Supporting information

Mono/Dual Amination of Phenols with Amines in Water

Wanyi Liang, ^{†,§} Feng Xie, ^{†,§} Zhihai Yang,[†] Zheng Zeng, [‡]Chuanjiang Xia,[†] Yibiao Li, [†] Zhongzhi Zhu,^{*,†}and Xiuwen Chen^{*,†}

[†] School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.

[‡]Affiliated Hospital of Guilin Medical University, Guilin 541001, China.

Email: chenxiuwen2010@126.com; wyuchemzzz@126.com

Table of contents

1. General information	S2
2. Typical procedure for the synthesis of the corresponding products	S2
3. The new synthetic method for the synthesis of chloroquine	S4
4. The control experiments	S5
5. Plausible reaction pathways	S7
6. Analytical data of the obtained compounds	S7
7. NMR spectra of products	S20

1. General information

All the obtained products were characterized by melting points (m.p), ¹H-NMR and ¹³C-NMR. Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus and are uncorrected; ¹H-NMR and ¹³C-NMR spectra were obtained on Bruker-500 and referenced to 7.26 ppm for chloroform solvent with TMS as internal standard (0 ppm). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm; Unless otherwise stated, all the reagents were purchased from commercial sources (J&KChemic, TCI, Fluka, Acros, SCRC), used without further purification. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument.

2. Typical procedure for the synthesis of the corresponding products.

Mono Amination of Phenols with Amines: In a 25 mL Schlenk tube was combined Amines 1 (0.45 mmol), Phenols 2 (0.30 mmol), Pd/C (10 wt%, 5 mol% based on Pd content), HCO₂NH₄ (1 equiv) and $K_2S_2O_5$ (50 mol %) in H₂O (1.0 mL). The mixture was then stirred at 100 °C under oil-bath heating for 16 h under N₂ protection. After cooling down to room temperature, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with petroleum ether (60-90 °C): ethyl acetate (20:1) to give the corresponding products **3aa-3oa**.

Dual Amination of Phenols with Amines: In a 25 mL Schlenk tube was combined Amines **1** (0.9 mmol), Phenols **2** (0.3 mmol), Pd/C (10 wt%, 5 mol% based on Pd content), HCO_2NH_4 (2 equiv) and $K_2S_2O_5$ (50 mol %) in water (1.0 mL) at 100 °C for 16 h under N₂ protection. After cooling down to room temperature, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with petroleum ether (60-90 °C): ethyl acetate (10:1) to give the corresponding products **4ei-4sl**.

Synthesis of *N-phenethylnaphthalen-2-amine (3ea)*: In a 25 mL Schlenk tube was combined Phenylethylamine **1e** (1.2 mmol), 2-Naphthol **2a** (1 mmol), Pd/C (10 wt%, 5 mol% based on Pd content), HCO₂NH₄ (1 equiv) and $K_2S_2O_5$ (50 mol %) in H₂O (2.0 mL). The mixture was then stirred at 100 °C under oil-bath heating for 16 h under N₂ protection. Purification of the residue by column chromatography (30:1 petroleum ether: ethyl acetate) gave **3ea** as a yellow solid (150.7 mg, 61% yield).

3. The new synthetic method for the synthesis of chloroquine

In a 25 mL Schlenk tube was combined 2-amino-5-diethylaminopentane 1t (0.45 mmol), 7-chloroquinolin-4-ol 2m (0.30 mmol), Pd/C (10 wt%, 5 mol% based on Pd content), HCO₂NH₄ (1 equiv) and $K_2S_2O_5$ (50 mol%) in H₂O (1.0 mL) N₂ protection. The mixture was then stirred at 120 °C under oil-bath heating for 16 h. After cooling down to room temperature, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with petroleum ether: ethyl acetate (5:1) to give chloroquine 4tm and dechlorinated product 4tm'.

Scheme 1 The synthetic utility of the developed chemistry.

4. The control experiments

Under the same conditions using only $K_2S_2O_5$ and water, benzylamine and naphthol produced the expected product in low yield (19%), but the yield increased greatly to 73% when the hydrogen source was added (Manuscript, table 1, entry 13). These results indicate that the $K_2S_2O_5$ and hydrogen source jointly promoted the transformation of this reaction.

Scheme 2

7-(phenethylamino)naphthalen-2-ol (3en). ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 8.7 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.39 (t, J = 7.3 Hz,

2H), 7.31 (dd, J = 16.3, 6.9 Hz, 3H), 7.07 (d, J = 8.8 Hz, 1H), 7.04 (s, 1H), 6.90 (s, 1H), 6.86 (d, J = 8.7 Hz, 1H), 4.76 (s, 2H), 3.51 (t, J = 7.0 Hz, 2H), 3.00 (t, J = 6.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.2, 143.6, 139.3, 130.3, 128.9, 128.8, 128.7, 127.8, 127.6, 126.6, 119.1, 118.4, 109.9, 106.3, 45.6, 35.2.

To better understand the mechanism, it may be better for the authors to examine the deuterium ratio with NaBH₄ as the hydride donor but in D_2O as the solvent. The product generated under the conditions of NaBD₄ and D₂O increases the ratio of deuteration on the naphthalene ring, suggesting that water has a promoting effect in this transformation or that proton-exchange process may occur in the presence of D₂O.

5. Plausible reaction pathways

We believe that $K_2S_2O_5$ plays a key role in water, similar to the bucherer reaction pathway. The reaction proceeded via bisulfite adducts of the tautomeric keto or ketimine forms of the naphthols or naphthylamines, in accordance with Scheme 2.

 $K_2S_2O_5 + H_2O \longrightarrow 2KHSO_3$

6. Analytical data of the obtained compounds

(1)

N-benzylnaphthalen-2-amine (3aa). Brown solid (52.5 mg, 75% yield), m.p: 132-133 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.46 (d, J = 7.4 Hz, 2H), 7.43 – 7.37 (m, 3H), 7.35 (d, J = 7.3 Hz, 1H), 7.25 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.96 (dd, J = 8.8, 2.4 Hz, 1H), 6.89 (d, J = 2.2 Hz, 1H), 4.48 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.7, 139.1, 135.2, 129.0, 128.8, 127.7, 127.7, 127.4, 126.4, 126.1, 122.2, 118.0, 104.8, 48.5. HRMS (ESI) m/z calcd for C₁₇H₁₆N [M+H]⁺: 234.1277; found 234.1270.

(2)

N-(4-methylbenzyl)naphthalen-2-amine (3ba). Yellow oil (60.1 mg, 81% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 1H), 7.66 (dd, J = 16.2, 8.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 7.6 Hz, 2H), 7.27 – 7.18 (m, 3H), 6.96 (dd, J = 8.7, 2.3 Hz, 1H), 6.91 (s, 1H), 4.43 (s, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.6, 137.1, 135.9, 135.2, 129.4, 129.0, 127.8, 127.7, 126.4, 126.1, 122.2, 118.0, 105.0, 48.3, 21.2.

(3)

N-(4-methoxybenzyl)naphthalen-2-amine (3ca). Yellow solid (65.5 mg, 83% yield), m.p: 103-104.2 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 1H), 7.66 (dd, J = 14.4, 8.5 Hz, 2H), 7.39 (dd, J = 15.7, 7.8 Hz, 3H), 7.24 (t, J = 3.9 Hz, 1H), 6.98 – 6.89 (m, 4H), 4.39 (s, 2H), 3.84 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.0, 145. 5, 135.1, 130.9, 129.1, 129.0, 127.7, 126.4, 126.1, 122.2, 118.1, 114.1, 105.1, 55.4, 48.1. HRMS (ESI) m/z calcd for C₁₈H₁₈NO [M+H]⁺: 264.1383; found 264.1385.

(4)

N-(4-fluorobenzyl)naphthalen-2-amine (3da). Brown solid (53.5 mg, 71% yield), m.p: 86.4-87.6 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.70 (dd, J = 17.1, 8.4 Hz, 2H), 7.62 (d, J = 8.2 Hz, 1H), 7.44 – 7.37 (m, 3H), 7.27 – 7.22 (m, 1H), 7.07 (t, J = 8.7 Hz, 2H), 6.96 (dd, J = 8.8, 2.3 Hz, 1H), 6.87 (s, 1H), 4.44 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.2 (d, J = 245.1Hz), 145.1, 135.0, 134.5, 129.3 (d, J = 8.0 Hz), 129.1, 127.8, 127.7, 126.3 (d, J =46.0 Hz), 122.4, 118.0, 115.6, 115.5, 105.3, 47.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -115.30. HRMS (ESI) m/z calcd for C₁₇H₁₅FN [M+H]⁺: 252.1183; found 252.1176.

(5)

N-phenethylnaphthalen-2-amine (3ea). Yellow oil (56.3 mg, 76% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 8.1 Hz, 1H), 7.69 (dd, J = 8.4, 3.7 Hz, 2H), 7.47 – 7.38 (m, 3H), 7.35 – 7.27 (m, 4H), 6.95 – 6.89 (m, 2H), 3.57 (t, J = 7.0 Hz, 2H), 3.05 (t, J = 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.5, 139.3, 135.3, 129.1, 128.9, 128.7, 127.7, 127.7, 126.6, 126.4, 126.0, 122.1, 118.2, 104.9, 45.2, 35.3. HRMS (ESI) m/z calcd for C₁₈H₁₈N [M+H]⁺: 248.1434; found 248.1423.

N-(4-fluorophenethyl)naphthalen-2-amine (3fa). Yellow oil (54.1 mg, 68% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 40/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 8.9 Hz, 2H), 7.41 (dd, J = 7.9, 7.1 Hz, 1H), 7.27 – 7.20 (m, 3H), 7.06 (t, J = 8.6 Hz, 2H), 6.88 (d, J = 6.7 Hz, 2H), 3.52 (t, J =7.0 Hz, 2H), 2.99 (t, J = 6.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.7 (d, J =244.3 Hz), 145.5, 135.2, 134.9 (d, J = 3.0 Hz), 130.3 (d, J = 7.6 Hz), 129.1, 127.7, 127.6, 126.4, 126.0, 122.1, 118.1, 115.5 (d, J = 21.1 Hz), 104.7, 45.1, 34.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.62. HRMS (ESI) m/z calcd for C₁₈H₁₇FN [M+H]⁺ : 266.1340; found 266.1351.

(7)

N-(4-(trifluoromethyl)phenethyl)naphthalen-2-amine (3ga). Yellow oil (33.4 mg, 53% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.73 (dd, J = 7.6, 3.7 Hz, 1H), 7.68 (d, J = 7.2 Hz, 2H), 7.63 (d, J = 6.5 Hz, 2H), 7.45 – 7.37 (m, 3H), 7.26 (dd, J = 4.0, 2.8 Hz, 1H), 6.95 – 6.83 (m, 2H), 3.86 (s, 1H), 3.57 (t, J = 6.9 Hz, 2H), 3.07 (t, J = 6.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.3, 143.5, 135.2, 129.2, 129.1, 127.7, 127.7, 126.5, 125.9, 125.6 (q, J = 3.6 Hz), 122.2, 118.0, 104.7, 44.7, 35.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.3. HRMS (ESI) m/z calcd for C₁₉H₁₇F₃N [M+H]⁺: 316.1308; found 316.1301.

(8)

3-(naphthalen-2-ylamino)propan-1-ol (3ha). Yellow oil (51.3 mg, 85% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.68 (dd, J = 25.1, 7.9 Hz, 3H), 7.40 (ddd, J = 8.1, 6.7, 1.3 Hz, 1H), 7.27 – 7.22 (m, 1H), 6.94 – 6.87 (m, 2H), 3.88 – 3.84 (m, 2H), 3.40 (t, J = 6.5 Hz, 2H), 1.99 – 1.94 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.9, 135.1, 129.0, 127.7, 126.4, 126.0, 122.1, 118.3, 104.9, 61.7, 42.1, 31.7. HRMS (ESI) m/z calcd for C₁₃H₁₅NONa [M+Na]⁺ : 224.1046; found 224.1053.

N-butylnaphthalen-2-amine (3ia). Yellow oil (48.4 mg, 81% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 40/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.67 (dd, J = 23.5, 8.3 Hz, 3H), 7.39 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.22 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 6.91 (dd, J = 8.8, 2.3 Hz, 1H), 6.84 (d, J = 2.3 Hz, 1H), 3.25 (t, J = 7.2 Hz, 2H), 1.70 (td, J = 7.2, 2.2 Hz, 2H), 1.51 (q, J = 7.5 Hz, 2H), 1.02 (t, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.1, 135.3, 128.9, 127.7, 127.5, 126.3, 125.9, 121.9, 118.1, 104.3, 43.8, 31.5, 20.4, 14.0. HRMS (ESI) m/z calcd for C₁₄H₁₈N [M+H]⁺: 200.1434; found 200.1439.

(10)

N-phenylnaphthalen-2-amine (3ja). Yellow solid (42.1 mg, 64% yield), m.p: 103-105 °C ; $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.80 (m), 7.73 (d, J = 8.2 Hz), 7.55 – 7.48 (m), 7.44 – 7.36 (m), 7.30 – 7.27 (m), 7.24 (dd, J = 8.5, 1.0 Hz), 7.08 (dd, J = 10.6, 4.1 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 143.0, 140.9, 134.7, 129.6, 129.3, 129.3, 127.8, 126.6, 126.6, 123.6, 121.5, 120.1, 118.3, 111.6. HRMS (ESI) m/z calcd for C₁₆H₁₃NNa [M+Na]⁺: 242.0940; found 242.0956.

(11)

N-(p-tolyl)naphthalen-2-amine (3ka). Yellow solid (48.3 mg, 69% yield), m.p: 101-103 °C ; $R_f = 0.4$ (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 12.1, 5.1 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.3 Hz, 1H), 7.45 (s, 1H), 7.42 – 7.36 (m, 1H), 7.27 – 7.22 (m, 3H), 7.19 (t, J = 5.1 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.7, 140.1, 134.8, 131.5, 130.1, 129.3, 129.0, 127.8, 126.5, 126.5, 123.3, 119.7, 119.4, 110.4, 20.9. HRMS (ESI) m/z calcd for C₁₇H₁₆N [M+H]⁺: 234.1277; found 234.1277.

(12)

N-benzyl-N-methylnaphthalen-2-amine (3la). Yellow oil (45.2 mg, 61% yield); R_f

= 0.4 (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 8.8 Hz, 2H), 7.67 (d, J = 8.2 Hz, 1H), 7.41 – 7.34 (m, 3H), 7.33 – 7.28 (m, 3H), 7.27 – 7.18 (m, 2H), 7.00 (d, J = 2.1 Hz, 1H), 4.69 (s, 2H), 3.14 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.7, 138.8, 135.1, 128.9, 128.6, 127.5, 127.0, 126.9, 126.9, 126.3, 126.2, 122.1, 116.2, 106.2, 56.8, 38.7. HRMS (ESI) m/z calcd for C₁₈H₁₈N [M+H]⁺: 248.1434; found 248.1431.

(13)

1-(naphthalen-2-yl)pyrrolidine (3ma). Yellow oil (34.3 mg, 58% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 40/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.78 (dd, J = 8.6, 4.4 Hz), 7.73 (d, J = 8.2 Hz), 7.45 (ddd, J = 8.3, 6.7, 1.3 Hz), 7.26 (ddd, J = 8.1, 6.7, 1.2 Hz), 7.08 (dd, J = 9.0, 2.5 Hz), 6.85 (d, J = 2.5 Hz), 3.51 – 3.45 (m), 2.12 (dq, J = 6.7, 3.8, 3.2 Hz). ¹³C NMR (126 MHz, CDCl₃) 145.9, 135.3, 128.9, 127.7, 126.4, 126.2, 125.9, 121.3, 115.8, 104.8, 47.9, 25.6. HRMS (ESI) m/z calcd for C₁₄H₁₅NNa [M+ Na]⁺ : 220.1097; found 220.1089.

(14)

4-(naphthalen-2-yl)morpholine (3na). Yellow oil (41.6 mg, 65% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 30/1, v/v);¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.72 (m, 3H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.29 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.16 (d, *J* = 2.2 Hz, 1H), 3.95 (t, *J* = 1.1 Hz, 4H), 3.29 (t, *J* = 1.1 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 149.1, 134.6, 128.9, 128.7, 127.5, 126.9, 126.4, 123.6, 119.0, 110.2, 67.0, 49.9. HRMS (ESI) m/z calcd for C₁₄H₁₅NONa [M+Na]⁺ : 236.1046; found 236.1046.

(15)

4-methyl-N-(naphthalen-2-yl)benzamide (30a). Yellow solid (6.3 mg, 8% yield), m.p: 123-125 °C ; $R_f = 0.4$ (petroleum ether/ethyl acetate = 10/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 8.47 – 8.33 (m, 1H), 8.13 (s, 1H), 7.84- 7.81 (m, 4H), 7.69 – 7.60 (m, 1H), 7.52 – 7.43 (m, 2H), 7.42 – 7.25 (m, 2H), 2.45 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 142.5, 135.5, 133.9, 132.0, 130.7, 129.5, 128.8, 127.8, 127.6, 127.1, 126.6, 125.1, 120.2, 117.0, 21.6. HRMS (ESI) m/z calcd for C₁₈H₁₅NONa [M+Na]⁺:

naphthalen-2-amine (3pa). Yellow solid (9.2 mg, 32% yield), m.p: 110-112 °C ; R_f = 0.4 (petroleum ether/ethyl acetate = 10/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.6 Hz, 2H), 7.62 (s, 1H), 7.40 (s, 1H), 7.28 (s, 1H), 7.00 (d, *J* = 15.8 Hz, 2H), 3.89 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 144.1, 134.9, 129.2, 128.0, 127.7, 126.4, 125.8, 122.5, 118.3, 108.6. HRMS (ESI) m/z calcd for C₁₀H₁₀N [M+H]⁺ : 144.0808; found 144.0821.

(17)

N-benzyl-7-methoxynaphthalen-2-amine (3ab). Yellow solid (60.8 mg, 77% yield), m.p: 179.6-181.3 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 20/1, v/v);¹H NMR (500 MHz, CDCl₃) δ 7.60 (dd, J = 9.0, 4.3 Hz, 2H), 7.45 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 7.0 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 8.8, 2.4 Hz, 1H), 6.81 (d, J = 6.8 Hz, 2H), 4.47 (s, 2H), 3.91 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 145.9, 139.0, 136.4, 129.2, 128.8, 128.7, 127.7, 127.4, 123.1, 115.5, 114.6, 104.6, 55.2, 48.5. HRMS (ESI) m/z calcd for C₁₈H₁₈NO [M+H]⁺ : 264.1383; found 264.1389.

(18)

7-methoxy-N-(4-methylbenzyl)naphthalen-2-amine(3bb). Yellow oil (67.3 mg, 81% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.59 (m, 2H), 7.36 (dd, J = 8.1, 2.3 Hz, 2H), 7.24 (dd, J = 8.0, 2.3 Hz, 2H), 6.99 (t, J = 2.5 Hz, 2H), 6.86 – 6.77 (m, 2H), 4.43 (s, 2H), 3.93 (s, 3H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.3, 146.2, 137.1, 136.5, 136.0, 129.4, 129.2, 128.8, 127.7, 123.0, 115.5, 114.6, 104.6, 104.4, 55.2, 48.3, 21.2. HRMS (ESI) m/z calcd for C₁₉H₂₀NO [M+H]⁺ : 278.1539; found 278.1547.

methyl 6-(benzylamino)-2-naphthoate (3ac). Yellow oil (46.3 mg, 53% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1, v/v);¹H NMR (500 MHz, CDCl₃) δ 8.56 – 8.43 (m, 1H), 8.00 – 7.92 (m, 1H), 7.78 – 7.72 (m, 1H), 7.63 – 7.58 (m, 1H), 7.54 – 7.25 (m, 5H), 6.98 (ddd, J = 9.1, 7.3, 2.7 Hz, 1H), 6.85 (dt, J = 8.1, 2.4 Hz,1H), 4.54 – 4.46 (m, 2H), 4.02 – 3.94 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.7, 147.7, 138.5, 137.8, 131.1, 130.6, 128.8, 127.6, 127.6, 126.3, 126.0, 125.9, 123.3, 118.5, 104.1, 52.0, 48.1. HRMS (ESI) m/z calcd for C₁₉H₁₈NO₂ [M+H]⁺ : 292.1332; found 292.1339.

(20)

N-benzylnaphthalen-1-amine (3ad). Yellow solid (50.3 mg, 72% yield), m.p: 86.5-89.2 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.92 – 7.84 (m, 2H), 7.56 – 7.46 (m, 4H), 7.44 (dd, J = 11.0, 3.9 Hz, 2H), 7.40 – 7.35 (m, 2H), 7.30 (dd, J = 15.3, 4.9 Hz, 1H), 6.69 (d, J = 7.5 Hz, 1H), 4.55 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 143.2, 139.1, 134.3, 128.8, 128.8, 127.8, 127.5, 126.7, 125.8, 124.8, 123.4, 120.0, 117.7, 104.9, 48.7. HRMS (ESI) m/z calcd for C₁₇H₁₆N [M+H]⁺: 234.1227; found 234.1222.

(21)

N-phenethylnaphthalen-1-amine (3ed). Yellow oil (51.9mg, 70% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.46 (dt, J = 14.1, 7.7 Hz, 2H), 7.39 (q, J = 7.4 Hz, 3H), 7.35 – 7.31 (m, 2H), 7.28 (t, J = 6.5 Hz, 2H), 6.71 (d, J = 7.5 Hz, 1H), 4.44 (s, 1H), 3.60 (t, J = 7.0 Hz, 2H), 3.12 (t, J = 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 143.2, 139.3, 134.3, 128.9, 128.8, 128.7, 126.7, 126.6, 125.7, 124.7, 123.5, 119.8, 117.5, 104.5, 45.2, 35.4. HRMS (ESI) m/z calcd for C₁₈H₁₈N [M+H]⁺ : 248.1434; found 248.1425.

N-(4-methylphenethyl) naphthalen-1-amine (3fd). Yellow oil (58.7 mg, 75% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 40/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 7.9 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.51 – 7.37 (m, 3H), 7.29 (d, J = 5.3 Hz, 2H), 7.21 (dd, J = 17.6, 7.8 Hz, 4H), 6.72 (d, J = 7.4 Hz, 1H), 3.58 (t, J = 6.9 Hz, 2H), 3.08 (t, J = 6.9 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 143.1, 136.1, 134.3, 129.5, 128.7, 128.7, 126.7, 125.8, 124.8, 123.5, 119.9, 117.6, 104.7, 45.4, 34.9, 21.1. HRMS (ESI) m/z calcd for C₁₉H₂₀N [M+H]⁺ : 262.1590; found 262.1592.

(23)

N-benzylaniline (3ae). Yellow oil (33.0 mg, 60% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 10/1, v/v);¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.37 (m, 4H), 7.32 (t, J = 7.0 Hz, 1H), 7.23 (t, J = 7.8 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 6.69 (d, J = 8.2 Hz, 2H), 4.38 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 148.1, 139.4, 129.3, 128.7, 127.6, 127.7, 117.7, 112.9, 48.4. HRMS (ESI) m/z calcd for C₁₃H₁₄N [M+H]⁺: 184.1121; found 184.1133.

(24)

N-butylaniline (3ie). Yellow oil (13.7 mg, 46% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 10/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.21 (dd, J = 8.4, 7.4 Hz, 2H), 6.73 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 7.7 Hz, 2H), 3.17 – 3.13 (m, 2H), 1.68 – 1.61 (m, 2H), 1.51 – 1.43 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.5, 129.2, 117.1, 112.7, 43.7, 31.7, 20.4, 13.9. HRMS (ESI) m/z calcd for C₁₀H₁₆N [M+H]⁺:150.1277; found 150.1268.

(25)

N-benzylanthracen-2-amine (3af). Yellow oil (49.2 mg, 58% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 8/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 8.26 (s, 1H), 8.12 (s, 1H), 7.98 – 7.80 (m, 3H), 7.54 – 7.32 (m, 7H), 7.14 – 6.87 (m, 2H), 4.48 (s, 2H), 4.25 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 138.98, 133.6, 132.5, 129.6, 129.5, 128.8, 128.3, 127.8, 127.5, 127.5, 127.5, 126.2, 125.3, 123.7, 122.8, 120.2, 101.8, 48.4. HRMS (ESI) m/z calcd for C₂₁H₁₈N [M+H]⁺ : 284.1434; found 284.1430.

(26)

N-(4-methylbenzyl)-1H-indol-5-amine (3bg). Yellow oil (43.9mg, 62% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 10/1, v/v);¹H NMR (500 MHz, CDCl₃) δ 8.04 (s, 1H), 7.34 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 8.6 Hz, 1H), 7.18 (d, J = 7.8 Hz, 2H), 7.15 – 7.13 (m, 1H), 6.96 (d, J = 2.1 Hz, 1H), 6.71 (dd, J = 8.6, 2.2 Hz, 1H), 6.44 – 6.40 (m, 1H), 4.35 (s, 2H), 2.37 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 136.9, 136.3, 130.5, 129.3, 128.7, 128.0, 124.6, 112.5, 111.7, 103.2, 101.9, 50.0, 21.2. HRMS

(ESI) m/z calcd for $C_{16}H_{16}N_2Na [M+Na]^+$: 259.1206; found 259.1198.

(27)

N-(4-methylbenzyl)quinolin-6-amine (3bh). Yellow oil (48.4mg, 65% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 10/1, v/v);¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, J = 6.4 Hz, 1H), 8.34 – 7.67 (m, 2H), 7.42 – 7.17 (m, 6H), 6.77 (d, J = 8.6 Hz, 1H), 4.44 (s, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.4, 144.9, 135.4, 135.1, 130.4, 129.5, 129.1, 127.6, 126.3, 122.1, 121.5, 115.9, 103.1, 48.0, 21.1. HRMS (ESI) m/z calcd for C₁₇H₁₇N₂ [M+H]⁺: 249.1386; found 249.1390.

(28)

N²,**N**⁷-diphenethylnaphthalene-2,7-diamine (4ei). Yellow oil (79.1 mg, 72% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 8.7 Hz, 2H), 7.38 – 7.34 (m, 4H), 7.30 – 7.27 (m, 6H), 6.71 (s, 2H), 6.61 (d, *J* = 8.6 Hz, 2H), 3.52 (t, *J* = 7.0 Hz, 4H), 3.01 (t, *J* = 7.0 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 146.2, 139.4, 136.9, 128.9, 128.8, 128.6, 126.4, 121.7, 114.0, 103.5, 45.1, 35.4. HRMS (ESI) m/z calcd for C₂₆H₂₇N₂ [M+H]⁺ :367.2169; found 367.2167.

(29)

N²,N⁷-bis(4-methoxyphenethyl)naphthalene-2,7-diamine (4gi). Yellow oil (63.9 mg, 75% yield); R_f = 0.3 (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 8.7 Hz, 1H), 7.24 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.6 Hz, 2H), 6.78 (s, 1H), 6.66 (dd, J = 8.7, 1.9 Hz, 1H), 3.87 (s, 3H), 3.52 (t, J = 7.0 Hz, 2H), 2.98 (t, J = 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 158.3, 146.4, 137.1, 131.5, 129.9, 128.9, 121.7, 114.2, 114.1, 103.6, 55.4, 45.4, 34.5. HRMS (ESI) m/z calcd for C₂₈H₃₀N₂O₂Na [M+Na]⁺: 449.2200; found 449.2181.

(30)

N²,N⁷-bis(4-fluorophenethyl)naphthalene-2,7-diamine (4fi). Yellow oil (54.7 mg, 68% yield); R_f = 0.4 (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 8.5 Hz, 2H), 7.29 – 7.21 (m, 4H), 7.09 (dd, J = 10.7, 6.5 Hz, 4H), 6.78 (s, 2H), 6.67 (dd, J = 8.6, 1.9 Hz, 2H), 3.70 (s, 2H), 3.52 (t, J = 7.0 Hz, 4H), 2.99 (t, J = 7.0 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 161.7 (d, J = 244.2 Hz), 146.2, 137.1, 135.2 (d, J = 2.9 Hz), 130.3 (d, J = 8.0 Hz), 128.9, 121.8, 115.5 (d, J = 21.1 Hz), 114.2, 103.6, 45.2, 34.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.6. HRMS (ESI) m/z calcd for C₂₆H₂₅F₂N₂ [M+H]⁺:403.1980; found 403.1969.

(31)

N²,N⁶-bis(4-methylphenethyl)naphthalene-2,6-diamine (4hj). Brown oil (52.8 mg, 67% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 8.5 Hz, 2H), 7.31 – 7.21 (m, 8H), 6.78 (d, J = 1.8 Hz, 2H),

6.66 (dd, J = 8.3, 2.0 Hz, 2H), 3.55 (t, J = 6.7 Hz, 4H), 3.02 (t, J = 6.7 Hz, 4H), 2.44 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 146.3, 137.0, 136.4, 136.0, 129.4, 128.8, 121.7, 114.2, 103.6, 45.3, 34.9, 21.2. HRMS (ESI) m/z calcd for C₂₈H₃₀N₂Na [M+Na]⁺: 417.2301; found 417.2280.

(32)

N²,**N**⁶-dibenzylnaphthalene-2,6-diamine (4aj). Brown oil (45.3 mg, 67% yield); R_f = 0.3 (petroleum ether/ethyl acetate = 30/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 7.4 Hz, 4H), 7.37 (t, J = 7.5 Hz, 4H), 7.32 (d, J = 7.3 Hz, 2H), 6.76 – 6.67 (m, 2H), 4.43 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 145.6, 138.8, 136.6, 128.9, 128.7, 127.9, 127.4, 122.3, 114.4, 104.5, 48.8. HRMS (ESI) m/z calcd for C₂₄H₂₂N₂Na [M+Na]⁺: 361.1675; found 361.1664.

(33)

1,2,3,4-tetrahydroquinoxaline (4qk). Brown oil (9.7 mg, 36% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 10/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 6.61 (dd, J = 5.7, 3.4 Hz, 2H), 6.53 (dd, J = 5.7, 3.5 Hz, 2H), 3.45 (s, 4H), 3.08 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 133.7, 118.8, 114.8, 41.4. HRMS (ESI) m/z calcd for $C_8H_{11}N_2$ [M+H]⁺ : 135.0917; found 135.0911.

(34)

1,2,3,4-tetrahydrobenzo[g]quinoxaline (4ql). Brown oil (26.5 mg, 72% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 10/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (dd, J = 6.1, 3.3 Hz, 2H), 7.14 (dd, J = 6.2, 3.2 Hz, 2H), 6.81 (s, 2H), 3.51 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 135.1, 129.0, 125.1, 122.5, 107.9, 41.1. HRMS (ESI) m/z calcd for $C_{12}H_{13}N_2$ [M+H]⁺: 185.1073; found 185.1066.

2-methyl-1,2,3,4-tetrahydrobenzo[g]quinoxaline (4rl). Brown oil (26.1 mg, 66% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 10/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.43 (m, 2H), 7.17 – 7.12 (m, 2H), 6.80 (d, J = 1.7 Hz, 2H), 3.64 (ddd, J = 8.6, 6.3, 3.0 Hz, 1H), 3.40 (dd, J = 10.6, 3.1 Hz, 1H), 3.15 (dd, J = 10.6, 8.5 Hz, 1H), 1.26 (d, J = 6.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 135.1, 134.8, 129.0, 128.9, 125.2, 125.1, 122.5, 122.4, 107.6, 107.4, 47.9, 45.7, 19.9. HRMS (ESI) m/z calcd for C₁₃H₁₅N₂ [M+H]⁺: 199.1230; found 199.1222.

(36)

2,3-diphenyl-1,2,3,4-tetrahydrobenzo[g]quinoxaline (4sl). Brown oil (43.6 mg, 65% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 10/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (dd, J = 6.0, 3.3 Hz, 2H), 7.27 (dd, J = 5.7, 4.6 Hz, 6H), 7.21 (dd, J = 6.1, 3.2 Hz, 2H), 7.14 (dd, J = 7.2, 1.8 Hz, 4H), 6.94 (s, 2H), 4.39 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.8, 135.0, 128.9, 128.3, 128.1, 127.9, 125.3, 122.8, 107.6, 62.1. HRMS (ESI) m/z calcd for C₂₄H₂₁N₂ [M+H]⁺: 337.1699; found 337.1690.

(37)

Chloroquine (4tm). Yellow solid (53.6 mg, 56% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 8/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 8.47 (dd, J = 4.9, 2.7 Hz, 1H), 7.89 (d, J = 2.2 Hz, 1H), 7.68 (d, J = 9.0 Hz, 1H), 7.27 (d, J = 1.7 Hz, 1H), 6.38 (dd, J = 4.8, 2.5 Hz, 1H), 5.41 (s, 1H), 3.66 (s, 1H), 2.48 (dd, J = 6.9, 3.1 Hz, 4H), 2.43 – 2.36 (m, 2H), 1.73 – 1.65 (m, 1H), 1.59 (dd, J = 18.7, 3.4 Hz, 3H), 1.26 (dt, J = 5.8, 4.1 Hz, 3H), 1.00 – 0.94 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 152.0, 149.4, 149.1, 134.7, 128.7, 124.9, 121.4, 117.4, 99.3, 52.5, 48.3, 46.8, 34.5, 23.8, 20.1, 11.4. HRMS (ESI) m/z calcd for C₁₈H₂₇ClN₃ [M+H]⁺ : 320.1888; found 320.1881.

*N*¹,*N*¹-diethyl-*N*⁴-(quinolin-4-yl)pentane-1,4-diamine (4tm'). Yellow oil (10.3 mg, 12% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 8/1, v/v); ¹H NMR (500 MHz, CDCl₃) δ 8.52 (d, *J* = 5.4 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.63 (t, *J* = 8.2 Hz, 1H), 7.42 (t, *J* = 8.1 Hz, 1H), 6.43 (d, *J* = 5.5 Hz, 1H), 5.37 (s, 1H), 3.77 – 3.72 (m, 1H), 2.61 (q, *J* = 7.2 Hz, 4H), 2.53 (t, *J* = 6.0 Hz, 2H), 1.72 – 1.64 (m, 4H), 1.33 (d, *J* = 6.3 Hz, 3H), 1.06 (t, *J* = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 150.5, 149.3, 148.0, 129.4, 129.2, 124.6, 119.8, 118.8, 98.8, 52.5, 48.3, 46.8, 34.3, 23.4, 20.3, 10.9. HRMS (ESI) m/z calcd for C₁₈H₂₈N₃ [M+H]⁺ : 286.2278; found 286.2277.

7. NMR spectra of products

¹H NMR spectra of 3aa (500 MHz, CDCl₃)

¹³C NMR spectra of 3aa (126 MHz, CDCl₃)

¹H NMR spectra of 3ba (500 MHz, CDCl₃)

¹H NMR spectra of 3ca (500 MHz, CDCl₃)

¹H NMR spectra of 3da (500 MHz, CDCl₃)

¹³C NMR spectra of 3da (126 MHz, CDCl₃)

¹⁹F NMR spectra of 3da (471 MHz, CDCl₃)

¹H NMR spectra of 3ea (500 MHz, CDCl₃)

¹H NMR spectra of 3fa (500 MHz, CDCl₃)

¹⁹F NMR spectra of 3fa (471 MHz, CDCl₃)

1

¹³C NMR spectra of 3ga (126 MHz, CDCl₃)

¹⁹F NMR spectra of 3ga (471 MHz, CDCl₃)

¹H NMR spectra of 3ia (500 MHz, CDCl₃)

¹H NMR spectra of 3ja (500 MHz, CDCl₃)

¹H NMR spectra of 3ka (500 MHz, CDCl₃)

¹³C NMR spectra of 3la (126 MHz, CDCl₃)

¹H NMR spectra of 3la (500 MHz, CDCl₃)

¹H NMR spectra of 3na (500 MHz, CDCl₃)

¹H NMR spectra of 3oa (500 MHz, CDCl₃)

¹³C NMR spectra of 30a (126 MHz, CDCl₃)

¹H NMR spectra of 3pa (500 MHz, CDCl₃)

¹³C NMR spectra of 3pa (126 MHz, CDCl₃)

¹H NMR spectra of 3bb (500 MHz, CDCl₃)

¹³C NMR spectra of 3bb (126 MHz, CDCl₃)

¹H NMR spectra of 3ac (500 MHz, CDCl₃)

¹³C NMR spectra of 3ac (126 MHz, CDCl₃)

¹H NMR spectra of 3ad (500 MHz, CDCl₃)

¹³C NMR spectra of 3ad (126 MHz, CDCl₃)

¹H NMR spectra of 3ed (500 MHz, CDCl₃)

¹³C NMR spectra of 3ed (126 MHz, CDCl₃)

¹H NMR spectra of 3fd (500 MHz, CDCl₃)

¹³C NMR spectra of 3fd (126 MHz, CDCl₃)

¹H NMR spectra of 3ae (500 MHz, CDCl₃)

¹³C NMR spectra of 3ae (126 MHz, CDCl₃)

6

¹H NMR spectra of 3af (500 MHz, CDCl₃)

¹³C NMR spectra of 3bg (126 MHz, CDCl₃)

¹H NMR spectra of 3bh (500 MHz, CDCl₃)

¹H NMR spectra of 4ei (500 MHz, CDCl₃)

¹H NMR spectra of 4fi (500MHz, CDCl₃)

¹⁹F NMR spectra of 4fi (471 MHz, CDCl₃)

¹H NMR spectra of 4gi (500MHz, CDCl₃)

¹³C NMR spectra of 4gi (126 MHz, CDCl₃)

¹H NMR spectra of 4hj (500MHz, CDCl₃)

¹³C NMR spectra of 4hj (126 MHz, CDCl₃)

¹³C NMR spectra of 4aj (126 MHz, CDCl₃)

¹H NMR spectra of 4qk (500MHz, CDCl₃)

¹³C NMR spectra of 4qk (126 MHz, CDCl₃)

¹H NMR spectra of 4ql (500MHz, CDCl₃)

¹³C NMR spectra of 4ql (126 MHz, CDCl₃)

¹³C NMR spectra of 4rl (126 MHz, CDCl₃)

¹H NMR spectra of 4sl (500MHz, CDCl₃)

¹³C NMR spectra of 4sl (126 MHz, CDCl₃)

¹H NMR spectra of 4tm (500MHz, CDCl₃)

¹³C NMR spectra of 4tm (126 MHz, CDCl₃)

¹³C NMR spectra of 4tm' (126 MHz, CDCl₃)

