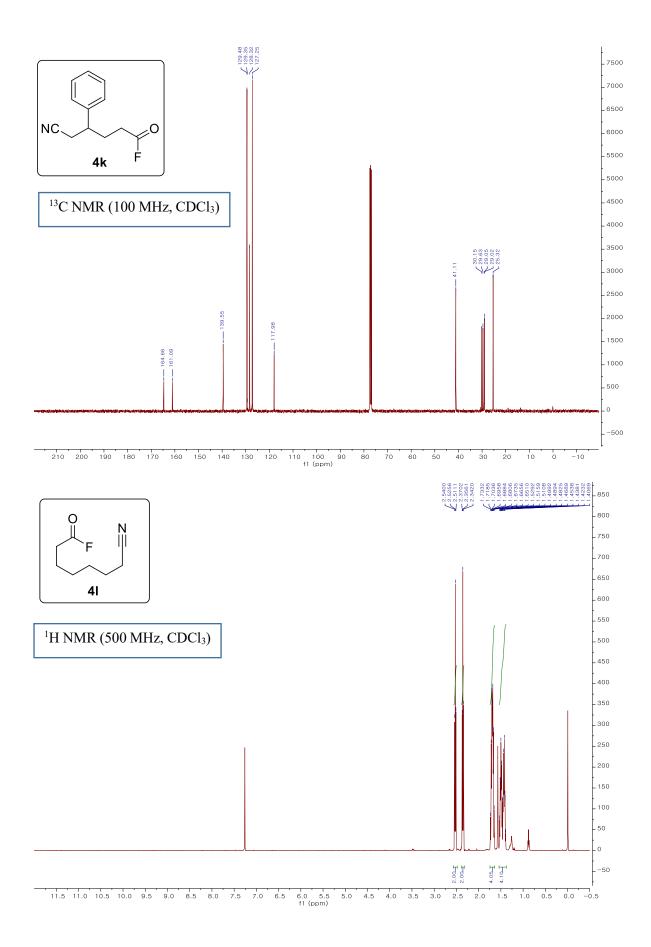











S82

