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Supplementary Figures

N B

100%

80%

60%

40%

Atomic concentration

20%

0%

10 20

Power (W)

Figure S1. Atomic concentration in samples from type B reactor obtained by XPS with power
varying from 5 W to 40 W.
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Figure S2. XPS high resolution spectra of Al 2p peak (a,b), O 1s peak (c,d) and C 1s peak (e,f)
for AIO nanoparticle samples from type A and type B reactors. The peak corresponding to
adventitious carbon is shifted to 284.8 eV as a reference.
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Figure S3. (a)—(f) Size distributions corresponding to the TEM images in Figures 3 (a) to ().
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Figure S4. Photograph showing AlO, nanoparticles deposited from type A and type B reactors
for same period of time.
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Figure S5. Scherrer fittings of XRD patterns (A = 1.54 A) of AlO, nanoparticles from type B
reactor after heating at 1100 °C for 18 h and for 40 h. To obtain size estimates for the a-phase
and 6-phase individually, we choose non-overlapping peaks from the two phases. For the a-
phase, (113) peaks were fitted (a,b). For 8-phase, peaks around 30-34° (c¢) and 44-50° (d) were
fitted. Instrumental broadening was accounted for by subtracting the FWHM of the nearest peak
of the LaBg standard sample, Figure S1. In the Scherrer equation, a shape factor of 0.89 was
used. As the widths of a-phase peaks are close to those of the LaBg standard sample indicating

large crystallite sizes, a rough size estimate of >100 nm is quoted in the main text.
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Figure S6. XRD patterns of samples from type B reactor for three nanoparticle sizes, obtained

by varying the gas pressure, after annealing at 1100°C for 18 hours. Only the smallest particles
with about 6 nm size show the appearance of the a-phase.
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Figure S7. XRD pattern from a standard LaB4 sample taken using a Bruker D8 Discover 2D X-
ray diffractometer. This pattern is used as a reference to correct for instrument broadening.

Permittivity modeling of amorphous aluminum oxide nanoparticle films

The film’s homogenized permittivity (e.ff) can be represented by a wavelength dependent scalar.
We model €.fr using the Bruggeman mixing formula

€alo, — Eeff

geff + k(€a10x — €eff)

Eair — Eeff
eff + k(gair - geff)

= 0#(1)

faio, + (1- fAle)e

where €40, and &, are the permittivity of the nanoparticles and air, respectively; faox (=
22.3 +£0.33% for type A and 19.4 + 0.11% for type B) volume fill fraction of the AlOy
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nanoparticles; and k (=0.261 £+ 0.005 for type A and 0.407 £+ 0.006 for type B) is the
depolarizing factor 1. €40, is modeled as

11
= €00 T Epolel T Epolez T Z SGaussn(E)#(Z)

n=1

€a10,(E)

(]

Where ¢, is the permittivity of free space and €., ( = 3.09 £+ 0.01 for type A and 2.97 + 0.02 for
type B) is the infinite frequency permittivity. The complex part of the Gaussian oscillators
(gGaussn = gln(E) + ian(E)) are given by

2 2
E—Ep E+En)

£2n(E) =Ane_( ) —Ane_(

In

0. = Brn # (3)Where Br,, is the full-width at half-maximum,
’ n=— 2 n (2 )
which accounts for spectral broadening. The real part of the permittivity is given by the Kramers-
Kronig relation
I GG

Eln()—n OfZ—EZ E'()
where P is the principle value. Table 1 and Table 2 give the fit parameters of the Gaussian
oscillators for the amorphous Al,O; nanoparticle films from type A and type B reactors,
respectively.

Type A Gaussian Oscillator Fit Literature Values
Vibration Amplitude Broadening Frequency Frequency Ref.
[em!] [em ] [em ]
AlOg, AlOy 1.0340 83.221 344.27 322-326 [112]
Deformations
AlOg 4.6977 408.32 475.78 482-491 [1]
stretching
AlO, 0.3357 107.70 851.46 902—880 [17[3]4]
stretching
Al-OH 0.6933 341.47 1027.5 1072-1160 [17[5]
sym/asym
H,0 0.22815 92.908 1410.6 1375 [1]
deformations/
vibrations
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Table 1. Gaussian oscillator parameters used to reconstruct the permittivity of nanoparticles from
type A reactor. Phonon resonance type (first column), amplitude (second column), spectral
broadening (third column) and resonant frequency (fourth column) of the Gaussian oscillators used
to calculate the AlOy particle permittivity from Mueller matrix data. The fifth column gives the
resonant frequency range expected from previous literature reports. Citations for the expected
frequency range are in the sixth column.

Type B Gaussian Oscillator Fit Literature Values
Vibration Amplitud Broadening Frequency Frequency Ref.
e [em™] [cm'] [cm]
AlOg, AlO, 2.5049 109.52 318.72 322-326 [1712]
Deformations
AlOg 4.0194 320.53 531.22 482-491 [1]
stretching
AlOy 0.4802 100.47 837.05 902-880 [1][3][4]
stretching
Al-OH 0.78315 397.17 966.53 1072—-1160 [17[5]
sym/asym
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H,O 0.26118 98.502 1403.0 1375 [1]
deformations/
vibrations
H-O-H bend 0.37889 140.14 1520.6 1600 [4]
-COO- 0.0780 74.000 1635.8 1300-1850 [2]
0.0759 1883.7 2237.9
Al-OH 0.1738 559.78 3129.3 3250-3600 [2]1[4]
stretching
O-H 0.3324 304.69 3406.2 3400-3600 [1][2][5]
stretching
Al-OH 0.1019 162.53 3607.7 3250-3600 [2][4]
stretching

Table 2. Gaussian oscillator parameters used to reconstruct the permittivity of nanoparticles from
type B reactor. Phonon resonance type (first column), amplitude (second column), spectral
broadening (third column) and resonant frequency (fourth column) of the Gaussian oscillators used
to calculate the AlOy particle permittivity from Mueller matrix data. The fifth column gives the
resonant frequency range expected from previous literature reports. Citations for the expected
frequency range are in the sixth column.
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