Direct Conversion of N-Alkylamines to N-Propargylamines Through C-H Activation Promoted by Lewis Acid/Organocopper Catalysis: Application to Late-Stage Functionalization of Bioactive Molecules
Jessica Z. Chan, ${ }^{\ddagger}$ Ahmet Yesilcimen, ${ }^{\ddagger}$ Min Cao, Yuyang Zhang, Bochao Zhang, and Masayuki Wasa ${ }^{1 *}$
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill,
Massachusetts 02467, United States
Table of Contents

1. Procedures, Materials and Instrumentation S-2
2. Experimental Section S-3
2.1 Substrate Preparation S-3
2.2 Optimization Studies S-18
2.3 General Procedures for α-C-H Alkynylation of N-Alkylamines Catalyzed by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and Organocopper Complex
2.4 Procedures for Large Scale Reactions S-32
3. Determination of Relative Configuration S-34
4. Determination of Absolute Configuration and Derivatization Experiments S-40
5. Mechanistic Studies for α-C-H Alkynylation of N-Alkylamines Catalyzed by S-48 $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and Organocopper Complex
5.1 Kinetic Experiments for the Coupling of 4-Methoxy-N,N,2,6- tetramethylaniline and Ethyl 3-(trimethylsilyl)propiolate5.2 Parallel and Intermolecular Competition Kinetic Isotope Effect ExperimentsS-58
5.3 NMR Experiments for Detection of Proposed Intermediates and the Resting State
5.4 Experiments Involving N-Benzyl-4-methoxy-2,6-dimethyl- N-(methyl- d_{3})aniline
6. Analytical Data S-87
7. References S-126
8. NMR Spectra S-128
9. X-Ray Crystallography Data S-206

1. Procedures, Materials and Instrumentation

General experimental procedures. All reactions were performed in standard, dry glassware fitted with rubber septa under an inert atmosphere of nitrogen unless otherwise described. Stainless steel syringes or cannula were used to transfer air- and moisture-sensitive liquids. Reported concentrations refer to solution volumes at room temperature. Evaporation and concentration in vacuo were performed using house vacuum (ca. 40 mm Hg). Column chromatography was performed with SiliaFlash ${ }^{\circledR} 60$ (40-63 micron) silica gel from Silicycle. Thin layer chromatography (TLC) was used for reaction monitoring and product detection using pre-coated glass plates covered with 0.25 mm silica gel with fluorescent indicator; visualization by UV light ($\lambda_{\mathrm{ex}}=254 \mathrm{~nm}$) or KMnO_{4} stain.

Materials. Reagents were purchased in reagent grade from commercial suppliers and used without further purification, unless otherwise described. Amines and trimethylsilyl propiolate compounds were prepared according to the procedures reported previously. ${ }^{1-4} \mathrm{H}_{2} \mathrm{O}$, in synthetic procedures, refers to distilled water. Tris(pentafluorophenyl)borane, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$, Xantphos, and 1,2-bis(diphenylphosphino)ethane were purchased from TCI and used without further purification. Chiral ligands L4-7, L10, and L14-19 were prepared according to the literature procedures. ${ }^{5-8}$

Instrumentation. Proton nuclear magnetic resonance ($\left.{ }^{1} \mathrm{H} N M R\right)$ spectra and proton-decoupled carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR) spectra were recorded at $25^{\circ} \mathrm{C}$ (unless stated otherwise) on Inova 600 (600 MHz), Varian Unity/Inova 500 (500 MHz) or Oxford AS400 $(400 \mathrm{MHz})$ spectrometers at the Boston College nuclear magnetic resonance facility. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to 0 ppm . Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent. The peak positions are quoted to one decimal place unless they are indistinguishable. The solvent peak was referenced to 77.0 ppm for ${ }^{13} \mathrm{C}$ for CDCl_{3}. Benzotrifluoride was used as an external standard for ${ }^{19} \mathrm{~F}$ NMR and referenced to $-63.0 \mathrm{ppm} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was used as an external standard for ${ }^{11} \mathrm{~B}$ NMR and referenced to 0 ppm . Data are represented as follows: chemical shift, integration, multiplicity $(\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=\operatorname{triplet}, \mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constants in Hertz (Hz).

Infrared spectra were recorded on a Bruker FT-IR Alpha (ATR mode) spectrophotometer. Data are represented as follows: frequency of absorption $\left(\mathrm{cm}^{-1}\right)$.

High-resolution mass spectrometry was performed on a JEOL AccuTOF-DART (positive mode) at the Mass Spectrometry Facility, Boston College. Chiral HPLC analyses were carried using Agilent 1200 series instruments and Shimadzu chromatograph with Daicel CHIRALPAK® columns or Daicel CHIRALCEL® columns (internal diameter 4.6 mm , column length 250 mm , particle size $5 \mu \mathrm{~m}$).

Abbreviations used. $\mathrm{Bn}=$ benzyl, COSY $=$ correlated spectroscopy, DART $=$ direct analysis in real time, $\mathrm{ESI}=$ electrospray ionization, $\mathrm{Et}_{3} \mathrm{~N}=$ trimethylamine, $\mathrm{EtOAc}=$ ethyl acetate, $\mathrm{Et}_{2} \mathrm{O}$ = ethyl ether, $\mathrm{HR}=$ high-resolution, $\mathrm{HSQC}=$ heteronuclear single quantum coherence, $\mathrm{LC}=$ liquid chromatography, MS = mass spectrometry, NOESY = nuclear Overhauser effect spectroscopy, OTf $=$ triflate, $\mathrm{PTLC}=$ preparatory thin-layer chromatography, $\mathrm{THF}=$ tetrahydrofuran, $\mathrm{TLC}=$ thin-layer chromatography, $\mathrm{TMS}=$ trimethylsilyl, $\mathrm{TBS}=$ tertbutyldimethylsilyl, TOF = time-of-flight.

2. Experimental Section

2.1 Substrate Preparation

2.1.1 Preparation of Amine Substrates

Table S1-1. List of Amine Substrates (Part 1)

 1b		 1d
 1h	 $1 i$	 1j

Amines $\mathbf{1 b} \mathbf{- 1 g}$ and $\mathbf{1 h} \mathbf{- 1 \mathbf { j }}$ were prepared according to literature procedures. ${ }^{1}$ The spectroscopic data for the amine substrates $(\mathbf{1} \mathbf{h} \mathbf{- 1} \mathbf{j})$ are provided in SI-Section 2.1.

Table S1-2. List of Amine Substrates (Part 2)

Amines $\mathbf{1 m} \mathbf{- 1 q}$ were prepared according to literature procedures. ${ }^{2}$ Amines $\mathbf{1 k}$ and $\mathbf{1 1}$ were obtained by reacting the commercially available amine hydrochloride salt with $\mathrm{NaOH}(1.0 \mathrm{M}$ aq.). The spectroscopic data for the amine substrates ($\mathbf{1 m} \mathbf{- 1 q}$) are provided in SI-Section 2.1.

Table S1-3. List of Amine Substrates (Part 3)

Amines listed above were prepared according to literature procedures. ${ }^{1}$ The spectroscopic data for the amine substrates ($\mathbf{1} \mathbf{s}-\mathbf{1 u}$) are provided in SI-Section 2.1.

General Procedure for Preparation of Tertiary or Secondary Amines

Amines S1, S6, $\mathbf{1 m - 1 q}$ and $\mathbf{1 t} \mathbf{- 1 \mathbf { u }}$ were prepared by alkylation of the corresponding primary or secondary amines. To a solution of primary or secondary amine (1.0 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ or $\mathrm{Et}_{3} \mathrm{~N}$ (2.0-4.0 equiv.) in MeCN was added alkyl halide ($\mathrm{R}^{3}-\mathrm{X} ; 0.9-2.0$ equiv.). The reaction mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for 12 h . Upon completion (determined by TLC), $\mathrm{H}_{2} \mathrm{O}$ was added and the organic material was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo. The desired amine products were obtained after purification by flash silica gel column chromatography.

General Procedure for TBS Protection of Alcohols

Substrates $\mathbf{1 h}$ and $\mathbf{S 3}$ were prepared by TBS protection of alcohols. To a solution of alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$ (1.3 equiv.) and TBSOTf (1.3 equiv.) were added in a dropwise manner. After the addition, the reaction mixture was allowed to warm to $22^{\circ} \mathrm{C}$ and stirred for 12 h . Upon completion (determined by TLC), $\mathrm{H}_{2} \mathrm{O}$ was added and the organic material was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo. The desired silyl ether products were obtained after purification by flash silica gel column chromatography.

General Procedure for \boldsymbol{N}-Methylation of Secondary Amines

Substrates $\mathbf{S 2}, \mathbf{1 i}$, and $\mathbf{1} \mathbf{j}$ were prepared by N-methylation of secondary amines. A solution of amine and formaldehyde ($37 \% \mathrm{aq}$. solution, 1.2 equiv.) was cooled to $0^{\circ} \mathrm{C}$. To the reaction mixture was added formic acid (1.2 equiv.) in a dropwise manner. The reaction mixture was
allowed to warm to $55^{\circ} \mathrm{C}$ and stirred for 2 h . Upon completion (determined by TLC), the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{NaOH}(1.0 \mathrm{M}$ aq. solution) was added until the aqueous layer was alkaline. The organic material was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The desired amine products were obtained after flash silica gel column chromatography.

Procedure for Preparation of N-Benzyl-1-((tert-butyldimethylsilyl)oxy)-N,2-dimethylpropan-2-amine (1h)

2-(Benzylamino)-2-methylpropan-1-ol (S1)

2-(Benzylamino)-2-methylpropan-1-ol was prepared following General Procedure for Preparation of Secondary Amines using 2-amino-2-methylpropan-1-ol (69 mmol). The amine product $\mathbf{S 1}$ was obtained after purification by flash silica gel column chromatography (EtOAc:hexanes = 1:1) as a colorless oil ($9.0 \mathrm{~g}, 73 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H})$, $3.35(\mathrm{~s}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6 \mathrm{H})$.

2-(Benzyl(methyl)amino)-2-methylpropan-1-ol (S2)

2-(Benzyl(methyl)amino)-2-methylpropan-1-ol was prepared following General Procedure for \boldsymbol{N}-Methylation of Secondary Amines using 2-(benzylamino)-2-methylpropan-1-ol (20 mmol). The amine product $\mathbf{S} \mathbf{2}$ was obtained after purification by flash silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{Et}_{3} \mathrm{~N}$:hexanes $=20: 1: 79$) as a colorless oil ($2.0 \mathrm{~g}, 50 \%$ yield $)$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H})$, 3.44 (s, 2H), 2.09 ($\mathrm{s}, 3 \mathrm{H}$), 1.13 ($\mathrm{s}, 6 \mathrm{H}$).

N-Benzyl-1-((tert-butyldimethylsilyl)oxy)-N,2-dimethylpropan-2-amine (1h)

N-Benzyl-1-((tert-butyldimethylsilyl)oxy)-N,2-dimethylpropan-2-amine was prepared following General Procedure for TBS Protection of Alcohols using 2-(benzyl(methyl)amino)-2-methylpropan-1-ol (10 mmol). The amine product $\mathbf{1 h}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 9\right)$ as a colorless oil ($3.0 \mathrm{~g}, 95 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}$, $2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$.

Procedure for Preparation of (R)- N -Benzyl-2-((tert-butyldimethylsilyl)oxy)- N -methyl-1-phenylethan-1-amine (1i)

(R)-2-((tert-Butyldimethylsilyl)oxy)-1-phenylethan-1-amine (S3)

(R)-2-((tert-Butyldimethylsilyl)oxy)-1-phenylethan-1-amine was prepared following General Procedure for TBS Protection of Alcohols using (R)-2-amino-2-phenylethan-1-ol (60 mmol). The amine product $\mathbf{S 3}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{3} \mathrm{~N}\right.$:hexanes $\left.=1: 19\right)$ as a colorless oil $(14.0 \mathrm{~g}, 93 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=8.4,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63$ (dd, $J=9.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (dd, $J=9.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 0.81 (s, 9H), -0.07 (d, J $=1.6 \mathrm{~Hz}, 6 \mathrm{H})$.

(R,E)-N-(2-((tert-Butyldimethylsilyl)oxy)-1-phenylethyl)-1-phenylmethanimine (S4)

To a solution of amine $\mathbf{S 1}$ ($33 \mathrm{mmol}, 1.1$ equiv.) and benzaldehyde ($30 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added MgSO_{4}. The reaction mixture was allowed to stir for 24 h at $22^{\circ} \mathrm{C}$. Upon completion (determined by TLC), the unpurified mixture was filtered over a pad of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was concentrated in vacuo, and the product obtained
was directly used without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-$ $3.68(\mathrm{~m}, 2 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H}),-0.10(\mathrm{~s}, 3 \mathrm{H}),-0.16(\mathrm{~s}, 3 \mathrm{H})$.

(R)-N-Benzyl-2-((tert-butyldimethylsilyl)oxy)-1-phenylethan-1-amine (S5)

To a solution of imine $\mathbf{S 4}$ ($30 \mathrm{mmol}, 1.0$ equiv.) in EtOH , was added NaBH_{4} ($36 \mathrm{mmol}, 1.2$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 10 h . Upon completion (monitored by TLC), the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The amine product $\mathbf{S 5}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{3} \mathrm{~N}:\right.$ hexanes $\left.=1: 50\right)$ as a colorless oil $(10 \mathrm{~g}, 98 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.27$ (m, 2H), 7.24 (ddd, $J=7.9,6.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 - $7.15(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{td}, J=6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 9 \mathrm{H}),-0.06-$ -0.12 (m, 6H).
(R)-N-Benzyl-2-((tert-butyldimethylsilyl)oxy)- N -methyl-1-phenylethan-1-amine (1i)
(R)- N-Benzyl-2-((tert-butyldimethylsilyl)oxy)- N-methyl-1-phenylethan-1-amine was prepared using General Procedure for \boldsymbol{N}-Methylation of Secondary Amines using (R)- N -benzyl-2-((tert-butyldimethylsilyl)oxy)-1-phenylethan-1-amine (21 mmol). The amine product $\mathbf{1 i}$ was obtained after purification by flash silica gel column chromatography (EtOAc: $\mathrm{Et}_{3} \mathrm{~N}$: hexanes 20:1:79) as a colorless oil ($6.8 \mathrm{~g}, 93 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.56(\mathrm{~m}, 2 \mathrm{H})$, $3.45(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;[\alpha]^{25}{ }_{D}=1.6^{\circ}(c$ $1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Procedure for Preparation of (R)- N-Benzyl-2-((tert-butyldimethylsilyl)oxy)- N-methyl-1-phenylethan-1-amine (1j)

(R)-N-Benzhydryl-2-((tert-butyldimethylsilyl)oxy)-1-phenylethan-1-amine (S6)
(R)-N-Benzhydryl-2-((tert-butyldimethylsilyl)oxy)-1-phenylethan-1-amine was prepared using General Procedure for Preparation of Secondary Amines using (R)-2-((tert-butyldimethylsilyl)oxy)-1-phenylethan-1-amine (46 mmol). The amine product $\mathbf{S 6}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{3} \mathrm{~N}:\right.$ hexanes $\left.=1: 19\right)$ as a colorless oil ($9.5 \mathrm{~g}, 49 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 7.19-7.10(\mathrm{~m}$, 2 H), 4.62 ($\mathrm{s}, 1 \mathrm{H}$), 3.68 (dd, $J=8.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=9.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}),-$ $0.05(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 6 \mathrm{H}) ;[\alpha]^{25}{ }_{D}=-6.8^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R)-N-Benzyl-2-((tert-butyldimethylsilyl)oxy)-N-methyl-1-phenylethan-1-amine (1j) (R)- N-Benzyl-2-((tert-butyldimethylsilyl)oxy)- N-methyl-1-phenylethan-1-amine was prepared using General Procedure for \boldsymbol{N}-Methylation of Secondary Amines using (R)-N-benzhydryl-2-((tert-butyldimethylsilyl)oxy)-1-phenylethan-1-amine (24 mmol). The amine product $\mathbf{1} \mathbf{j}$ was obtained after purification by flash silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{Et}_{3} \mathrm{~N}$: hexanes $20: 1: 79$) as a colorless oil ($10.1 \mathrm{~g}, 98 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{ddd}, J=11.6,8.2,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.25$ - 7.19 (m, 4H), 7.17 - 7.12 (m, 1H), 4.80 (s, 1H), 4.06 (dd, $J=9.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.89$ (m, 2H), 2.13 (s, 3H), 0.85 (s, 9H), -0.03 (d, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}$).

1m

(R)-N-Benzhydryl- N -methyl-3-phenyl-3-(o-tolyloxy)propan-1-amine (1m)

(R)- N-Benzhydryl- N-methyl-3-phenyl-3-(o-tolyloxy)propan-1-amine was prepared following General Procedure for Preparation of Tertiary Amines using (R) - N-methyl-3-phenyl-3-(o-
tolyloxy)propan-1-amine ($1.5 \mathrm{~g}, 5.9 \mathrm{mmol}$), (2-bromoethyl)benzene (1.2 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 equiv.). The amine product $\mathbf{1 m}$ was obtained after purification by flash silica gel column chromatography (EtOAc:hexanes $=1: 19)$ as a colorless oil $(2.0 \mathrm{~g}, 82 \%)$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 6 \mathrm{H}), 7.23(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=8.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 2.72-2.65$ (m, 1H), 2.48 (ddd, $J=12.6,8.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00$ (m, 4H).

N -Benzhydryl-3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)- N -methylpropan-1-amine (1n)
N-Benzhydryl-3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)- N -methylpropan-1amine was prepared following General Procedure for Preparation of Tertiary Amines using 3-(10,11-dihydro-5 H -dibenzo[a,d][7]annulen-5-ylidene)- N -methylpropan-1-amine (4.3 g, 16 mmol), (bromomethylene)dibenzene (1.2 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.). The amine product $\mathbf{1 n}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $=$ 1:19) as a colorless oil ($6.5 \mathrm{~g}, 91 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.23(\mathrm{~s}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ ($\mathrm{s}, 3 \mathrm{H}$).

(R)-N-Benzhydryl- N-methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine (10)
(R)- N-Benzhydryl- N-methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine was prepared following General Procedure for Preparation of Tertiary Amines using (R)- N -methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine (0.9 g, 2.9 mmol), (bromomethylene)dibenzene (1.2 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.). The amine product $\mathbf{1 0}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $\left.=1: 4\right)$ as a colorless oil ($1.2 \mathrm{~g}, 90 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.42$ $-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.09(\mathrm{~m}, 7 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}$, $1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 1 \mathrm{H})$, $2.32-2.16(m, 4 H)$.

N-Benzhydryl-4-(3,4-dichlorophenyl)- N-methyl-1,2,3,4-tetrahydronaphthalen-1-amine (1p)
N-Benzhydryl-4-(3,4-dichlorophenyl)- N-methyl-1,2,3,4-tetrahydronaphthalen-1-amine was prepared following General Procedure for Preparation of Tertiary Amines using 4-(3,4-dichlorophenyl)- N -methyl-1,2,3,4-tetrahydronaphthalen-1-amine $\quad\left(\begin{array}{llll}2.9 & \mathrm{~g}, & 6.0 \mathrm{mmol}) \text {, }\end{array}\right.$ (bromomethylene)dibenzene (1.2 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.). The amine product $\mathbf{1 p}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 4\right)$ as a colorless oil ($1.4 \mathrm{~g}, 49 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.1,6.3,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.38-$ 7.33 (m, 1H), 7.29 (ddt, $J=7.9,4.3,2.0 \mathrm{~Hz}, 3 \mathrm{H}$), $7.26-7.23$ (m, 2H), 7.16 (dtd, $J=17.5,7.2$, $1.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dt}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, S-11
$4.73(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{q}, J=5.0,4.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H})$.

1q

N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine (1q)

N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine
was prepared following General Procedure for Preparation of Tertiary Amines using N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine (2.8 g, 9.0 mmol), (bromomethylene)dibenzene (1.2 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.). The amine product $\mathbf{1 q}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 9\right)$ as a colorless oil ($3.0 \mathrm{~g}, 70 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{dtd}, J=7.3$, $5.7,4.7,1.6 \mathrm{~Hz}, 6 \mathrm{H}$), 7.23 (td, $J=7.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.19-7.14$ (m, 1H), $7.12-7.07$ (m, 3H), $6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.34-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J=13.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (dt, $J=12.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{dd}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}$, 1H); ${ }^{19}$ F NMR ($564 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.51$.

Procedure for Preparation of (E)- N, N-Dibenzyl-4,4,4-trifluorobut-2-en-1-amine (1s)

1s

(E)-N,N-Dibenzyl-4,4,4-trifluorobut-2-en-1-amine (1s)

(E)-N,N-Dibenzyl-4,4,4-trifluorobut-2-en-1-amine was prepared following the literature previously reported. ${ }^{2}$ To a solution of (E)-4,4,4-trifluorobut-2-en-1-yl 4methylbenzenesulfonate ($7.0 \mathrm{~g}, 25 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(13.8 \mathrm{~g}, 100 \mathrm{mmol})$ in $\mathrm{MeCN}(100 \mathrm{~mL})$ was added dibenzylamine ($7.4 \mathrm{~g}, 37.5 \mathrm{mmol}$). The reaction mixture was then allowed to stir at $80^{\circ} \mathrm{C}$ for 15 hours. Upon completion (determined by TLC), the reaction mixture was filtered and concentrated in vacuo. The amine product 1s was obtained after purification by flash silica gel column chromatography (EtOAc:hexanes $=1: 20)$ as a colorless oil (5.9 g, 77\%).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.30(\mathrm{~m}, 1 \mathrm{H})$, 5.85 (ddt, $J=15.8,6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59(\mathrm{~s}, 4 \mathrm{H}), 3.26-3.03(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathbf{F}$ NMR (470 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-63.97(\mathrm{~d}, J=6.1 \mathrm{~Hz})$.

(S)-1t

(S)-1-(4-Methoxy-2,6-dimethylphenyl)-3-methylpyrrolidine ((S)-1t)

(S)-1-(4-Methoxy-2,6-dimethylphenyl)-3-methylpyrrolidine was prepared following General Procedure for Preparation of Tertiary Amines using 4-methoxy-2,6-dimethylaniline (1.65 $\mathrm{g}, 10.9 \mathrm{mmol}$), (S)-1,4-dibromo-2-methylbutane (0.9 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.). The amine product (\boldsymbol{S})-1t was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right)$ as a colorless oil $(1.8 \mathrm{~g}, 82 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.17(\mathrm{~m}$, $2 \mathrm{H}), 2.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dt}, J=8.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.59(\mathrm{dd}, J=11.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;[\alpha]^{25}{ }_{D}=-19.5^{\circ}\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(S)-1u

(S)-1-(4-Methoxy-2,6-dimethylphenyl)-3-phenylpyrrolidine ((S)-1u)

(S)-1-(4-Methoxy-2,6-dimethylphenyl)-3-phenylpyrrolidine was prepared following General Procedure for Preparation of Tertiary Amines using 4-methoxy-2,6-dimethylaniline (382 $\mathrm{mg}, 2.5 \mathrm{mmol}$), (S)-(1,4 -dibromobutan-2-yl)benzene (0.9 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.). The amine product $(\boldsymbol{S}) \mathbf{- 1 u}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right)$ as a colorless oil $(549 \mathrm{mg}, 78 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, 3H), $3.63-3.45$ (m, 2H), 3.40 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (dd, $J=13.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.49-2.33$
$(\mathrm{m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.24-2.06(\mathrm{~m}, 1 \mathrm{H}) ;[\alpha]^{25}{ }_{D}=-20.5^{\circ}\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Procedure for Preparation of (R)-3-((R)-2-((R)-1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoyl)-4-phenyloxazolidin-2-one ((R,R,R)-1v)

(R)-3-((R)-2-((R)-1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoyl)-4-phenyloxazolidin-2-one ($(R, R, R)-1 v)$
$(R)-3-((R)-2-((R)-1-(4-M e t h o x y-2,6-d i m e t h y l p h e n y l) p y r r o l i d i n-2-y l) p r o p a n o y l)-4-$ phenyloxazolidin-2-one was prepared according to a literature procedure. ${ }^{1}$ To a 35 mL ovendried sealed tube was added $\mathrm{Mg}(\mathrm{OTf})_{2}$ (0.25 mmol), 2,6-bis((S)-4-(3-chlorophenyl)-4,5-dihydrooxazol-2-yl)pyridine $(0.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 30 min at $22^{\circ} \mathrm{C}$, then (R)-3-acryloyl-4-phenyloxazolidin-2-one $(\boldsymbol{R})-\mathbf{2 v}(1.3 \mathrm{~g}, 6.0 \mathrm{mmol}), 1-(4-m e t h o x y-2,6-d i m e t h y l p h e n y l) p y r r o l i d i n e ~ 1 b(1.02 \mathrm{~g}, 5.0 \mathrm{mmol})$, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.25 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ were added to the vessel. The reaction mixture was stirred at $22{ }^{\circ} \mathrm{C}$ for 48 h . Upon completion, the solvent was removed in vacuo. The diastereomeric ratio was determined to be 6.8:1:0:0 by ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified product mixture. Purification by silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 4\right)$ gave the product as a colorless solid as a mixture of diastereomers ($1.63 \mathrm{~g}, 78 \%$ yield). Further purification was carried out by silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 4\right)$ to obtain the major diastereomer $(\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R}) \mathbf{- 1 v}$ in 1.47 g as a colorless oil.

2.1.2. Preparation of Trimethylsilyl Propiolate Substrates

Table S2. List of Trimethylsilyl Propiolate Compounds
cesmes)

Alkynes $\mathbf{2 b - 2 d}$ and $\mathbf{2} \mathbf{j}$ were prepared according to a literature procedure. ${ }^{4}$ Alkyne compounds $\mathbf{2 e - 2 i}$ were obtained from commercial sources and used without further purification.

General Procedure for Preparation of 3-(Trimethylsilyl)propiolates

3-(Trimethylsily) propiolates $\mathbf{2 b} \mathbf{- 2 d}, \mathbf{2 j}$ were prepared according to a literature procedure. ${ }^{4}$ To a solution of ethynyltrimethylsilane (20 mmol) in THF $(20 \mathrm{~mL})$ was added ethylmagnesium bromide (3.0 M solution in THF) in a dropwise manner at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 30 min . The corresponding chloroformate (30 mmol) in THF (30 mL) was added dropwise and the reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 3 h . Upon completion (determined by TLC), $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and the organic material was extracted using $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo. The desired alkyne products were obtained after purification by flash silica gel column chromatography.

2b

Ethyl 3-(trimethylsilyl)propiolate (2b) was prepared according to General Procedure for Preparation of 3-(Trimethylsilyl)propiolates using ethyl chloroformate. The propiolate 2b was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=$ $1: 99)$ as a colorless oil $(2.7 \mathrm{~g}, 80 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{td}, J=7.1,0.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{~s}$, 9H).

2c

Methyl 3-(trimethylsilyl)propiolate (2c)

Methyl 3-(trimethylsilyl)propiolate was prepared according to General Procedure for Preparation of 3-(Trimethylsilyl)propiolates using methyl chloroformate. The propiolate 2c was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=$ $1: 99)$ as a colorless oil ($2.6 \mathrm{~g}, 83 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H})$.

2d

\mathbf{N}, \mathbf{N}-Dibenzyl-3-(trimethylsilyl)propiolamide (2d)

N,N-Dibenzyl-3-(trimethylsilyl)propiolamide was prepared according to General Procedure for Preparation of 3-(Trimethylsilyl)propiolates using N, N-dibenzylcarbamoyl chloride. The propiolate $\mathbf{2 d}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 99\right)$ as a colorless oil $(3.3 \mathrm{~g}, 51 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.19(\mathrm{~m}, 10 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 0.21(\mathrm{~s}, 9 \mathrm{H})$.

2j

Benzyl 3-(trimethylsilyl)propiolate (2j)

Benzyl 3-(trimethylsilyl)propiolate was prepared according to General Procedure for Preparation of 3-(Trimethylsilyl)propiolates using benzyl chloroformate. The propiolate $\mathbf{2 j}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $=$ $1: 99)$ as a colorless oil ($3.9 \mathrm{~g}, 84 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.81(\mathrm{~s}, 2 \mathrm{H}), 5.11$ (hept, $\left.J=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $12 \mathrm{H})$.

2.2 Optimization Studies for α-Alkynylation of \boldsymbol{N}-Alkylamines Catalyzed by $B\left(C_{6} F_{5}\right)_{3}$ and Organocopper Catalysts

Experimental Procedure for Evaluation of Reaction Conditions (see Table S3)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, Xantphos $(0.01 \mathrm{mmol})$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate 2b (0.2 mmol), alcohol (0.2 mmol), amine 1b $(0.1 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at 80 or $60^{\circ} \mathrm{C}$ for 24 or 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard.

Table S3. Evaluation of Alcohol Additive and Reaction Conditions

Conditions: N -arylpyrrolidine (1b, 0.1 mmol), 3-(trimethylsilyl)propiolate ($\mathbf{2 b}, 0.2 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10$ $\mathrm{mol} \%$), $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ (10 mol\%), Xantphos ($10 \mathrm{~mol} \%$), alcohol (0.2 or 0.1 mmol), $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (0.4 mL), under N_{2}. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard.

Experimental Procedure for Evaluation of Ligand for 1-(4-Methoxy-2,6dimethylphenyl)pyrrolidine 1b (see Table S4)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, ligand (0.01 or 0.02 mmol$)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate $\mathbf{2 b}$ (0.2 mmol), triphenylmethanol (0.1 mmol), amine $\mathbf{1 b}(0.1 \mathrm{mmol})$, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard.

Table S4. Evaluation of Ligand for the Reaction of 1-(4-Methoxy-2,6dimethylphenyl)pyrrolidine 1b and 2b

SI-L1
3b, 0\% yield ${ }^{a}$

SI-L4
3b, 90% yield

SI-L2
3b, 13% yield a

SI-L5
3b, 0\% yield

SI-L3
3b, 43% yield

SI-L6
3b, 0\% yield

Conditions: N -arylpyrrolidine (1b, 0.1 mmol$)$, 3 -(trimethylsilyl)propiolate ($\mathbf{2 b}, 0.2 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10 \mathrm{~mol} \%)$, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, ligand ($10 \mathrm{~mol} \%$), triphenylmethanol (0.1 mmol), $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$, under $\mathrm{N}_{2}, 60$ ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard. ${ }^{a} 20 \mathrm{~mol} \%$ ligand was used.

Experimental Procedure for Evaluation of Ligand for (R)-N-Benzhydryl-2-((tert-butyldimethylsilyl)oxy)- N -methyl-1-phenylethan-1-amine (1j) (see Table S5)
An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, ligand (0.01 or 0.02 mmol), and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate 2b (0.2 mmol), triphenylmethanol (0.1 mmol), amine $\mathbf{1 j}$ (0.1 mmol), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard.

Table S5. Evaluation of Ligand for the Reaction of (R)- N-Benzhydryl-2-((tert-butyldimethylsilyl)oxy)- N-methyl-1-phenylethan-1-amine (1j) and 2b

Conditions: N -arylpyrrolidine ($\mathbf{1 b}, 0.1 \mathrm{mmol}$), 3-(trimethylsilyl)propiolate ($\mathbf{2 b}, 0.2 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, ligand ($10 \mathrm{~mol} \%$), triphenylmethanol (0.2 mmol), $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$, under $\mathrm{N}_{2}, 80^{\circ} \mathrm{C}$, 24 h . Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures with mesitylene as the internal standard. ${ }^{2} 20 \mathrm{~mol} \%$ ligand was used.
Experimental Procedure for Evaluation of Copper Salt (see Table S6)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{CuX}(0.01 \mathrm{mmol}),(S)-\mathrm{Ph}-\mathrm{PyBOX}(0.01 \mathrm{mmol})$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22{ }^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate 2b (0.15 mmol$)$, triphenylmethanol (0.1 mmol), amine $\mathbf{1 b}$ (0.1 $\mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.
Table S6. Evaluation of Copper Salt

$\mathrm{Ph}_{3} \mathrm{COH}(1.0$ equiv.)
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}$

entry	CuX	Yield of $\mathbf{8 b}(\%)$	er of $\mathbf{8 b}$
1	CuBr	0	nd
2	CuCl	<3	$65: 35$
3	Cul	0	nd
4	$\mathrm{CuOTf} \cdot$ Benzene	13	$71: 29$
5	$\mathrm{Cu}(\mathrm{OTf})_{2}$	14	$76: 24$
6	CuOAc	15	$62: 38$
7	$\mathrm{Cu}(\mathrm{OAc})_{2}$	4	$62: 38$
8	$\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$	69	$81: 19$

Conditions: N -arylpyrrolidine ($\mathbf{1 b}, 0.1 \mathrm{mmol}$), 3 -(trimethylsilyl)propiolate ($\mathbf{2 b}, 0.15 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10$ mol\%), CuX (10 mol\%), (S)-PhPyBOX (10 mol\%), triphenylmethanol (0.1 mmol), $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (0.4 mL), under $\mathrm{N}_{2}, 60^{\circ} \mathrm{C}$, 12 h . Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Experimental Procedure for Optimization of Alcohol Additive for the Enantioselective

 Transformation (see Table S7)An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, (S) - $\mathrm{Ph}-\mathrm{PyBOX}(0.01 \mathrm{mmol})$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate $\mathbf{2 b}$ (0.15 mmol), triphenylmethanol (0.1 or 0.2 mmol), amine $\mathbf{1 b}$ (0.1 $\mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.
Table S7. Effect of Alcohol Additive for the Enantioselective Transformation

$\mathrm{Ph}_{3} \mathrm{COH}$ (X equiv.)
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}$

entry	$\mathrm{Ph}_{3} \mathrm{COH}$ (X equiv.)	Yield of 8b (\%)	er of 8b
1	1.0	69	$81: 19$
2	2.0	98	$77: 23$

Conditions: N-arylpyrrolidine (1b, 0.1 mmol), 3-(trimethylsilyl)propiolate (2b, 0.15 mmol$), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10$ $\mathrm{mol} \%$), $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ ($10 \mathrm{~mol} \%$), (S)-PhPyBOX ($10 \mathrm{~mol} \%$), triphenylmethanol (0.1 or 0.2 mmol), $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (0.4 mL), under $\mathrm{N}_{2}, 60^{\circ} \mathrm{C}$, 12 h . Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures with mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Experimental Procedure for Evaluation of Solvent (see Table S8)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol}),(S)-\mathrm{Ph}-\mathrm{PyBOX}(0.01 \mathrm{mmol})$, and solvent $(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate 2b (0.15 mmol$)$, triphenylmethanol (0.1 mmol), amine $\mathbf{1 b}$ (0.1 $\mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and solvent $(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Table S8. Evaluation of Solvent

Conditions: N -arylpyrrolidine (1b, 0.1 mmol), 3-(trimethylsilyl)propiolate ($\mathbf{2 b}, 0.15 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(10 \mathrm{~mol} \%),(\mathrm{S})-\mathrm{PhPyBOX}(10 \mathrm{~mol} \%)$, triphenylmethanol (0.1 mmol), solvent (0.4 mL), under $\mathrm{N}_{2}, 60{ }^{\circ} \mathrm{C}$, 12 h . Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures with mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Experimental Procedure for Evaluation of Alkyne Substrate for the Stereoselective

Transformation (see Table S9)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol}),(S)-\mathrm{Ph}-\mathrm{PyBOX}(0.01 \mathrm{mmol})$, and t-BuOMe $(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then 3(trimethylsilyl)propiolate 2 (0.15 mmol), triphenylmethanol (0.1 mmol), amine $\mathbf{1 b}(0.1 \mathrm{mmol})$, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $t-\mathrm{BuOMe}(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Table S9. Evaluation of Alkyne Substrates

Conditions: N -arylpyrrolidine (1b, 0.1 mmol), 3-(trimethylsilyl)propiolate (2, 0.15 mmol), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10$ $\mathrm{mol} \%$), $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ ($10 \mathrm{~mol} \%$), (S)- $\mathrm{PhPyBOX}(10 \mathrm{~mol} \%$), triphenylmethanol (0.1 mmol), t-BuOMe (0.4 mL), under $\mathrm{N}_{2}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}$. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures with mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Experimental Procedure for Evaluation of Chiral Ligands (see Table S10)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, ligand $(0.01 \mathrm{mmol})$, and t-BuOMe $(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22{ }^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate 2b (0.15 mmol$)$, triphenylmethanol (0.1 mmol), amine 1b (0.1 $\mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and t-BuOMe (0.2 mL) were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Table S10. Evaluation of Chiral Ligands

L8
8b, 15\% yield 41:59 er

L9
8b, 89\% yield 49:51 er

L11
8b, 81% yield
52:48 er

L12
8b, 53% yield
48:52 er

L10
8b, 29% yield 66:34 er

L13
8b, 6% yield
72:28 er

Conditions: N -arylpyrrolidine ($\mathbf{1 b}, 0.1 \mathrm{mmol}$), 3-(trimethylsilyl)propiolate ($\mathbf{2 b}, 0.15 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, Ligand ($10 \mathrm{~mol} \%$), triphenylmethanol (0.1 mmol), t-BuOMe (0.4 mL), under $\mathrm{N}_{2}, 60$ ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures with mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Experimental Procedure for Evaluation of PyBOX Ligands (see Table S11)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, ligand $(0.01 \mathrm{mmol})$, and t-BuOMe $(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22{ }^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate 2b (0.15 mmol), triphenylmethanol (0.1 mmol), amine 1b (0.1 $\mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and t-BuOMe (0.2 mL) were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Table S11. Evaluation of PyBOX Ligands

L14
8b, 30% yield 54:46 er

L17
8b, 31% yield
85:15 er

L15
8b, 32% yield 89:11 er

L18
8b, 70\% yield 78:22 er

8b, 30% yield 90:10 er

L19
8b, 73% yield
68:32 er

Conditions: N-arylpyrrolidine (1b, 0.1 mmol), 3-(trimethylsilyl)propiolate ($\mathbf{2 b}, 0.15 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, Ligand ($10 \mathrm{~mol} \%$), triphenylmethanol (0.1 mmol), t-BuOMe (0.4 mL), under $\mathrm{N}_{2}, 60$ ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$. Yield values were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures with mesitylene as the internal standard. Enantiomeric ratio (er) was determined by HPLC of the purified product.

Experimental Procedure for Evaluation of Ligands for Amine (\boldsymbol{S})-1t (see Table S12)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, ligand $(0.01 \mathrm{mmol})$, and t - $\mathrm{BuOMe}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22{ }^{\circ} \mathrm{C}$, then 3(trimethylsilyl)propiolate 2b (0.15 mmol), triphenylmethanol (0.1 mmol), amine (\boldsymbol{S})-1t (0.1 $\mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and t-BuOMe (0.2 mL) were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values and trans:cis ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard.

Table S12. Evaluation of Ligands for Amine (S)-1t

(S)-1t

2b, 1.5 equiv.

SI-L4
8g, 61\% yield
1.8:1 trans:cis

(R)-L3
$8 \mathrm{~g}, 53 \%$ yield
5.6:1 trans:cis

(S)-L3

8g, 34\% yield
5.8:1 trans:cis

L5
$\mathbf{8 g}, 64 \%$ yield
11.8:1 trans:cis

Conditions: N-arylpyrrolidine ((S)-1t, 0.1 mmol), 3-(trimethylsilyl)propiolate ($\mathbf{2 b}, 0.15 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ ($10 \mathrm{~mol} \%$), ligand ($10 \mathrm{~mol} \%$), triphenylmethanol (0.1 mmol), t-BuOMe (0.4 mL), under $\mathrm{N}_{2}, 60{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$. Yield values and trans:cis ratio were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified reaction mixtures with mesitylene as the internal standard.

Experimental Procedure for Evaluation of Ligands for the Reaction of Amine (\boldsymbol{S})-1u and

2b (see Table S13)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, ligand $(0.01 \mathrm{mmol})$, and t - $\mathrm{BuOMe}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22{ }^{\circ} \mathrm{C}$, then 3(trimethylsilyl)propiolate $2(0.15 \mathrm{mmol})$, triphenylmethanol (0.1 mmol), amine $(\boldsymbol{S}) \mathbf{- 1 u}(0.1$ $\mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $t-\mathrm{BuOMe}(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values and trans:cis ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard.

Table S13. Evaluation of Ligands for Amine (\boldsymbol{S})-1u

SI-L4
8h, 27\% yield
2.3:1 trans:cis

(R)-L3

8h, 31\% yield
3.5:1 trans:cis

(S)-L3

8h, 35\% yield
4.2:1 trans:cis

L5
8h, 68\% yield
10.1:1 trans:cis

Conditions: N-arylpyrrolidine ((S)-1u, 0.1 mmol$)$, 3-(trimethylsilyl)propiolate ($\mathbf{2 b}, 0.15 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ ($10 \mathrm{~mol} \%$), ligand ($10 \mathrm{~mol} \%$), triphenylmethanol (0.1 mmol), t-BuOMe (0.4 mL), under $\mathrm{N}_{2}, 60{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$. Yield values and trans:cis ratio were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified reaction mixtures with mesitylene as the internal standard.

Experimental Procedure for Evaluation of Ligands for the Reaction of Amine (R,R,R)-1v and 2b (see Table S14)
An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, ligand $(0.01 \mathrm{mmol})$, and t - $\mathrm{BuOMe}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22{ }^{\circ} \mathrm{C}$, then 3(trimethylsilyl)propiolate 2b (0.15 mmol), triphenylmethanol (0.1 mmol), amine ($\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R}) \mathbf{- 1 v}$ (0.1 mmol), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and t - $\mathrm{BuOMe}(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Yield values and trans:cis ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis of unpurified reaction mixtures using mesitylene as the internal standard.

Table S14. Evaluation of Ligands for $(\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R})-\mathbf{1 v}$

Conditions: N-arylpyrrolidine ($(R, R, R)-1 v, 0.1 \mathrm{mmol})$, 3-(trimethylsilyl)propiolate ($\mathbf{2}, 0.15 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ ($10 \mathrm{~mol} \%$), ligand ($10 \mathrm{~mol} \%$), triphenylmethanol (0.1 mmol), t-BuOMe (0.4 mL), under $\mathrm{N}_{2}, 60{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$. Yield values and trans:cis ratio were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified reaction mixtures with mesitylene as the internal standard.

2.3 General Procedures for α-C-H Alkynylation of N-Alkylamines by $\mathbf{B}\left(\mathrm{C}_{6} \mathbf{F}_{5}\right)_{3}$ and Organocopper Complex

General Procedure A for $\boldsymbol{\alpha}$-C-H Alkynylation of \boldsymbol{N}-Alkylamines Catalyzed by $\mathbf{B}\left(\mathrm{C}_{6} \mathbf{F}_{5}\right)_{3}$ and Organocopper Complex (See Table 1 and Figure 2 in the Manuscript)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN}))_{4} \mathrm{PF}_{6}(0.02 \mathrm{mmol})$, Xantphos $(0.02 \mathrm{mmol})$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate $\mathbf{2 b}$ (0.3 mmol), triphenylmethanol (0.2 mmol), amine $\mathbf{1}(0.2 \mathrm{mmol})$, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. The propargylamine product was purified and isolated by silica gel column chromatography.

General Procedure B for $\boldsymbol{\alpha}$-C-H Alkynylation of \boldsymbol{N}-Alkylamines Catalyzed by $\mathbf{B}\left(\mathrm{C}_{6} \mathbf{F}_{5}\right)_{3}$ and Organocopper Complex (See Figures 2-3 in the Manuscript)
$10 \mathrm{~mol} \% \quad \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.02 \mathrm{mmol})$, ligand (1,2-bis(diphenylphosphino)ethane or (S)PhPyBOX, 0.02 mmol$)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22{ }^{\circ} \mathrm{C}$, then (trimethylsilyl)propiolate $2(0.4 \mathrm{mmol})$, triphenylmethanol (0.4 mmol), amine $1(0.2 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.02,10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ $(0.4 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 24 h .

Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. The propargylamine product was purified and isolated by silica gel column chromatography.

General Procedure \mathbf{C} for Stereoselective α-C-H Alkynylation of N-Alkylamines Catalyzed by $\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and Organocopper Complex (See Figure 5 in the Manuscript)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.02 \mathrm{mmol}),(S)-(3,5$-dimethylphenyl)PyBOX L5 $(0.02 \mathrm{mmol})$, and t $\mathrm{BuOMe}(0.4 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then (trimethylsilyl)propiolate $\mathbf{2}(0.3 \mathrm{mmol})$, triphenylmethanol (0.2 mmol), amine $\mathbf{1}$ (0.2 mmol), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and solvent $(0.4 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic material was then concentrated in vacuo. The propargylamine product was purified isolated by silica gel column chromatography. The er values were determined by HPLC analysis of the isolated product.

2.4 Procedures for Large Scale Reactions

Procedure for Gram-Scale Synthesis of Alkynylated Fluoxetine Derivative 7b

$1 \mathrm{q}, 1.0 \mathrm{~g}$ (2.1 mmol)
2b, 4.2 mmol

7b, 93\% yield
1.12 g
fluoxetine derivative

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{PF}_{6}(78 \mathrm{mg}, 0.21 \mathrm{mmol})$, 1,2-bis(diphenylphosphino)ethane ($84 \mathrm{mg}, 0.21$ $\mathrm{mmol})$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 30 minutes at $22^{\circ} \mathrm{C}$, then (trimethylsilyl)propiolate $\mathbf{2 b}(715 \mathrm{mg}, 4.2 \mathrm{mmol})$, triphenylmethanol $(1.1 \mathrm{~g}, 4.2 \mathrm{mmol})$, amine $\mathbf{1 q}(1.0 \mathrm{~g}, 2.1 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(108 \mathrm{mg}, 0.21 \mathrm{mmol})$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ $(4.0 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 48 h . Upon completion, the unpurified reaction mixture was concentrated in vacuo. The amine product 7b was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right)$ as a colorless solid $(1.12 \mathrm{~g}, 93 \%)$.

Procedure for Enantioselective α-Alkynylation Reaction in 1.0 mmol Scale

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(19 \mathrm{mg}, 0.05 \mathrm{mmol}),(S)-(3,5-$ dimethylphenyl)PyBOX L5 (23 mg, 0.05 $\mathrm{mmol})$, and t-BuOMe (2.0 mL) under nitrogen atmosphere. The mixture was allowed to stir for 30 minutes at $22^{\circ} \mathrm{C}$, then (trimethylsilyl)propiolate $\mathbf{2 b}(255 \mathrm{mg}, 1.5 \mathrm{mmol})$, triphenylmethanol ($260 \mathrm{mg}, 1.0 \mathrm{mmol}$), amine 1b ($205 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(26 \mathrm{mg}, 0.05 \mathrm{mmol})$, and t -
$\mathrm{BuOMe}(2.0 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 72 h . Upon completion, the unpurified reaction mixture was concentrated in vacuo. The amine product $(\boldsymbol{S}) \mathbf{- 8 b}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right)$ as a colorless solid ($260 \mathrm{mg}, 85 \%$).

3. Determination of Relative Configuration

We carried out the following 2D NMR studies in order to determine relative configuration of enantioenriched products $\mathbf{8 c}, \mathbf{8 g}, \mathbf{8 h}, \mathbf{8 i}$-trans, and $\mathbf{8 i}$-cis.

The relative configuration of the major diastereomer of $\mathbf{8 c}$ was assigned to be trans.

The relative configuration of the major diastereomer of $\mathbf{8 g}$ was assigned as trans. The relative configuration of

8h was
assigned
in
analogy.

Propargylamine 8i-major was transformed to 15-major according to the literature procedure. ${ }^{9}$

Ethyl (Z)-3-((2R,5R)-1-(4-methoxy-2,6-dimethylphenyl)-5-((R)-1-oxo-1-((R)-2-oxo-4-phenyloxazolidin-3-yl)propan-2-yl)pyrrolidin-2-yl)acrylate (15-major)
To a solution of 8i-major ($26 \mathrm{mg}, 0.05 \mathrm{mmol}$) in pyridine (0.5 mL) was added $\mathrm{Pd} / \mathrm{CaCO}_{3}(2.6$ $\mathrm{mg}, 10 \% \mathrm{wt}$). The reaction mixture was evacuated and filled with hydrogen gas three times. The reaction mixture was allowed to stir under hydrogen atmosphere at $22^{\circ} \mathrm{C}$ for 3 h . Upon completion (determined by TLC), the reaction was filtered through a plug of Celite using EtOAc as the eluent. The amine product $\mathbf{1 5}$-major was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 4\right)$ as a colorless oil $(25.5 \mathrm{mg}, 98 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.57-6.50(\mathrm{~m}, 2 \mathrm{H})$, 5.97 (ddd, $J=11.6,8.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dt}, J=11.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{td}, J=8.9,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dt}, J=9.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{td}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.09 (qdd, $J=7.1,3.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{ddd}, J=8.4,2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, 3 H), $3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dt}, J=11.8,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{tdd}, J=12.2,9.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.22(\mathrm{td}, J=7.1,1.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.00(\mathrm{dd}, J=6.8,1.0 \mathrm{~Hz}, 3 \mathrm{H})$; IR (neat) 2957, 2926, 2855, 1778, 1713, 1480, 1411, $1182,1155,760,699 \mathrm{~cm}^{-1} ;[\alpha]^{25}{ }_{D}=-289.9^{\circ}\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The relative configuration of 15-major (derivative of 8i-major) was assigned as trans.

The relative configuration of the minor diastereomer of $\mathbf{8 i}$ was assigned as cis.

4. Determination of Absolute Configuration and Derivatization Experiments

(S)-8b 95:5 er

pyridine
$22^{\circ} \mathrm{C}, 3 \mathrm{~h}$

12a, 96\% yield

Ethyl (S,Z)-3-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)acrylate (12a)
Ethyl (S,Z)-3-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)acrylate (12a) was prepared according to the literature procedure. ${ }^{9}$

To a solution of $(\boldsymbol{S}) \mathbf{- 8 b}(30.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ in pyridine $(0.5 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{CaCO}_{3}(3.0$ $\mathrm{mg}, 10 \% \mathrm{wt})$. The reaction mixture was evacuated and filled with hydrogen gas three times. The reaction was allowed to stir under hydrogen atmosphere at $22^{\circ} \mathrm{C}$ for 3 h . Upon completion (determined by TLC), the reaction was filtered through a plug of Celite using EtOAc as the eluent. The amine product 12a was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right)$ as a colorless oil $(29 \mathrm{mg}, 96 \%)$.
${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.54(\mathrm{~s}, 2 \mathrm{H}), 6.19$ (ddd, $\left.J=11.7,8.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.56(\mathrm{dt}, J=$ $11.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{qdd}, J=7.0,5.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.41$ $-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 2.06-1.96(\mathrm{~m}$, $2 \mathrm{H}), 1.72(\mathrm{dt}, J=12.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 166.2,156.6,154.2,137.3,118.8,59.8,58.3,55.1,51.8,33.5,25.5,19.3,14.2$; IR (neat) 2952, 2835, 1715, 1601, 1482, 1317, 1266, 1189, 1154, 1067, 1030, $827 \mathrm{~cm}^{-1}$; HRMS (DART) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 304.1907; found: 304.1906; $[\alpha]^{25}{ }_{D}=-97.5^{\circ}\left(c 0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Determination of Absolute Configuration for 8b

We carried out the following studies in order to determine the absolute configuration of enantioenriched products $\mathbf{8 b}, \mathbf{8 d}$, and $\mathbf{8 e}$. The absolute configuration of $(\boldsymbol{S}) \mathbf{- 8 b}$ was determined by X-ray crystallographic analysis of 12c. The absolute configuration of $\mathbf{8 d}$ and $\mathbf{8 e}$ were assigned in analogy.

(S)-3-(1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)prop-2-yn-1-ol (12b)
(S)-3-(1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)prop-2-yn-1-ol (12b) was prepared according to the literature procedure. ${ }^{10} \mathrm{~A}$ solution of $\mathbf{8 b}(100 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0$ $\mathrm{mL})$ was cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H ($0.1 \mathrm{~mL}, 0.5 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to stir for 2 h at $-78^{\circ} \mathrm{C}$. Then, potassium sodium tartarate (saturated aqueous solution, 3.0 mL) was added and stirred. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The amine product $\mathbf{1 2 b}$ was obtained after purification by flash silica gel column chromatography ($\mathrm{Et}_{2} \mathrm{O}:$ hexanes $=1: 1$) as a colorless oil ($85.7 \mathrm{mg},>99 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{ddd}, J=6.7,4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H})$, 3.73 (s, 3H), $3.34(\mathrm{td}, J=7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.17(\mathrm{~m}, 7 \mathrm{H}), 2.17$ - 2.01 (m, 2H), 1.96 (dtd, $J=11.7,6.2,5.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,136.4,113.5,88.6,79.5,55.1,52.1,51.2,50.7,34.4,25.3,19.0$; IR (neat) 3379, 2939, 2834, 1600, 1482, 1273, 1153, 1066, 925, 835, $571 \mathrm{~cm}^{-1}$; HRMS (DART) m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$: 260.1645; found: 260.1645 .
(S)-3-(1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)prop-2-yn-1-yl bromophenyl)carbamate (12c)
(S)-3-(1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)prop-2-yn-1-yl bromophenyl)carbamate was prepared according to the literature procedure. ${ }^{10}$ To a solution of 12b ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}$), p-bromophenyl isocyanate ($113 \mathrm{mg}, 0.6 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(96 \mathrm{mg}, 1.0 \mathrm{mmol})$ were added. The reaction mixture was allowed to stir at $22^{\circ} \mathrm{C}$ for

12 h . Upon completion (determined by TLC), the reaction mixture was filtered through a short plug of Celite using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. The organic layer was concentrated in vacuo. The amine product 12c was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 1\right)$ as a colorless solid $(61.3 \mathrm{mg}, 71 \%)$.

Amine 12c was recrystallized using the vapor-vapor diffusion method, using $\mathrm{Et}_{2} \mathrm{O}$ to dissolve the product in an inner vial, and pentane as the precipitant placed in the outer vial in order for slow diffusion to occur into the inner vial. The solution was cooled to $0^{\circ} \mathrm{C}$, whereupon a crystal was obtained for X-ray crystallography. The X-ray crystallographic analysis revealed that the absolute configuration of $\mathbf{1 2 c}$ is (S), see SI Section 9 for X-ray crystallographic data. The absolute configuration of $\mathbf{8 b}$ is (S). The absolute configuration of $\mathbf{8 d}$ and $\mathbf{8 e}$ were assigned in analogy to $\mathbf{8 b}$.

Procedure for Preparation of Propargylamine $\mathbf{9 j}-\boldsymbol{O}$-TBS

(\boldsymbol{R})- N -Benzhydryl- N -(2-((tert-butyldimethylsilyl)oxy)-1-phenylethyl)-3-phenylprop-2-yn-1-amine ($\mathbf{9 j} \mathbf{j}-\mathrm{O}$-TBS)
An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\left.\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.04 \mathrm{mmol}),(S)-\mathrm{PhPyBOX}, 0.04 \mathrm{mmol}\right)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22{ }^{\circ} \mathrm{C}$, then (trimethylsilyl)propiolate $\mathbf{2 e}(0.8 \mathrm{mmol})$, triphenylmethanol (0.8 mmol), amine $\mathbf{1 j}(0.4 \mathrm{mmol})$, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 24 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. The propargylamine product was purified and isolated by silica gel column chromatography ($1: 9 \mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane) to afford $\mathbf{9 j} \mathbf{- O} \mathbf{- T B S}$ as a colorless oil ($170.2 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.58(\mathrm{~m}, 6 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 12 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H})$, $5.40(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=10.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=7.2$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6,142.4,140.5,131.5,128.9,128.6,128.5,128.38,128.35,128.07$, 128.06, 127.9, 127.7, 127.03, 126.95, 126.9, 123.7, 87.7, 84.4, 69.2, 63.4, 62.8, 37.0, 25.9, 18.2, -5.45, -5.47; IR (neat) 3057, 3025, 2924, 2852, 1597, 1488, 1451, 1251, 1095, 835, 813, $744,699 \mathrm{~cm}^{-1} ;$ HRMS (DART) m/z Calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{NOSi}\left(\mathrm{MH}^{+}\right)$: 532.3030; found: 532.3023; $[\alpha]^{25}{ }_{D}=-25.1^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Procedure for Deprotection of \boldsymbol{N}-Benzhydryl Group

9j-O-TBS

9, 80\% yield
(R)-2-Phenyl-2-((3-phenylprop-2-yn-1-yl)amino)ethan-1-ol (9)
(R)-2-Phenyl-2-((3-phenylprop-2-yn-1-yl)amino)ethan-1-ol was prepared according to the literature procedure. ${ }^{11}$ To a solution of $\mathbf{9 j} \mathbf{j} \boldsymbol{O}$ - TBS $(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ in TFA $(1.5 \mathrm{~mL})$ was added triethylsilane $(0.14 \mathrm{~mL}, 0.9 \mathrm{mmol})$. The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to $22^{\circ} \mathrm{C}$ and $\mathrm{KOH}(1.0 \mathrm{M}$, aq.) was added in a dropwise manner until the solution was alkaline. The reaction mixture was allowed to stir at $22{ }^{\circ} \mathrm{C}$ for $12 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added and the organic material was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The amine product 9 was obtained after purification by flash silica gel column chromatography $(E t O A c:$ hexanes $=8: 2)$ as a colorless solid ($36.2 \mathrm{mg}, 80 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H})$, $4.06(\mathrm{dd}, J=8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~d}, J$ $=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.70,131.63,128.66$, 128.21, 128.03, 127.81, 127.57, 123.09, 87.29, 83.71, 66.79, 63.22, 36.72; IR (neat) 3288, 3056, 2914, 2847, 1488, 1451, 1329, 1026, 754, 690, $526 \mathrm{~cm}^{-1}$; HRMS (DART) m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}\left(\mathrm{MH}^{+}\right): 252.1383$; found: $252.1379 ;[\alpha]^{25}{ }_{D}=199.1^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Procedure for Removal of Trimethylsilyl Group

N-Benzhydryl- N-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)prop-2-yn-1-amine

 (10)To a solution of $7 \mathbf{i}(228 \mathrm{mg}, 0.4 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added TBAF $(1.0 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 2 h at $22{ }^{\circ} \mathrm{C}$. Upon completion (determined by TLC), the reaction mixture was concentrated in vacuo. The amine product $\mathbf{1 0}$ was obtained after purification by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexane $=$ $1: 99$) as a colorless solid ($200 \mathrm{mg}, 99 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{dd}, J=8.4,3.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J$ $=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{q}, J=7.0,6.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.80$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{qd}, J=17.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.86$ - 2.65 (m, 2H), 2.17 (s, 1H), 2.16-1.94 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,143.9$, $142.6,142.5,141.4,130.0,129.4,128.7,128.6,128.52,128.48,128.44,128.38,128.28$, $128.25,128.00,127.96,127.93,127.92,127.83,127.80,127.7,127.4,127.24,127.15,127.1$, $126.96,126.92,126.68,126.65,126.63,126.60,126.3,125.8,125.6,125.5,125.4,123.6,122.6$ $(\mathfrak{q}, J=32.7 \mathrm{~Hz}), 121.8,115.7,78.2,77.8,73.5,72.2,56.8,46.4,39.1,36.8 ;{ }^{19}$ F NMR (470 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.34$; IR (neat) v 3298, 3060, 3025, 2924, 2831, 1700, 1612, 1515, 1491, 1326, 1250, 1110, 1066, 834, $700 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NOF}_{3}\left(\mathrm{MH}^{+}\right)$: 500.2196; found: 500.2183.

Procedure for Organocopper-Catalyzed Alkyne Azide Click Reaction

N-(2-(2-(2-(2-(4-((Benzhydryl)(3-phenyl-3-(4-
(trifluoromethyl)phenoxy)propyl)amino)methyl)-1H-1,2,3-triazol-1-
yl)ethoxy)ethoxy)ethoxy)ethyl)-5-((4R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4yl)pentanamide (11)
N-(2-(2-(2-(2-(4-((Benzhydryl(3-phenyl-3-(4-
(trifluoromethyl)phenoxy)propyl)amino)methyl)-1 $\mathrm{H}-1,2,3$-triazol-1-
yl)ethoxy)ethoxy)ethoxy)ethyl)-5-((4R)-2-oxohexahydro-1H-thieno[3,4- d]imidazol-4$\mathrm{yl})$ pentanamide was prepared according to the literature procedure. ${ }^{12}$

To a solution of alkyne $\mathbf{1 0}(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(55 \mathrm{mg}$, 0.4 mmol), $\mathrm{CuSO}_{4}(6.4 \mathrm{mg}, 0.04 \mathrm{mmol}$), Biotin-PEG3-azide ($98 \mathrm{mg}, 0.22 \mathrm{mmol}$), L-ascorbic acid ($14.1 \mathrm{mg}, 0.08 \mathrm{mmol}$), and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. The reaction mixture was then allowed to stir for 12 h . Upon completion (determined by TLC), the reaction mixture was concentrated in vacuo to remove the organic solvent. EtOAc ($3 \times 5 \mathrm{~mL}$) was used to extract the organic material. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The amine product 11 was obtained after purification by flash silica gel column chromatography ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 99$) as a colorless solid ($132 \mathrm{mg}, 70 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H})$, $7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{q}, J=7.2,6.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H})$, $6.57(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{dtt}, J=14.3,10.5$, $5.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.26$ (dd, $J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 3.51$ (t, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{td}, J=7.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=12.7$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{ddd}, J=12.9,7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.12(\mathrm{dtd}, J=14.5,7.6,7.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR
(151 MHz, CDCl_{3}) $\delta 173.2,164.0,160.5,144.8,142.2,141.6,141.30,128.6,128.5,128.4$, 128.34, 128.31, 128.26, 128.1, 127.6, 127.07, 127.00, 126.96, 126.62, 126.60, 126.57, 126.55, $125.7,125.5,125.3,123.5,122.4$ (q, $J=32.5 \mathrm{~Hz}$), 121.9, 115.6, 77.8, 77.2, 77.0, 76.9, 76.8, $70.6,70.5,70.4,70.3,70.0,69.9,69.8,69.5,65.8,61.7,60.1,55.6,50.0,46.1,44.9,40.4,39.1$, 36.1, 35.9, 35.9, 30.3, 29.6, 29.6, 28.2, 28.0, 25.5, 15.2; ${ }^{19}$ F NMR (564 MHz, CDCl_{3}) $\delta-61.44$; IR (neat) 3287, 2921, 2863, 1698, 1612, 1451, 1325, 1250, 1109, 1066, 835, 734, $701 \mathrm{~cm}^{-1}$; HRMS (DART) m / z Calcd for $\mathrm{C}_{50} \mathrm{H}_{61} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$: 944.4278; found: 944.4342.

5. Mechanistic Studies for α-C-H Alkynylation of \boldsymbol{N}-Alkylamines Catalyzed by $B\left(C_{6} F_{5}\right)_{3}$ and Organocopper Complex

5.1 Kinetic Experiments for the Coupling of 4-Methoxy-N,N,2,6-tetramethylaniline and Ethyl 3-(trimethylsilyl)propiolate

In order to provide evidence for the proposed reaction mechanism, we carried out the following kinetic experiments. We originally proposed (as shown in Figure 1c of the manuscript) that α-alkynylation process is proposed to proceed through $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-catalyzed hydride abstraction of the N-alkylamine substrate (1) to afford an iminium ion (I, Scheme S1). Subsequently, the organocopper catalyst can activate the alkyne substrate (2) with the aid of alcohol additive to promote transmetallation (II), which generates a nucleophilic alkyne that can attack the iminium ion (III) to afford the desired propargylamine 3.

Scheme S1. Proposed Catalytic Cycle

5.1.1 Determination of Reaction Order of $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3}$

A kinetic study was conducted following the procedure for time course reaction monitoring by ${ }^{1} \mathrm{H}$ NMR (using internal standard) while varying the concentration of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Figure S1). Initial-rate kinetic analysis, which was determined from the data points in the first 400 seconds, demonstrates half-order kinetics of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in the reaction between 4-methoxy$N, N, 2,6$-tetramethylaniline 1e and ethyl 3-(trimethylsilyl)propiolate 2b (Figure S2). ${ }^{13}$

Procedure for Time Course Reaction Monitoring by in situ ${ }^{\mathbf{1}} \mathrm{H}$ NMR

In a nitrogen-filled glove box, previously prepared (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}(41 \mathrm{mg}$, 0.11 mmol), ${ }^{14}$ 4-methoxy- $N, N, 2,6$-tetramethylaniline ($197 \mathrm{mg}, 1.1 \mathrm{mmol}$), ethyl 3 (trimethylsilyl)propiolate ($281 \mathrm{mg}, 1.65 \mathrm{mmol}$) and mesitylene ($132 \mathrm{mg}, 1.1 \mathrm{mmol}$) were weighed in an oven-dried 7.0 mL vial and diluted to 2.2 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}(\mathbf{S t o c k}$ Solution A). In another oven-dried 7.0 mL vial, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(63.8 \mathrm{mg}, 0.125 \mathrm{mmol})$ was weighed and diluted to 1.0 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Stock Solution B). In 4 oven-dried 7.0 mL vials, were added triphenylmethanol ($39 \mathrm{mg}, 0.15 \mathrm{mmol}$). To each oven-dried vial containing triphenylmethanol was added Stock Solution A (0.3 mL), Stock Solution B ($0.06,0.12,0.15$ and 0.18 mL) and neat $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.24,0.18,0.15$ and 0.12 mL$)$ to prepare reaction mixtures (total 0.6 mL) with 0.150 mmol of 4-methoxy- $N, N, 2,6$-tetramethylaniline, 0.225 mmol ethyl 3(trimethylsilyl)propiolate, 0.150 mmol triphenylmethanol, $10.0 \mathrm{~mol} \%$ (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}$, and the following amounts of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(5.00,10.0,12.5$ and 15.0 $\mathrm{mol} \%$). The reaction mixture was then transferred to a J-Young tube. After the J-Young tube was tightly capped with the Teflon plug, it was taken out of the glove box and ${ }^{1} \mathrm{H}$ NMR spectra were acquired at $60^{\circ} \mathrm{C}$ (preheated) using a pre-acquisition delay in array mode with a spectrum taken every 30 seconds for the length of the experiment. The data were processed using MestReNova and peak integrations were normalized using mesitylene as the internal standard.

Figure S1. Monitoring the formation of $\mathbf{3 e}$ using different concentrations of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

Figure S2. $\log ($ rate $)$ vs $\log \left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ plot is employed to determine the reaction order for $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. The result suggests that there is approximately 0.5 -order dependency on the concentration of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

5.1.2 Determination of Reaction Order of (Xantphos)Cu(MeCN)PF \mathbf{F}_{6}

A kinetic study was conducted following the procedure for time course reaction monitoring by ${ }^{1} \mathrm{H}$ NMR (using internal standard) while varying the concentration of (Xantphos) $\mathrm{Cu}\left(\mathrm{MeCN}\right.$) PF_{6} (Figure S3). Initial-rate kinetic analysis, which was determined from the data points in the first 400 seconds, demonstrates zero-order kinetics of (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}$ in the reaction between 4-methoxy- $N, N, 2,6$-tetramethylaniline $\mathbf{1 e}$ and ethyl 3-(trimethylsilyl)propiolate 2b (Figure S4). ${ }^{13}$

In a nitrogen-filled glove box, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(56.3 \mathrm{mg}, 0.11 \mathrm{mmol})$, 4-methoxy- $N, N, 2,6-$ tetramethylaniline ($197 \mathrm{mg}, 1.10 \mathrm{mmol}$), ethyl 3-(trimethylsilyl)propiolate ($281 \mathrm{mg}, 1.65$ mmol) and mesitylene ($132 \mathrm{mg}, 1.10 \mathrm{mmol}$) were weighed in an oven-dried 7.0 mL vial and diluted to 2.2 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Stock Solution A). In another oven-dried 7.0 mL vial, (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}(103.5 \mathrm{mg}, 0.125 \mathrm{mmol})^{14}$ was weighed and diluted to 2.00 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Stock Solution B). In 5 oven-dried 7.0 mL vials, were added triphenylmethanol (39 $\mathrm{mg}, 0.15 \mathrm{mmol}$). To each oven-dried vial containing triphenylmethanol was added Stock Solution A (0.30 mL), Stock Solution B ($0.06,0.12,0.24,0.30$ and 0.36 mL) and neat $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.30,0.24,0.12,0.06$ and 0.00 mL) to prepare reaction mixtures (total 0.62 mL) with 0.150 mmol of 4-methoxy- $N, N, 2,6$-tetramethylaniline, 0.225 mmol ethyl 3(trimethylsilyl)propiolate, 0.15 mmol triphenylmethanol, $10.0 \mathrm{~mol} \% \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, and the following amounts of (Xantphos) $\mathrm{Cu}\left(\mathrm{MeCN}^{2} \mathrm{PF}_{6}(2.5,5.0,10.0,12.5\right.$ and $15.0 \mathrm{~mol} \%$). The reaction mixture was then transferred to a J-Young tube. After the J -Young tube was tightly capped with the Teflon plug, it was taken out of the glove box and ${ }^{1} \mathrm{H}$ NMR spectra were acquired at $60^{\circ} \mathrm{C}$ (preheated) using a pre-acquisition delay in array mode with a spectrum taken every 30 seconds for the length of the experiment. The data were processed using MestReNova and peak integrations were normalized using mesitylene as the internal standard.

Figure S3. Monitoring the formation of $\mathbf{3 e}$ using different concentrations of (Xantphos) $\mathrm{Cu}(\mathrm{MeCN})\left(\mathrm{PF}_{6}\right)$.

Figure S4. $\log ($ rate $)$ vs $\log \left[(X a n t p h o s) C u(M e C N)\left(\mathrm{PF}_{6}\right)\right]$ plot is employed to determine the initial reaction order for (Xantphos) $\mathrm{Cu}(\mathrm{MeCN})\left(\mathrm{PF}_{6}\right)$. The result suggests that there is 0 -order dependency on the concentration of (Xantphos) $\mathrm{Cu}(\mathrm{MeCN})\left(\mathrm{PF}_{6}\right)$.

5.1.3 Determination of Reaction Order of Ethyl 3-(trimethylsilyl)propiolate 2b

A kinetic study was conducted following the procedure for time course reaction monitoring by ${ }^{1} \mathrm{H}$ NMR (using internal standard) while varying the concentration of ethyl 3(trimethylsilyl)propiolate 2b (Figure S5). Initial-rate kinetic analysis, which was determined from the data points in the first 400 seconds, demonstrates zero-order kinetics of ethyl 3-
(trimethylsilyl)propiolate in the reaction between 4-methoxy- $N, N, 2,6$-tetramethylaniline $\mathbf{1 e}$ and ethyl 3-(trimethylsilyl)propiolate 2b (Figure S6). ${ }^{13}$

Procedure for Time Course Reaction Monitoring by in situ ${ }^{1} \mathrm{H}$ NMR

In a nitrogen-filled glove box, (Xantphos)Cu(MeCN) $\mathrm{PF}_{6}(103.5 \mathrm{mg}, 0.11 \mathrm{mmol}),{ }^{14}$ $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($56.3 \mathrm{mg}, 0.11 \mathrm{mmol}$), 4-methoxy- $N, N, 2,6$-tetramethylaniline ($197 \mathrm{mg}, 1.10 \mathrm{mmol}$), and mesitylene ($132 \mathrm{mg}, 1.10 \mathrm{mmol}$) were weighed in an oven-dried 7.0 mL vial and diluted to 2.20 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Stock Solution A). In another oven-dried 7.0 mL vial, (ethyl 3(trimethylsilyl)propiolate ($623 \mathrm{mg}, 3.66 \mathrm{mmol}$) was weighed and diluted to 1.30 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Stock Solution B). In 5 oven-dried 7.0 mL vials, were added triphenylmethanol (39 $\mathrm{mg}, 0.15 \mathrm{mmol}$). To each oven-dried vial containing triphenylmethanol was added Stock Solution A $(0.30 \mathrm{~mL})$, Stock Solution B ($0.04,0.08,0.12,0.16$ and 0.24 mL) and neat $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.28,0.24,0.18,0.14$ and 0.08 mL) to prepare reaction mixtures (total 0.60 mL) with 0.15 mmol of 4-methoxy- $N, N, 2,6$-tetramethylaniline, 0.15 mmol triphenylmethanol, $10.0 \mathrm{~mol} \%$ $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, 10.0 \mathrm{~mol} \%$ (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}$ and the following amounts of ethyl 3(trimethylsilyl)propiolate $(0.75,1.50,2.25,3.00$ and 4.50 equiv.). The reaction mixture was then transferred to a J-Young tube. After the J-Young tube was tightly capped with the Teflon plug, it was taken out of the glove box and ${ }^{1} \mathrm{H}$ NMR spectra were acquired at $60^{\circ} \mathrm{C}$ (preheated) using a pre-acquisition delay in array mode with a spectrum taken every 30 seconds for the length of the experiment. The data were processed using MestReNova and peak integrations were normalized using mesitylene as the internal standard.

Figure S5. Monitoring the formation of $\mathbf{3 e}$ using different concentrations of $\mathbf{2 b}$.

Figure S6. $\log ($ rate $)$ vs $\log [\mathbf{2 b}]$ plot is employed to determine the initial reaction order for $\mathbf{2 b}$. The result suggests that there is 1.0 -order dependency on the concentration of $\mathbf{2 b}$.

5.1.4 Determination of Reaction Order of $\mathrm{Ph}_{3} \mathbf{C O H}$

A kinetic study was conducted following the procedure for time course reaction monitoring by ${ }^{1} \mathrm{H}$ NMR (using internal standard) while varying the concentration of trityl alcohol (Figure S7). Initial-rate kinetic analysis, which was determined from the data points in
the first 400 seconds, demonstrates zero-order kinetics of trityl alcohol in the reaction between 4-methoxy-N,N,2,6-tetramethylaniline 1e and ethyl 3-(trimethylsilyl)propiolate 2b (Figure S8). ${ }^{13}$

In a nitrogen-filled glove box, (Xantphos) $\mathrm{Cu}\left(\mathrm{MeCN}^{2}\right) \mathrm{PF}_{6}(91.2 \mathrm{mg}, 0.11 \mathrm{mmol}),{ }^{14}$ $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(56.3 \mathrm{mg}, 0.11 \mathrm{mmol}), 4-m e t h o x y-N, N, 2,6$-tetramethylaniline ($197 \mathrm{mg}, 1.1 \mathrm{mmol}$), ethyl 3-(trimethylsilyl)propiolate ($281 \mathrm{mg}, 1.65 \mathrm{mmol}$) and mesitylene ($132 \mathrm{mg}, 1.1 \mathrm{mmol}$) were weighed in an oven-dried 7.0 mL vial and diluted to 2.2 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Stock Solution A). In 5 oven-dried 7.0 mL vials, were added triphenylmethanol ($19.5 \mathrm{mg}, 39.0 \mathrm{mg}, 52.0 \mathrm{mg}$, 64.7 mg and 78.0 mg). To each oven-dried vial containing triphenylmethanol was added Stock Solution A $(0.3 \mathrm{~mL})$ and neat $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ to prepare reaction mixtures (total 0.6 mL) with 0.15 mmol of 4-methoxy- $N, N, 2,6$-tetramethylaniline, 0.22 mmol ethyl 3(trimethylsilyl)propiolate, $10.0 \mathrm{~mol} \% \quad \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, and the following amounts of (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}(10.0 \mathrm{~mol} \%)$ and triphenylmethanol ($0.5,1.0,1.3,1.7$ and 2.0 equiv.). The reaction mixture was then transferred to a J-Young tube. After the J-Young tube was tightly capped with the Teflon plug, it was taken out of the glove box and ${ }^{1} \mathrm{H}$ NMR spectra were acquired at $60^{\circ} \mathrm{C}$ (preheated) using a pre-acquisition delay in array mode with a spectrum taken every 30 seconds for the length of the experiment. The data were processed using MestReNova and peak integrations were normalized using mesitylene as the internal standard.

Figure S7. Monitoring the formation of $\mathbf{3 e}$ using different concentrations of $\mathrm{Ph}_{3} \mathrm{COH}$.

Figure S8. $\log ($ rate $)$ vs $\log \left[\mathrm{Ph}_{3} \mathrm{COH}\right]$ plot is employed to determine the initial reaction order for $\mathrm{Ph}_{3} \mathrm{COH}$. The result suggests that there is 0 -order dependency on the concentration of $\mathrm{Ph}_{3} \mathrm{COH}$.

5.1.5 Determination of Reaction Order in Ethyl 4-methoxy-N,N,2,6-tetramethylaniline 1e

A kinetic study was conducted following the procedure for time course reaction monitoring by ${ }^{1} \mathrm{H}$ NMR (using internal standard) while varying the concentration of 4-methoxy- $N, N, 2,6$-tetramethylaniline $\mathbf{1 e}$ (Figure S9). Initial-rate kinetic analysis, which was determined from the data points in the first 400 seconds, demonstrates zero-order kinetics of 4-methoxy- $N, N, 2,6$-tetramethylaniline $\mathbf{1 e}$ (Figure S10). ${ }^{13}$
 (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}(91.2 \mathrm{mg}, 0.11 \mathrm{mmol}){ }^{14}$ ethyl 3-(trimethylsilyl)propiolate (281.0 $\mathrm{mg}, 1.65 \mathrm{mmol}$) and mesitylene ($132 \mathrm{mg}, 1.10 \mathrm{mmol}$) were weighed in an oven-dried 7.0 mL vial and diluted to 2.20 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Stock Solution A). In another oven-dried 7.0 mL vial, 4-methoxy- $N, N, 2,6$-tetramethylaniline ($436.9 \mathrm{mg}, 2.44 \mathrm{mmol}$) was weighed and diluted to 1.30 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Stock Solution B). In 5 oven-dried 7.0 mL vials, were added triphenylmethanol ($39 \mathrm{mg}, 0.15 \mathrm{mmol}$). To each oven-dried vial containing triphenylmethanol was added Stock Solution A (0.3 mL), Stock Solution B ($0.04,0.06,0.08,0.16$ and 0.24 mL) and neat $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.28,0.26,0.24,0.16$ and 0.08 mL) to prepare reaction mixtures (total 0.62 mL) with 0.225 mmol ethyl 3-(trimethylsilyl)propiolate, 0.15 mmol triphenylmethanol, 10.0 $\mathrm{mol} \% \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, 10.0 \mathrm{~mol} \%$ (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}$ and the following amounts of 4-methoxy- $N, N, 2,6$-tetramethylaniline ($0.50,0.75,1.00,2.00$ and 3.00 equiv). The reaction mixture was then transferred to a J-Young tube. After the J-Young tube was tightly capped with the Teflon plug, it was taken out of the glove box and ${ }^{1} \mathrm{H}$ NMR spectra were acquired at $60^{\circ} \mathrm{C}$ (preheated) using a pre-acquisition delay in array mode with a spectrum taken every 30 seconds for the length of the experiment. The data were processed using MestReNova and peak integrations were normalized using mesitylene as the internal standard.

Figure S9. Monitoring the formation of $\mathbf{3 e}$ using different concentrations of amine $\mathbf{1 e}$.

Figure S10. $\log ($ rate $)$ vs $\log [\mathbf{1 e}]$ plot is employed to determine the initial reaction order for amine $\mathbf{1 e}$. The result suggests that there is 0 -order dependency on the concentration of $\mathbf{1 e}$.

5.2 Parallel and Intermolecular Competition Kinetic Isotope Effect Experiments

5.2.1 Measurements of the Parallel Kinetic Isotope Effect

A parallel kinetic isotope effect study was conducted following the procedure for time course reaction monitoring by ${ }^{1} \mathrm{H}$ NMR (using internal standard). Kinetic analysis based on the initial rates of the product formation (Figure S11) demonstrates no kinetic isotope effect ($k_{\mathrm{H}} / k_{\mathrm{D}}$ $=1.02 \pm 0.02$, average of 2 reactions) in the reaction between N-benzyl-4-methoxy- $N, 2,6$ trimethylaniline $\mathbf{1 g}$ or N-benzyl-4-methoxy-2,6-dimethyl- N-(methyl- d_{3}) aniline $\mathbf{1 g}$ - \boldsymbol{d} and ethyl 3-(trimethylsilyl)propiolate 2b. ${ }^{13,15}$

Figure S11. Parallel kinetic isotope effect experiments. The rate of the reaction is unaffected when amine $\mathbf{1 g}$ or $\mathbf{1 g - d}$ are employed as both have similar reaction time course plots. From the set of two parallel KIE experiments, the KIE value of 1.02 ± 0.02 was found.

Experimental Procedure for Measuring the Parallel Kinetic Isotope Effect

To an oven-dried 7.0 mL vial were added (Xantphos) $\mathrm{Cu}\left(\mathrm{MeCN}^{2}\right) \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, ethyl 3-(trimethylsilyl)propiolate $\mathbf{2 b}$ (0.15 mmol), triphenylmethanol (0.10 mmol), amine $\mathbf{1 g}$ $(0.10 \mathrm{mmol})$ or amine $\mathbf{1 g}-\boldsymbol{d}(0.10 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, mesitylene (0.10 $\mathrm{mmol})$. This mixture was then diluted to 0.40 mL with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and transferred into a J-Young tube. After the J-Young tube was tightly capped with the Teflon plug, it was taken out of the glove box and ${ }^{1} \mathrm{H}$ NMR spectra were acquired at $60^{\circ} \mathrm{C}$ (preheated) using a pre-acquisition delay in array mode with a spectrum taken every 30 seconds for the length of the experiment. The data were processed using MestReNova and peak integrations were normalized using mesitylene as the internal standard.

5.2.2 Intermolecular Competition Kinetic Isotope Effect Experiment

An intermolecular competition kinetic isotope effect study was conducted between N -benzyl-4-methoxy- $N, 2,6$-trimethylaniline $\mathbf{1 g}$ and N-benzyl-4-methoxy-2,6-dimethyl- N -(methyl- d_{3})aniline $\mathbf{1 g}-\boldsymbol{d}$. Upon analysis of the unpurified reaction mixture by ${ }^{1} \mathrm{H}$ NMR spectroscopy, 27% conversion to both $\mathbf{3 g}$ and $\mathbf{3 g}$ - \boldsymbol{d} was detected where 22% conversion of $\mathbf{3 g}$ was detected. This ratio was further verified by studying the ${ }^{2} \mathrm{H}$ NMR spectrum; it revealed that approximately 5% of $\mathbf{3 g}-\boldsymbol{d}$ is formed.

Figure S12. Intermolecular Competition Kinetic Isotope Effect Experiment. The result suggests hydride abstraction step is irreversible.

Experimental Procedure for Measuring the Intermolecular Competition Kinetic

Isotope Effect

An oven-dried 7.0 mL vial equipped with a magnetic stir bar was used. To the vial were added (Xantphos) $\mathrm{Cu}\left(\mathrm{MeCN}^{2}\right) \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, ethyl 3-(trimethylsilyl)propiolate 2b (0.15 $\mathrm{mmol})$, triphenylmethanol (0.10 mmol), amine $\mathbf{1 g}(0.05 \mathrm{mmol})$, amine $\mathbf{1 g - d}(0.05 \mathrm{mmol})$, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, mesitylene (0.10 mmol), benzene- $d_{6}(0.05 \mathrm{mmol})$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.40 \mathrm{~mL})$. The reaction mixture was then transferred to a J-Young tube and was allowed to heat at $60^{\circ} \mathrm{C}$ for 2 h . After 2 h , the reaction mixture was allowed to cool and NMR spectroscopy was obtained. The conversion values were determined by ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$ NMR (Figure S13) analysis of the unpurified reaction mixture using mesitylene and benzene- d_{6} as internal standards.

Figure S13: ${ }^{2} \mathrm{H}$ NMR spectrum for intermolecular competition kinetic isotope effect study.

5.3 NMR Experiments for Detection of Proposed Intermediates and the Resting State

5.3.1 Demonstration of Chemical Competency of the Proposed Intermediate VII

Based on the kinetic studies as described above, we propose that borate anion \mathbf{V} (Scheme S2) reacts with trimethylsilylacetylene $\mathbf{2}$ to afford $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B} \text {-alkyne }\right]^{-}[\mathrm{X}]^{+}(\mathbf{V I I})$. To demonstrate the competency of VII as an intermediate to afford the propargylamine product $\mathbf{3}$, we prepared a sample of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}\right]^{-}\left[\mathrm{H}-\mathrm{NR}_{3}\right]^{+}\left(\mathrm{NR}_{3}=\mathbf{1 e}\right)$ following a procedure reported previously in the literature. ${ }^{16}$

Scheme S2. Proposed Mechanism

Experimental Procedure for the Preparation of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}\right]^{-}[\mathrm{H}-1 \mathrm{e}]^{+}$

An oven-dried 7.0 mL vial equipped with a magnetic stir bar was used. To the vial were added ethyl propiolate (0.10 mmol), amine $\mathbf{1 e}(0.15 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.10 \mathrm{mmol}, 100$ $\mathrm{mol} \%$), mesitylene (0.10 mmol), trifluorotoluene (0.10 mmol) and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.60 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was then transferred to a J-Young tube and NMR spectroscopy was obtained. Analysis of the ${ }^{1} \mathrm{H}$ NMR spectra of unpurified mixture with mesitylene as the internal standard revealed that ethyl propiloate was fully consumed (Figure $\mathrm{S} 14)$ and $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}\right]^{-}[\mathrm{H}-1 \mathrm{e}]^{+}(\mathbf{V I I})$ was formed (Figure S15) which was indicated by a characteristic sharp singlet at -21.5 ppm on ${ }^{11} \mathrm{~B}$ NMR (Figure S16). ${ }^{16}$

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of ethyl propiolate.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of unpurified reaction mixture of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}\right]^{-}[\mathrm{H}-$ $1 \mathrm{e}]^{+}$.

Figure S16. ${ }^{11} \mathrm{~B}$ NMR spectrum of unpurified reaction mixture of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}\right]^{-}$ $[\mathrm{H}-1 \mathrm{e}]^{+}$.

To this unpurified reaction mixture was added (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}(0.10 \mathrm{mmol})$. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 1 h . Then, the reaction mixture was cooled down to $22^{\circ} \mathrm{C}$ and a ${ }^{1} \mathrm{H}$ NMR spectrum was obtained (Figure 17). Analysis of the ${ }^{1} \mathrm{H}$ spectrum of unpurified mixtures with mesitylene as the internal standard revealed that $\mathbf{3 e}$ was formed in 24% under this reaction conditions, thereby demonstrating competency of the proposed intermediate VII in the alkyne incorporation process.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of unpurified reaction mixture of VII and $100 \mathrm{~mol} \%$ of (Xantphos) $\mathrm{Cu}(\mathrm{MeCN}) \mathrm{PF}_{6}$.

5.3.2 NMR Experiments for Detection of Byproducts

The reaction between 4-methoxy- $N, N, 2,6$-tetramethylaniline $\mathbf{1 e}$ and ethyl 3(trimethylsilyl)propiolate 2b was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure S18-S20). This study revealed that $\mathrm{Ph}_{3} \mathrm{C}-\mathrm{H} 5$ and $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{O}-\mathrm{SiMe}_{3} 14$ are the stable byproducts of this α alkynylation reaction (Scheme S2 and S3).

Scheme S3. Formation of Stable Byproducts 5 and 14

Experimental Procedure for the α-Alkynylation of 4-Methoxy- $N, N, 2,6$ tetramethylaniline and Ethyl 3-(trimethylsilyl)propiolate

An oven-dried 7.0 mL vial equipped with a magnetic stir bar was used. To the vial were added $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(0.010 \mathrm{mmol})$, Xantphos (0.01 mmol), and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate 2b (0.15 mmol), triphenylmethanol (0.1 mmol), amine $\mathbf{1 e}(0.10$ $\mathrm{mmol})$, mesitylene (0.10 mmol), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.20 \mathrm{~mL})$ were added to the vial. The reaction mixture was then transferred to a J -Young tube and was allowed to heat at $60^{\circ} \mathrm{C}$ for 1 h . After 1 h , the reaction mixture was allowed to cool and NMR spectroscopy was obtained. Upon analysis of the ${ }^{1} \mathrm{H}$ NMR of the unpurified reaction mixture, triphenylmethane 5 and 1,1,1,3,3,3-hexamethyldisiloxane 14 was detected (Figure S18).

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of unpurified reaction mixture of $\mathbf{1 e}$ and $\mathbf{2 b}$ under α alkynylation condition.

To this unpurified reaction mixture was added $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{O}-\mathrm{SiMe}_{3} \mathbf{1 4}$ obtained from a commercial source (Figure S19).

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of the unpurified reaction mixture of $\mathbf{1 e}$ and $\mathbf{2 b}$ under α alkynylation conditions, where $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{O}-\mathrm{SiMe}_{3} \mathbf{1 4}$ was added to the cooled reaction mixture after 1 h .

In order to determine the fate of the hydride abstracted from the amine substrates by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, we carried out the transformation between 4-methoxy-2,6-dimethyl- N, N-bis(methyld_{3}) aniline $\mathbf{1 e}-\boldsymbol{d}$ and ethyl 3-(trimethylsilyl)propiolate $\mathbf{2 b}$ in the presence of $\mathrm{Ph}_{3} \mathrm{C}-\mathrm{OH}$ (Figure 20). Upon analysis of the ${ }^{1} \mathrm{H}$ NMR of the unpurified product mixture, it was found that deuteride is trapped by in situ generated $\mathrm{Ph}_{3} \mathrm{C}^{+}$to produce (methanetriyl-d)tribenzene 5-d (Figure S20). The yield of $\mathbf{3 e - d}, \mathbf{5 - \boldsymbol { d }}$ and $\mathbf{1 4}$ were determined based on the amount of mesitylene added as an internal standard.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of unpurified reaction mixture of $\mathbf{1 e} \mathbf{-} \boldsymbol{d}$ and $\mathbf{2 b}$ under α alkynylation conditions.

5.3.3 NMR Experiments for the Detection of the Resting State Complex Containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$

We embarked on a study to identify the structure of a resting state complex which contains $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. Previously, the groups of Pinkas and Resconi have independently reported that a borate anion $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}(\mu-\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$can be formed through the reaction of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{Ph}_{3} \mathrm{COH},{ }^{17}$ and by reacting $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathrm{H}_{2} \mathrm{O}$ and an amine. ${ }^{18}$ Since the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} /$ organocopper co-catalyzed transformation of $\mathrm{C}-\mathrm{H}$ bonds was found to have a 0.5 order dependency with respect to the concentration of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, we surmised that $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}(\mu-\right.$ $\left.\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$containing two molecules of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ could be its resting state.

We first acquired a ${ }^{1} \mathrm{H}$ NMR spectrum of a sample containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{Ph}_{3} \mathrm{COH}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Figure S21) and compared that to the spectra reported by Pinkas. ${ }^{17}$ Based on this analysis, we concluded that $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}(\mu-\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}\left[\mathrm{CPh}_{3}\right]^{+}$is generated.

Figure S21. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{Ph}_{3} \mathrm{COH}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Next, we obtained the ${ }^{11} \mathrm{~B}$ and/or ${ }^{19} \mathrm{~F}$ NMR spectra of:
Figures S22-S23: the sample containing $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}(\mu-\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}\left[\mathrm{CPh}_{3}\right]^{+}$prepared as described above, and compared those to the spectra we obtained for:

Figures S24-25: $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ only
Figures S26-27: a mixture of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3},[\mathrm{Cu}(\mathrm{Xantphos})(\mathrm{MeCN})]\left[\mathrm{PF}_{6}\right]$, 4-methoxy- $N, N, 2,6-$ tetramethylaniline 1e, 3-(triemthylsilyl)propiolate $\mathbf{2 b}, \mathrm{Ph}_{3} \mathrm{COH}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $22^{\circ} \mathrm{C}$, and

Figure S28: a mixture of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, $[\mathrm{Cu}(\mathrm{Xantphos})(\mathrm{MeCN})]\left[\mathrm{PF}_{6}\right]$, 4-methoxy- $N, N, 2,6-$ tetramethylaniline 1e, 3-(triemthylsilyl)propiolate $\mathbf{2 b}, \mathrm{Ph}_{3} \mathrm{COH}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $60^{\circ} \mathrm{C}$.

The analyses of Figures S26-S28 revealed that there is no free $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ remaining in the reaction mixture (characteristic peak at 58.7 ppm corresponding to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in Figure 24 is not observed in Figure S26).

The comparison of ${ }^{19} \mathrm{~F}$ NMR spectra for the authentic sample of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}(\mu-\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$
$\left[\mathrm{CPh}_{3}\right]^{+}$(Figure 23) with those acquired for the actual reaction mixture (Figures S27 and S28) revealed that there are consistent peaks at $-135.94,-160.88$ and -165.53 ppm .

Furthermore, the comparison of ${ }^{11} \mathrm{~B}$ NMR spectrum we acquired for the sample of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}(\mu-\right.$ $\left.\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}\left[\mathrm{CPh}_{3}\right]^{+}$(Figure S22) with the one for the reaction mixture (Figure 26) also showed that there are common peaks at 0.8 and -3.7 ppm .

These results serve as evidences to support the formation of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}(\mu-\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$anion under the reaction conditions for $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} /[\mathrm{Cu}($ Xantphos $)(\mathrm{MeCN})]\left[\mathrm{PF}_{6}\right]$ co-catalyzed $\mathrm{C}-\mathrm{H}$ functionalization.

Figure S22. ${ }^{11} \mathrm{~B}$ NMR spectrum of a sample containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{Ph}_{3} \mathrm{COH}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S23. ${ }^{19} \mathrm{~F}$ NMR spectrum of a sample containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{Ph}_{3} \mathrm{COH}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S24. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S25. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
${ }^{11} \mathrm{~B} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$
Figure S26. ${ }^{11} \mathrm{~B}$ NMR spectrum of α-alkynylation reaction between $\mathbf{1 e}$ and $\mathbf{2 b}$ with $50 \mathrm{~mol} \%$ $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ at $22^{\circ} \mathrm{C}$.

Figure S27. ${ }^{19} \mathrm{~F}$ NMR spectrum of α-alkynylation reaction of amine $\mathbf{1 e}$ with $50 \mathrm{~mol} \% \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ at $22^{\circ} \mathrm{C}$.

Figure S28. ${ }^{19} \mathrm{~F}$ NMR spectrum of α-alkynylation reaction between $\mathbf{1 e}$ and $\mathbf{2 b}$ using $50 \mathrm{~mol} \%$ $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ at $22{ }^{\circ} \mathrm{C}$.

As reported by the group of Resconi, the reaction of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ may result in the formation of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}(\mu-\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}\left[\mathrm{H}-\mathrm{NR}_{3}\right]^{+} .{ }^{18}$ To probe if this can occur under our reaction conditions, we acquired the following spectra:

Figures S29: ${ }^{11} \mathrm{~B}$ spectrum for a mixture of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{1 e}$, and
Figures S26: ${ }^{11} \mathrm{~B}$ NMR spectra for a mixture of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3},[\mathrm{Cu}($ Xantphos $)(\mathrm{MeCN})]\left[\mathrm{PF}_{6}\right]$, 4-methoxy- $N, N, 2,6$-tetramethylaniline $\mathbf{1 e}$, 3-(triemthylsilyl)propiolate $\mathbf{2 b}, \mathrm{Ph}_{3} \mathrm{COH}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $22{ }^{\circ} \mathrm{C}$.

Resconi et al. ${ }^{18}$ reported that ${ }^{11} \mathrm{~B}$ NMR spectrum for $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}(\mu-\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$contains a characteristic singlet peak at -1 ppm (298 K). The ${ }^{11} \mathrm{~B}$ NMR spectra we acquired (Figures S26 and S29) both possess a singlet at -3.7 ppm , therefore suggesting that the formation of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}(\mu-\mathrm{OH}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$anion is possible.

Figure S29. ${ }^{11} \mathrm{~B}$ NMR spectrum of a sample containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathrm{H}_{2} \mathrm{O}$ and amine 1 e in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

As reported by the group of Basset, ${ }^{19}$ a tertiary amine and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ could form an ionic complex containing an iminium ion and $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}-\mathrm{H}\right]^{-}$. In the ${ }^{11} \mathrm{~B}$ NMR spectrum, $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{~B}-\mathrm{H}\right]^{-}$has been reported to have a characteristic peak at $-23.6 \mathrm{ppm} .{ }^{19}$ To probe if the related ion pairs are formed in our system, we prepared the following sample and obtained their ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectra:

Figures S30-32: a reaction mixture containing $0.1 \mathrm{mmol} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and 0.1 mmol of 4-methoxy$N, N, 2,6$-tetramethylaniline $\mathbf{1 e}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S33: 4-methoxy- $N, N, 2,6$-tetramethylaniline 1e in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ only.
The comparison of the ${ }^{1} \mathrm{H}$ NMR spectra (Figure S30 versus Figure 33) suggests that, even in the presence of a stoichiometric quantity of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, amine $\mathbf{1 e}$ is recovered in full and that the formation of corresponding iminium ion cannot be detected.

The analysis of the ${ }^{11} \mathrm{~B}$ NMR spectrum (Figure S31) and its comparison to S24 (standard spectrum for $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ only) indicates that there is free $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (characteristic peaks at 59.5 ppm was observed in both Figures S24 and S31). In addition, generation of a small quantity of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot 1 \mathbf{e}$ adduct was observed (characteristic peak at -1.2 ppm was found in S 31).

In agreement with the observations mentioned above, the ${ }^{19} \mathrm{~F}$ NMR spectrum (Figure S32) contains peaks corresponding to both free $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and the adduct $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \bullet \mathbf{1} \mathbf{e}$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR of spectrum of a sample containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and amine $\mathbf{1 e}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S31. ${ }^{11} \mathrm{~B}$ NMR spectrum of a sample containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and amine $\mathbf{1 e}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S32. ${ }^{19} \mathrm{~F}$ NMR spectrum of a sample containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and amine $\mathbf{1 e}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of amine $\mathbf{1 e}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Next, we attempted to detect a Lewis acid/Lewis base adduct that may form between the carbonyl unit of alkynylsilane $\mathbf{2 b}$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} .{ }^{20}$ The ${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were obtained for:

Figures S34-S35: the sample containing 0.1 mmol of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and 0.1 mmol of $\mathbf{2 b}$.
It was found through studying the ${ }^{11} \mathrm{~B}$ NMR spectrum of the sample (Figure S34) that $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ forms the adduct with $\mathbf{2 b}$ (a characteristic peak was observed at -2.1 ppm), and that $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ is consumed.

Furthermore, we detected peaks at $-134.14,-157.49$ and -164.44 ppm in the ${ }^{19} \mathrm{~F}$ NMR spectrum (Figure S35) that may correspond to the adduct formed while $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was fully consumed.

In order to determine if the adduct may also be generated in under the standard reaction conditions for catalytic $\mathrm{C}-\mathrm{H}$ functionalization, ${ }^{19} \mathrm{~F}$ NMR spectrum (Figure S35) was compared to those obtained for the unpurified reaction mixtures (Figures S27-S28). In Figures S27-S28, there were peaks at $-134.64,-157.68$ and -164.48 ppm (vs those at $-134.14,-157.49$ and -164.44 ppm found in S35), thereby suggesting that the adduct may be present in the unpurified reaction mixture.

Figure S34. ${ }^{11} \mathrm{~B}$ NMR spectrum of a sample containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and alkyne $\mathbf{2 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S35. ${ }^{19} \mathrm{~F}$ NMR spectrum of a sample containing $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and alkyne $\mathbf{2 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

5.4. Experiments Involving N-Benzyl-4-methoxy-2,6-dimethyl- N-(methyl- \boldsymbol{d}_{3})aniline

Experimental Procedure for the Isotope Exchange of N-Benzyl-4-methoxy-2,6-dimethyl-

 N-(methyl- d_{3})anilineAn oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added amine $\mathbf{1 g - d}(0.1 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60{ }^{\circ} \mathrm{C}$ for 16 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. The unpurified mixture was purified by silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right)$, to afford 13g-d as a colorless oil ($>95 \%$ yield). Deuterium or proton incorporation values were determined based on analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the purified product.

Intermolecular Isotope Exchange Experiment Between N-Benzyl-4-methoxy-2,6-dimethyl- N-(methyl- d_{3}) aniline and 4-Methoxy- $N, N, \mathbf{2}, 6$-tetramethylaniline

Experimental Procedure for the Isotope Exchange Between of \boldsymbol{N}-Benzyl-4-methoxy-2,6-dimethyl- N-(methyl- d_{3}) aniline and 4-Methoxy- $N, N, \mathbf{2}, 6$-tetramethylaniline

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added amine $1 \mathbf{e}(0.1 \mathrm{mmol})$, amine $1 \mathrm{~g}-\boldsymbol{d}(0.1 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 16 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. Deuterium incorporation values were determined based on analysis of the ${ }^{1} \mathrm{H}$ NMR and HRMS spectra of the purified product.

$13 e-d$

MeO
1e

Experiments Involving N-Benzyl-4-methoxy-2,6-dimethyl- N-(methyl- d_{3}) aniline

We investigated if the H / D exchange reaction may take place under the standard conditions for $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and organocopper co-catalyzed α-amino $\mathrm{C}-\mathrm{H}$ alkynylation reaction with 0.10 mmol of N-benzyl-4-methoxy-2,6-dimethyl- N-(methyl- $d 3$)aniline $\mathbf{1 g - d}, 0.15 \mathrm{mmol}$ of 3-(trimethylsilyl)propiolate $\mathbf{2 b}$ and 0.10 mmol of $\mathrm{Ph}_{3} \mathrm{COH}$.

The ${ }^{1} \mathrm{H}$ NMR and HRMS spectrum of the isolated and purified product $\mathbf{3 g}$ - \boldsymbol{d} showed that there was 19% deuterium incorporation at the benzylic position of $\mathbf{3 g}-\boldsymbol{d}$.

Experimental Procedure for the α-Alkynylation of N-Benzyl-4-methoxy-2,6-dimethyl- N -(methyl- \boldsymbol{d}_{3})aniline

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $\mathrm{Cu}(\mathrm{MeCN}))_{4} \mathrm{PF}_{6}(0.01 \mathrm{mmol})$, Xantphos $(0.01 \mathrm{mmol})$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at $22^{\circ} \mathrm{C}$, then ethyl 3(trimethylsilyl)propiolate $\mathbf{2 b}$ (0.15 mmol), triphenylmethanol (0.1 mmol), amine $\mathbf{1 g}$ - \boldsymbol{d} (0.1 $\mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ were added to the vessel. The reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 16 h . Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic material was then concentrated in vacuo. The propargylamine product was purified and isolated by silica gel column chromatography ($\mathrm{Et}_{2} \mathrm{O}$:hexanes $=1: 9$), $\mathbf{3 g}-\boldsymbol{d}$ was obtained as a colorless liquid ($12.7 \mathrm{mg}, 36 \%$). Deuterium incorporation values were determined based on analysis of the ${ }^{1} \mathrm{H}$ NMR and HRMS spectra of the purified product.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}$, 2 H), 4.22 (qd, $J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{dd}, J=7.8,6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

3g

6. Analytical Data

3b

Ethyl 3-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propiolate (3b)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine 1b was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure A. After purification by column chromatography ($\mathrm{Et}_{2} \mathrm{O}$:hexanes $=1: 19$), $\mathbf{3 b}$ was obtained as a colorless liquid ($54 \mathrm{mg}, 90 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.58(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{ddd}, J=7.8,3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{qd}, J=$ 7.2, 1.3 Hz, 2H), 3.75 (s, 3H), $3.43-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.22(\mathrm{~m}$, $6 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{td}, J=7.2,1.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,153.3,136.6,113.2,91.5,73.9,63.3,55.9,52.3,51.0,35.8,26.7,18.4$, 15.1; IR (neat) v 2967, 2837, 2224, 1707, 1599, 1476, 1366, 1244, 1153, 1067, cm^{-1}; HRMS (DART) Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 302.1751 ; found: 302.1755 .

Ethyl 3-(1-(4-methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidin-2-yl)propiolate (3c) 1-(4-Methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidine 1c was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure A. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3 c}$ was obtained as a colorless liquid ($51 \mathrm{mg}, 77 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=9.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2 H), 3.75 (s, 3H), 3.07 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (s, 5H), 2.19 (dd, $J=$ $12.5,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{dd}, J=12.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15$ (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,153.8,135.4,113.7,91.0,74.3$, 64.5, 61.6, 55.2, 51.9, 47.0, 39.1, 27.8, 27.2, 14.0; IR (neat) v 2954, 2864, 2228, 1707, 1601, 1465, 1243, 1094, 1023, $751 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 330.2063; found: 330.2069 .

3d
Ethyl 3-(1-(4-methoxy-2,6-dimethylphenyl)azepan-2-yl)propiolate (3d)
1-(4-Methoxy-2,6-dimethylphenyl)azepane 1d was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure A. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $\left.=1: 19\right)$, $\mathbf{3 d}$ was obtained as a colorless liquid ($51 \mathrm{mg}, 77 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (s, 3H), 3.32 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (s, 3H), 2.29 (s, 3H), $2.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}$, 2 H), 1.57 ($\mathrm{s}, 2 \mathrm{H}$), $1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,153.8,140.9,139.7$, $137.9,114.1,113.6,90.3,75.6,59.4,55.6,53.0,51.3,34.8,31.4,28.9,25.2,20.1,19.6,14.0$; IR (neat) v 2926, 2845, 2221, 1707, 1598, 1474, 1309, 1240, 1065, $853 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 330.2063; found: 330.2061.

$3 e$
Ethyl 4-((4-methoxy-2,6-dimethylphenyl)(methyl)amino)but-2-ynoate (3e)
4-Methoxy- $N, N, 2,6$-tetramethylaniline $\mathbf{1 e}$ was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure A. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3 e}$ was obtained as a colorless liquid ($50 \mathrm{mg}, 90 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.54(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{t}, J=7.1,1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $156.3,153.6,140.9,138.7,112.8,86.1,75.6,61.8,55.2,44.8,40.1,19.4,13.9$; IR (neat) v 2933, 2228, 1707, 1598, 1480, 1309, 1244, 1155, 1060, $855 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 276.1594; found: 276.1609.

$3 f$
Ethyl 4-(ethyl(4-methoxy-2,6-dimethylphenyl)amino)but-2-ynoate (3f)
N-Ethyl-4-methoxy- $N, 2,6$-trimethylaniline 1f was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure A. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3 f}$ was obtained as a colorless liquid $(24 \mathrm{mg}, 42 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.56(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.21 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 156.8,153.7,139.5,139.3,113.6,86.7,75.5,61.8,55.2,47.2,42.9$, 19.6, 14.3, 14.0; IR (neat) v 2933, 2230, 1707, 1598, 1490, 1309, 1254, 1120, 1060, $840 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 290.1751; found: 290.1755 .

3g
Ethyl 4-(benzyl(4-methoxy-2,6-dimethylphenyl)amino)but-2-ynoate (3g)
N-Benzyl-4-methoxy-N,2,6-trimethylaniline 1g was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure A. After purification by column chromatography ($\mathrm{Et}_{2} \mathrm{O}:$ hexanes $=1: 19$), $\mathbf{3 g}$ was obtained as a colorless liquid ($51 \mathrm{mg}, 72 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}$, $2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,153.5,140.6,139.0,138.5,128.9,128.4,127.2,113.4$, 85.4, 75.3, 61.8, 58.5, 55.2, 41.5, 19.9, 13.2; IR (neat) v 2927, 2841, 2230, 1708, 1598, 1479, 1312, 1245, 1065, $855 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right): 352.1907$; found: 352.1895 .
 ynoate (3h)
N-Benzyl-1-((tert-butyldimethylsilyl)oxy)-N,2-dimethylpropan-2-amine $\mathbf{1 h}$ was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure B using 1,2bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3 h}$ was obtained as a colorless liquid $(61 \mathrm{mg}, 76 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{dt}, J=6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1,0.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.6,140.3$, $128.4,128.2,126.9,87.6,76.7,69.7,61.8,58.6,51.4,36.7,25.9,22.9,18.2,14.1,-5.6$; IR (neat) $v 2949,2855,2221,1708,1463,1364,1237,1092,840,774 \mathrm{~cm}^{-1} ;$ HRMS (DART) Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$: 404.2615 ; found: 404.2610 .

Ethyl (R)-4-(benzyl(2-((tert-butyldimethylsilyl)oxy)-1-phenylethyl)amino)but-2-ynoate

 (3i)(R)-N-Benzyl-2-((tert-butyldimethylsilyl)oxy)- N-methyl-1-phenylethan-1-amine $\mathbf{1 i}$ was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure B using 1,2bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3 i}$ was obtained as a colorless liquid ($78 \mathrm{mg}, 86 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 8 \mathrm{H}), 4.26(\mathrm{q}, J=7.1$, $2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{dd}, J=7.3,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.09(\mathrm{~d}, J=$ $5.7,2.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,141.1,138.8,128.9,128.5,128.30$, $128.26,127.4,127.1,84.5,77.84,67.6,65.9,61.9,55.1,39.1,25.8,18.2,14.1,-0.01,-5.67,-$ 5.69; IR (neat) v 2923, 2853, 2222, 1709, 1458, 1365, 1239, 1095, 870, $698 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$: 452.2615 ; found: 452.2612 ; $[\alpha]^{25}{ }_{D}=36.7^{\circ}$ (c 0.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Ethyl (R)-4-(benzhydryl(2-((tert-butyldimethylsilyl)oxy)-1-phenylethyl)amino)but-2ynoate ($\mathbf{3} \mathbf{j}$)
(R)- N-Benzhydryl-2-((tert-butyldimethylsilyl)oxy)- N-methyl-1-phenylethan-1-amine $\mathbf{1 j}$ was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure B using 1,2bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3} \mathbf{j}$ was obtained as a colorless liquid ($102 \mathrm{mg}, 97 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{dt}, J=8.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.14$ $(\mathrm{m}, 9 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.06(\mathrm{~m}, 5 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1,3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}),-$ 0.04 (d, $J=20.0,6 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,142.0,141.9,139.8,128.7,128.6$, $128.49,128.47,128.39,128.1,127.24,127.15,86.5,76.6,69.2,63.1,62.9,61.6,36.6,25.9$, 18.2, 14.1, -5.55, -5.57; IR (neat) v 3026, 2930, 2855, 2224, 1708, 1456, 1362, 1243, 1095, 837 cm^{-1}; HRMS (DART) Calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{NO}_{3} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$: 528.2928; found: 528.2922; $[\alpha]^{25}{ }_{D}=$ $-16.2^{\circ}\left(c \quad 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Ethyl 4-((4-(tert-butyl)phenyl)(naphthalen-1-ylmethyl)amino)but-2-ynoate (3k)
4-(tert-Butyl)- N-methyl- N-(naphthalen-1-ylmethyl)aniline $\mathbf{1 k}$ was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure B using 1,2bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3 k}$ was obtained as a colorless liquid ($63 \mathrm{mg}, 76 \%$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{dd}, J=8.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 4.30(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.15 (s, 2H), 3.78 (s, 2H), 3.35 (s, 2H), 1.37 (t, $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}$), $1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,150.3,135.1,133.9,133.7,132.5,128.9,128.4,128.3$, $127.8,125.8,125.7,125.3,125.2,124.9,83.6,78.3,62.0,57.7,56.2,40.9,34.5,31.4,14.1 ;$ IR (neat) $v 2957,2825,2220,1707,1597,1509,1239,1107,1050,791 \mathrm{~cm}^{-1} ;$ HRMS (DART) Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$: 414.2428; found: 414.2429.

2-((4-Ethoxy-4-oxobut-2-yn-1-yl)(methyl)amino)-2-phenylbutyl

trimethoxybenzoate (3I)

2-(Dimethylamino)-2-phenylbutyl 3,4,5-trimethoxybenzoate 11 was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure B using 1,2bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 2\right), 3$ was obtained as a colorless liquid ($69 \mathrm{mg}, 71 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.18(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{dd}, J=12.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=12.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 165.8,153.5,152.9,142.3,141.7,128.2,127.3,126.9,124.8$, $106.8,86.2,75.5,65.7,64.8,61.8,60.8,56.1,42.1,35.8,30.1,13.9,8.5$; IR (neat) v 2939, 2231, 1709, 1586, 1498, 1331, 1239, 1123, 1006, $756 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{7}\left(\mathrm{MH}^{+}\right): 484.2330$; found: 484.2322.

Ethyl (R)-4-(benzhydryl(3-phenyl-3-(o-tolyloxy)propyl)amino)but-2-ynoate (3m)
(R)-N-Benzhydryl- N-methyl-3-phenyl-3-(o-tolyloxy)propan-1-amine $\mathbf{1 m}$ was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure B using 1,2bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3 m}$ was obtained as a colorless liquid $(58 \mathrm{mg}, 56 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.13(\mathrm{~m}, 10 \mathrm{H}), 7.07(\mathrm{qt}, J=5.7,1.3$ $\mathrm{Hz}, 4 \mathrm{H}), 6.94(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.52(\mathrm{~m}, 1 \mathrm{H}), 5.19$ (dd, $J=9.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.86-$ 2.77 (m, 2H), 2.13 (dddd, $J=19.3,9.2,7.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.9,153.4,142.33,142.26,142.24$, $130.5,128.64,128.57,128.54,127.91,127.88,127.72,127.4,127.20,127.15,127.1,126.4$, $125.8,120.0,112.3,83.5,77.9,76.9,72.6,61.9,47.3,39.5,37.2,16.3,14.1$; IR (neat) v 3025, 2933, 2831, 2220, 1707, 1594, 1490, 1240, 1049, $749 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 518.2689; found: 518.2691.

Ethyl

4-(benzhydryl(3-(10,11-dihydro-5H-dibenzo $[a, d][7]$ annulen-5-ylidene)propyl)amino)but-2-ynoate (3n)
N -Benzhydryl-3-(10,11-dihydro-5 H -dibenzo[a,d][7]annulen-5-ylidene)- N -methylpropan-1amine $\mathbf{1 n}$ was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure B using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $\left.=1: 4\right), \mathbf{3 n}$ was obtained as a colorless liquid ($79 \mathrm{mg}, 74 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 7 \mathrm{H})$, $7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{t}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.47-3.19(\mathrm{~m}, 4 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J$ $=7.1,1.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,143.8,142.4,141.2,139.9,139.3$, 137.0, 129.9, 128.9, 128.6, 128.51, 128.48, 128.2, 128.0, 127.9, 127.4, 127.1, 126.9, 125.9, $125.8,83.7,77.8,72.3,61.9,50.3,39.3,33.7,31.9,27.6,14.1$; IR (neat) v 3020, 2922, 2836, 2224, 1707, 1484, 1448, 1365, 11243, $751 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$: 526.2740; found: 526.2751.

Ethyl (R)-4-(benzhydryl(3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl)amino)but-2ynoate (30)
(R)- N-Benzhydryl- N-methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine 10 was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure B using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3 o}$ was obtained as a colorless liquid ($76 \mathrm{mg}, 68 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=19.1,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{dt}, J=25.2,7.3 \mathrm{~Hz}, 5 \mathrm{H}), 7.17(\mathrm{q}, J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=$ $8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $153.4,153.3,145.3,142.3,141.9,134.5,128.7,128.5,127.9,127.7,127.3,127.2,126.9,126.5$, 126.2, 126.1, 125.6, 125.1, 124.6, 124.5, 122.2, 120.5, 106.4, 83.4, 78.1, 73.9, 72.5, 61.9, 53.4, 47.1, 39.7, 37.2, 14.0; IR (neat) v 3055, 2926, 2837, 2220, 1707, 1579, 1453, 1243, 1092, 702 $\mathrm{cm}^{-1} ;$ HRMS (DART) Calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$: 560.2254; found: 560.2239.

Ethyl 4-(benzhydryl(4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)amino)but-2-ynoate (3p)
N-Benzhydryl-4-(3,4-dichlorophenyl)- N-methyl-1,2,3,4-tetrahydronaphthalen-1-amine $\mathbf{1 p}$ was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure B using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{3 p}$ was obtained as a colorless liquid ($76 \mathrm{mg}, 67 \%$).
${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.07(\mathrm{~m}$, $10 \mathrm{H}), 6.85(\mathrm{dd}, J=69.9,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.31-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.11(\mathrm{~m}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H})$, $3.53(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1,3.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3,147.2,142.24,142.18,139.1,138.6,132.2,130.7,130.04$, 129.99, 129.87, 128.8, 128.74, 128.70, 128.5, 128.3, 128.2, 128.1, 127.93, 127.91, 127.58, $127.56,127.45,127.38,127.3,127.2,127.0,86.3,77.5,69.1,61.7,57.8,43.4,36.2,30.3,17.5$, 13.9; IR (neat) v 3023, 2931, 2860, 2221, 1706, 1592, 1459, 1241, 1117, $1052 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Cl}_{2}\left(\mathrm{MH}^{+}\right)$: 568.1805 ; found: 568.1799 .

Ethyl 4-(benzhydryl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)amino)but-2ynoate (7b)

N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine 1q was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure B using 1,2bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), 7 \mathbf{b}$ was obtained as a colorless liquid ($94 \mathrm{mg}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 10 \mathrm{H}), 7.18(\mathrm{tt}, J=7.4,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.28-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}$, $J=7.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=7.2,2.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.5,153.4,142.13,142.08,141.2,128.8,128.6,128.5,127.9,127.8,127.3,127.1,126.7$ (d, $\left.J_{\mathrm{CF}}=3.3 \mathrm{~Hz}\right), 125.6,124.4\left(\mathrm{~d}, J_{\mathrm{CF}}=271.1 \mathrm{~Hz}\right), 122.7\left(\mathrm{q}, J_{\mathrm{CF}}=32.7 \mathrm{~Hz}\right), 115.7,83.3,78.0$, 77.7, $72.5,61.9,46.9,39.5,36.8,14.0 ;{ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-61.53; IR (neat) v 3028, 2930, 2834, 2221, 1708, 1612, 1513, 1451, 1324, 1246, $1114 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~F}_{3}\left(\mathrm{MH}^{+}\right)$: 572.2407; found: 572.2402.

Methyl 4-(benzhydryl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)amino)but-2ynoate (7c)
N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine 1q was reacted with methyl 3-(trimethylsilyl)propiolate 2c following General Procedure B using 1,2bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), 7 \mathbf{c}$ was obtained as a colorless liquid ($76 \mathrm{mg}, 68 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 9 \mathrm{H}), 7.18(\mathrm{tt}, J=7.1,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{dd}, J=9.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5,153.8,142.11,142.05,141.2,128.8,128.7,128.6,127.9$, $127.79,127.75,127.3,127.2,126.7\left(\mathrm{~d}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 125.6,124.4\left(\mathrm{~d}, J_{\mathrm{CF}}=271.3 \mathrm{~Hz}\right), 122.7$ $\left(\mathrm{q}, J_{\mathrm{CF}}=32.5 \mathrm{~Hz}\right), 115.7,83.7,77.7,72.5,53.4,52.7,46.9,39.5,36.8 ;{ }^{19} \mathbf{F} \mathbf{N M R}(470 \mathrm{MHz}$, CDCl_{3}) δ-61.50; IR (neat) v 3028, 2946, 2832, 2226, 1713, 1513, 1445, 1324, 1249, $1114 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (DART) Calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~F}_{3}\left(\mathrm{MH}^{+}\right)$: 558.2251; found: 558.2246.

4-(Benzhydryl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)amino)- N, N -dibenzylbut-2-ynamide (7d)
N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine 1q was reacted with N, N-dibenzyl-3-(trimethylsilyl)propiolamide 2d following General Procedure B using (S)-PhPyBOX as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 4\right), 7 \mathbf{d}$ was obtained as a colorless liquid ($116 \mathrm{mg}, 80 \%$).
${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=9.3 \mathrm{~Hz}, 7 \mathrm{H}), 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-$ $7.10(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.16$ (dd, $J=9.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{q}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{q}$, $J=18.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.5,154.7,142.13,142.06,141.1,136.2,135.9,129.0,128.8,128.7,128.6,128.5,128.0$, $127.8,127.7,127.6,127.24,127.20,127.1,126.6\left(\mathrm{~d}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right), 125.6,124.4\left(\mathrm{~d}, J_{\mathrm{CF}}=271.1\right.$ $\mathrm{Hz}), 122.7\left(\mathrm{q}, J_{\mathrm{CF}}=32.7 \mathrm{~Hz}\right), 115.7,87.7,78.9,77.7,72.6,51.3,46.9,46.5,39.6,36.9 ;{ }^{19} \mathbf{F}$ NMR (470 MHz, CDCl_{3}) $\delta-61.48$; IR (neat) v 3028, 2925, 2830, 2221, 1628, 1324, 1245, 1162, 1113, $700 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}\left(\mathrm{MH}^{+}\right)$: 723.3193; found: 723.3167.

N-Benzhydryl-3-phenyl- N-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)prop-2-yn-1-amine (7e)
N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine $\mathbf{1 q}$ was reacted with trimethyl(phenylethynyl)silane 2e following General Procedure B using (S)PhPyBOX as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 49\right)$, 7 e was obtained as a colorless liquid ($86 \mathrm{mg}, 75 \%$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.14(\mathrm{~m}, 13 \mathrm{H}), 7.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{dd}, J=9.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.56(\mathrm{~m}, 2 \mathrm{H})$, $2.91-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.00(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,142.8,142.7$, $141.4,131.7,128.7,128.5,128.4,128.3,128.1,127.9,127.7,127.1,126.9,126.6\left(\mathrm{~d}, J_{\mathrm{CF}}=3.1\right.$ $\mathrm{Hz}), 125.7,124.5\left(\mathrm{~d}, J_{\mathrm{CF}}=271.5 \mathrm{~Hz}\right), 123.3,122.6\left(\mathrm{q}, J_{\mathrm{CF}}=32.6 \mathrm{~Hz}\right), 115.7,85.9,84.2,77.9$, 72.6, 46.7, 39.9, 36.9; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.49$; IR (neat) v 3060, 2927, 2829, 2096, 1513, 1491, 1324, 1249, 1162, 1114, $698 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{NOF}_{3}$ $\left(\mathrm{MH}^{+}\right): 576.2509$; found: 576.2504.

N-Benzhydryl- N-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-amine (7f)
N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine 1q was reacted with trimethyl((4-(trifluoromethyl)phenyl)ethynyl)silane $\mathbf{2 f}$ following General Procedure B using (S)-PhPyBOX as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), 7 \mathbf{f}$ was obtained as a colorless liquid ($106 \mathrm{mg}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{dd}, J=8.4,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.1,4.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.43 (ddd, $J=13.0,8.0,4.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{tt}, J=4.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H})$, $7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{td}, J=7.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{p}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.81(\mathrm{dd}, J=9.0$, $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{dt}, J=8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.97$ - $2.70(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.00(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,142.6,142.5,141.3$, $132.4,132.2\left(\mathrm{~d}, J_{\mathrm{CF}}=293.4 \mathrm{~Hz}\right), 129.8\left(\mathrm{q}, J_{\mathrm{CF}}=32.6 \mathrm{~Hz}\right), 128.8,128.6,128.5,128.0,127.9$, $127.8,127.2,127.1,126.7\left(\mathrm{~d}, J_{\mathrm{CF}}=2.9 \mathrm{~Hz}\right), 125.7,125.2\left(\mathrm{~d}, J_{\mathrm{CF}}=2.8 \mathrm{~Hz}\right), 124.2\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $211.0 \mathrm{~Hz}), 122.7\left(\mathrm{q}, J_{\mathrm{CF}}=32.5 \mathrm{~Hz}\right), 115.7,87.1,84.6,77.9,72.6,46.8,40.0,36.9 ;{ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.45,-62.75$; IR (neat) v 3027, 2931, 2829, 1612, 1513, 1450, 1322, 1249, 1116, $701 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{NOF}_{6}\left(\mathrm{MH}^{+}\right): 644.2383$; found: 644.2365 .

N -Benzhydryl-3-(4-chlorophenyl)- N -(3-phenyl-3-(4-

(trifluoromethyl)phenoxy)propyl)prop-2-yn-1-amine (7g)

N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine 1q was reacted with ((4-chlorophenyl)ethynyl)trimethylsilane 2g following General Procedure B using (S)-PhPyBOX as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), 7 \mathrm{~g}$ was obtained as a colorless liquid ($98 \mathrm{mg}, 80 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.29$ (dddd, $J=22.3,20.6,9.1,7.4 \mathrm{~Hz}$, $13 \mathrm{H}), 7.18$ (ddd, $J=7.4,6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.03$ (m, 3H), 6.81 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.29 (dd, $J=9.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{q}, J=17.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.25-$ 1.97 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,142.7,142.5,141.4,134.0,132.9,128.7$, 128.6, 128.53, 128.45, 128.0, 127.9, 127.7, 127.1, 127.0, $126.7\left(\mathrm{~d}, J_{\mathrm{CF}}=2.6 \mathrm{~Hz}\right), 125.7,124.4$ $\left(\mathrm{d}, J_{\mathrm{CF}}=271.1 \mathrm{~Hz}\right), 122.6\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 121.8,115.7,85.3,84.7,77.9,72.6,46.7,40.0$, 36.9; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-61.50; IR (neat) v 3055, 2928, 2832, 2223, 1707, 1608, 1488, 1245, 1113, $701 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{NOF}_{3} \mathrm{Cl}\left(\mathrm{MH}^{+}\right): 610.2119$; found: 610.2125 .

N-Benzhydryl- N-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)-3-(thiophen-3-yl)prop-2-yn-1-amine (7h)
N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine 1q was reacted with trimethyl(thiophen-3-ylethynyl)silane 2h following General Procedure B using (S)-PhPyBOX as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=$ $1: 49$), 7 h was obtained as a colorless liquid ($86 \mathrm{mg}, 74 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{dt}, J=8.9,5.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, $J=6.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=3.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{ddq}, J=9.9,7.1,4.3,3.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.18$ (dt, $J=7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (dt, $J=8.8,4.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.81$ (dd, $J=8.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{dd}$, $J=9.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{q}, J=17.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{ddt}, J=50.2,12.0,6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.12(\mathrm{dt}, J=55.1,12.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.6,142.7,142.6$, $141.4,130.0,128.7,128.5,128.4,128.3,128.0,127.9,127.7,127.1,126.9,126.7\left(\mathrm{~d}, J_{\mathrm{CF}}=3.6\right.$ $\mathrm{Hz}), 124.7\left(\mathrm{~d}, J_{\mathrm{CF}}=267.9 \mathrm{~Hz}\right), 125.7,122.6\left(\mathrm{~d}, J_{\mathrm{CF}}=32.9 \mathrm{~Hz}\right), 122.3,115.7,83.8,80.8,77.8$, 72.5, 46.6, 39.9, 36.9; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.41$; IR (neat) v 3026, 2929, 2829, $2166,1514,1450,1324,1249,1114,700 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{NOF}_{3} \mathrm{~S}$ $\left(\mathrm{MH}^{+}\right): 582.2073$; found: 582.2074.

N-Benzhydryl- N-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)-3-
(trimethylsilyl)prop-2-yn-1-amine (7i) ${ }^{\mathbf{2 1}}$
N-Benzhydryl- N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine $\mathbf{1 q}$ was reacted with 1,2-bis(trimethylsilyl)ethyne 2i following General Procedure B using (S)PhPyBOX as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right)$, $7 \mathbf{i}$ was obtained as a colorless liquid ($99 \mathrm{mg}, 87 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{dd}, J=20.0,8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{dd}$, $J=9.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{q}, J=17.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.98$ ($\mathrm{m}, 2 \mathrm{H}$), $0.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR; ${ }^{21}{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-61.50; IR (neat) v 3059, 2951, 2848, 2160, 1612, 1324, 1250, 1116, 840, $700 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{NOF}_{3} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$: 572.2591 ; found: 572.2579 .

(S)-8b

Ethyl (S)-3-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propiolate ((S)-8b)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine 1b was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure C. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $\left.=1: 19\right),(\boldsymbol{S}) \mathbf{- 8 b}$ was obtained as a colorless liquid $(45 \mathrm{mg}$, $75 \%)$. The absolute configuration of (\boldsymbol{S})-8b was assigned as (S) as described in SI Section 4.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.58(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{ddd}, J=7.8,3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{qd}, J=$ $7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.22(\mathrm{~m}$, $6 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{td}, J=7.2,1.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.2,153.3,136.6,113.2,91.5,73.9,63.3,55.9,52.3,51.0,35.8,26.7,18.4$, 15.1; IR (neat) v 2967, 2837, 2224, 1707, 1599, 1476, 1366,1244, 1153, 1067, cm^{-1}; HRMS (DART) Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 302.1751; found: 302.1755; $[\alpha]^{25}{ }_{D}=76.2^{\circ}$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC (Chiralcel OJ-H; 95:5 hexane:isopropanol, $1.0 \mathrm{~mL} / \mathrm{min} ;(\boldsymbol{S}) \mathbf{- 8 b}: \mathrm{tr}=6.5 \mathrm{~min}$ (major), 9.5 min (minor); 95:5 er.

```
Acq. Operator : SYSTEM Seq. Line : 1
Acq. Instrument : Wasa_LC1 Location : 52
Injection Date : 12/12/2019 7:06:12 PM Inj : 1
Inj Volume : 4.000 \mul
Method : C:\Chem32\1\Data\JOE 2019-12-12 19-05-00\column4 5%IPA 95% hexane 30min-1.
                OmL.M (Sequence Method)
Last changed : 12/12/2019 7:05:05 PM by SYSTEM
Method Info : Column4 60min-1% iPrOH 99% hexane-1.0mL
```


Signal 2: DAD1 B, Sig=210, 4 Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	Area \%
1	6.509	MM	0.3045	1.21212 e 4	663.55304	48.5896
2	9.457	MM	0.6531	1.28249 e 4	327.28235	51.4104

Signal 2: DAD1 B, Sig=210, 4 Ref $=360,100$

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	7.564		0.3774	3.27202 e 4	1445.16772	94.9019
2	11.573		0.6270	1757.73438	46.72317	5.0981

Ethyl 3-((2S,5R)-1-(4-methoxy-2,6-dimethylphenyl)-5-methylpyrrolidin-2-yl)propiolate (8c)

1-(4-Methoxy-2,6-dimethylphenyl)-2-methylpyrrolidine rac-1r was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure C. The trans:cis ratio was determined to be $6.3: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified reaction mixtures. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $\left.=1: 19\right), \mathbf{8 c}$ was obtained as a yellow oil ($42 \mathrm{mg}, 66 \%$). The relative configuration of $\mathbf{8 c}$ was assigned by NOESY analysis as described in SI Section 3.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.58(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{dd}, J=7.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (qd, $J=7.1,0.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.84(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,153.8,140.2$, 139.7, 133.6, 113.9, 113.2, 91.0, 74.6, 61.7, 55.2, 55.1, 52.2, 33.2, 31.4, 20.3, 19.9, 19.0, 14.0; IR (neat) v 2956, 2222, 1705, 1597, 1471, 1368, 1234, 1152, 1065, $852 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 316.1907; found: 316.1905; $[\alpha]^{25}{ }_{D}=12.1^{\circ}\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC (Chiralpak AD-H; 99.7:0.3 hexane:isopropanol, $0.3 \mathrm{~mL} / \mathrm{min} ; \mathbf{8 c}: \mathrm{tr}=36.9 \mathrm{~min}$ (minor), 46.7 min (major); 83:17 er.
mV

Detector A Channel 2 254nm

Peak\#	Ret. Time	Area	Area\%
1	36.927	4524255	49.641
2	46.686	4589671	50.359
Total		9113925	100.000

Detector A Channel 2254 nm

Peak\#	Ret. Time	Area	Area\%
1	35.936	2651131	16.814
2	46.768	13116228	83.186
Total		15767359	100.000

8d

Ethyl (S)-3-(1-(4-methoxy-2,6-dimethylphenyl)-4,4-dimethylpyrrolidin-2-yl)propiolate

 (8d)1-(4-Methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidine 1c was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure C. After purification by column chromatography ($\mathrm{Et}_{2} \mathrm{O}$:hexanes $=1: 19$), 8d was obtained as a yellow oil ($45 \mathrm{mg}, 69 \%$). The absolute configuration of $\mathbf{8 d}$ was assigned in analogy to $(\boldsymbol{S}) \mathbf{- 8 b}$ (see SI Section 4).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=9.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2 H), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 3.07 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (s, 5H), 2.19 (dd, $J=$ $12.5,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{dd}, J=12.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15$ (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,153.8,135.4,113.7,91.0,74.3$, 64.5, 61.6, 55.2, 51.9, 47.0, 39.1, 27.8, 27.2, 14.0; IR (neat) v 2954, 2864, 2228, 1707, 1601, 1465, 1243, 1094, 1023, $751 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 330.2063; found: 330.2069; $[\alpha]^{25}{ }_{D}=20.5^{\circ}$ (c 0.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC (Chiralpak AY-3; 99.9:0.1 hexane:isopropanol, $0.3 \mathrm{~mL} / \mathrm{min} ; \mathbf{8 d}$: $\mathrm{tr}=27.4 \mathrm{~min}$ (major), 38.1 min (minor); $93: 7 \mathrm{er}$.

Sample Name
Sample ID
Data Filename Method Filename
Batch Filename
Vial \#
Injection Volume
Date Acquired
Date Processed

8c_rac5_JZC2152A_n2n1_AY-3_2-10
8c_rac5_JZC2152A_n2n1-AY-3_2-10
8c_rac5_JZC2152A_n2n1_AY-3_2-10.Icd
$99.90 .160 \mathrm{~min} _0.3 \mathrm{~mL} . \mathrm{lcm}$
batch $8 . l c \bar{b}$
1-24 Sample Type
10 uL
2/11/2020 2:39:47 AM
2/11/2020 10:17:04 AM

Sample Type : Unknown
Acquired by : System Administrator Processed by : System Administrator
mV

Detector A Channel 1220 nm

Peak\#	Ret. Time	Area	Area $\%$
1	27.437	11999000	48.953
2	38.057	12512111	51.047
Total		24511111	100.000

Sample Name
Sample ID
8c_ee4_JZC2101A_AY-3_2-10
8c ee4 JZC2101A AY-3 2-10
Data Filename
Method Filename
Batch Filename
Vial \#
Injection Volume
Injection Volum
Date Acquired
8c_ee4-JZC2101A-AY-3_2-10.Icd
$99.9 _0 . \overline{1} 60 \mathrm{~min} _0 . \overline{3} \mathrm{~mL} . \mathrm{l}^{\mathrm{cm}}$
batch8.lcb

Date Acquired : 2/11/2020 3:40:02 AM
Date Processed : 2/12/2020 4:33:05 PM

Sample Type	: Unknown
Acquired by	: System Administrator
Processed by	: System Administrator

mV

Detector A Channel 1220 nm

Peak\#	Ret. Time	Area	Area\%
1	27.840	22004548	93.243
2	39.795	1594617	6.757
Total		23599165	100.000

8e

Ethyl (S)-3-(1-(4-methoxy-2,6-dimethylphenyl)azepan-2-yl)propiolate (8e)

1-(4-Methoxy-2,6-dimethylphenyl)azepane 1d was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure C. After purification by column chromatography ($\mathrm{Et}_{2} \mathrm{O}$:hexanes $=1: 19$), $\mathbf{8 e}$ was obtained as a colorless liquid ($42 \mathrm{mg}, 64 \%$). The absolute configuration of $\mathbf{8 e}$ was assigned in analogy to $(\boldsymbol{S})-\mathbf{8 b}$ (see SI Section 4).
${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.29$ (s, 3H), $2.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}$, $2 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,153.8,140.9,139.7$, $137.9,114.1,113.6,90.3,75.6,59.4,55.6,53.0,51.3,34.8,31.4,28.9,25.2,20.1,19.6,14.0$; IR (neat) v 2926, 2845, 2221, 1707, 1598, 1474, 1309, 1240, 1065, $853 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$: 330.2063 ; found: $330.2061 ;[\alpha]^{25}{ }_{D}=30.1^{\circ}\left(\right.$ c $\left.1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC (Chiralcel OJ-H; 98.5:1.5 hexane:isopropanol, $0.5 \mathrm{~mL} / \mathrm{min} ; \mathbf{8 e}: \operatorname{tr}=14.8 \mathrm{~min}$ (major), $17.4 \min$ (minor); 95:5 er.

```
Acq. Operator : SYSTEM
Seq. Line : 2
Acq. Instrument : Wasa_LC1 Location : 41
Injection Date : 6/6/2019 11:37:23 AM Inj : 1
Inj Volume : 4.000 \mul
Acq. Method : C:\Chem32\1\Data\JOE 2019-06-06 11-04-24\column4 1.58IPA 98.5% hexane 60min
                                    -0.5mL.M
Last changed : 6/6/2019 11:04:28 AM by SYSTEM
```


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	14.752	BB	0.5570	1.92070 e 4	522.36609	49.2058
2	17.436	BB	0.7122	1.98270 e 4	428.21890	50.7942

Acq. Operator	$:$ SYSTEM	Seq. Line :	2
Acq. Instrument	: Wasa_LC1	Location :	11
Injection Date $: 8 / 7 / 2019$	$4: 14: 59 \mathrm{PM}$	Inj :	1

Inj Volume : 4.000 μl

Acq. Method : C:\Chem32\1\Data\JOE 2019-08-07 15-42-04\column4 1.5\%IPA 98.5\% hexane 30min $-0.5 \mathrm{~mL} . \mathrm{M}$
Last changed : 8/7/2019 3:42:08 PM by SYSTEM

Signal 2: DAD1 B, Sig=210,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \quad \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	14.856	MM	0.6745	9.39466 e 4	2321.40063	95.4662
2	18.137	MM	0.6770	4461.63379	109.84474	4.533

Ethyl (S,E)-4-(benzyl(4,4,4-trifluorobut-2-en-1-yl)amino)-4-phenylbut-2-ynoate (8f)
(E)-N,N-Dibenzyl-4,4,4-trifluorobut-2-en-1-amine 1s was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure C using (S)-PhPyBOX as the ligand. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{8 f}$ was obtained as a colorless liquid ($36 \mathrm{mg}, 45 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{dt}, J=8.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.31-7.25$ (m, 1H), 6.33 (dddd, $J=15.8,7.5,4.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.84(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dq}, J=15.6,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21-3.14(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.4$, $138.1,138.03,137.99,137.95,137.93,136.5,128.84,128.81,128.68,128.65,128.60,128.57$, $128.5,128.42,128.36,128.3,128.2,128.0,127.9,127.6,127.21,127.16,123.7,121.9,120.7$, $120.5,120.3,120.0,82.8,80.5,62.3,58.3,56.3,55.4,53.5,50.6,14.1 ;{ }^{19}$ F NMR (564 MHz , CDCl_{3}) $\delta-64.07,-64.08,-64.08,-64.09,-64.09,-64.10$; IR (neat) v 2925, 2222, 1711, 1492, 1450, 1242, 1119, 749, $698 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~F}_{3}\left(\mathrm{MH}^{+}\right): 402.1675$; found: 402.1667; $[\alpha]^{25}{ }_{D}=-45.3^{\circ}$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC (Chiralcel AD-H; 99.5:0.5 hexane:isopropanol, $0.3 \mathrm{~mL} / \mathrm{min} ; \mathbf{8 f}: \operatorname{tr}=34.9 \mathrm{~min}$ (minor), 37.0 min (major); 84:16 er.

Sample Name
Sample ID Data Filename Method Filename Batch Filename Vial \# Injection Volume Date Acquired Date Processed

8e_rac3_JZC2017H2_AD-H_0.3mL
8e_rac3_JZC2017H2_AD-H_0.3mL
8e_rac3_JZC2017H2_AD-H_0.3mL.Icd
995_05_60min_03mL.. Icm
batch9.Icb
1-4 Sample Type
4 uL
2/9/2020 5:43:00 PM
2/10/2020 9:51:53 AM

Acquired by Processed by

System Administrator
System Administrator
mV

Sample Name
Sample ID
: 8e_ee3_JZC2187BC_n1n1_AD-H_0.3mL
8e_ee3_JZC2187BC_n1n1_AD-H_0.3m
Data Filename : $8 \mathrm{e}^{-}$ee3_-JZC2187BC_n1n1_AD-H_0.3mL.Icd
Method Filename : 995_05_60min_03mL.Icm
Batch Filename batch9. Icb
Vial \#
1-5
Injection Volume
Date Acquired
: 4 uL
Sample Type : Unknown
Acquired by Processed by

System Administrator
System Administrator
mV

Detector A Channel 1220 nm

Peak\#	Ret. Time	Area	Area\%
1	34.949	12756097	16.485
2	36.967	64623088	83.515
Total		77379185	100.000

Ethyl 3-((2R,4S)-1-(4-methoxy-2,6-dimethylphenyl)-4-methylpyrrolidin-2-yl)propiolate (8 g)
(S)-1-(4-Methoxy-2,6-dimethylphenyl)-3-methylpyrrolidine (\boldsymbol{S})-1t was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure C. The trans:cis ratio was determined to be 11.8:1 by ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified reaction mixtures. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 19\right), \mathbf{8 g}$ was obtained as a colorless liquid ($40 \mathrm{mg}, 64 \%$). The relative configuration of $\mathbf{8 g}$ was assigned by NOESY, COSY, and HSQC analysis (see SI Section 3).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.58(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{qd}, J=7.1$, $1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=8.8,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.18(\mathrm{~m}, 7 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{td}, J=7.1,0.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.11(\mathrm{dd}, J=6.5,0.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.1,153.9,135.8,113.6,91.2$, $74.1,61.7,58.4,55.2,52.7,41.6,33.6,18.8,17.3,14.0$; IR (neat) $v 2954,2924,1708,1601$, 1484, 1465, 1244, 1154, $1066 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right): 316.1907$; found: 316.1904; $[\alpha]^{25}{ }_{D}=63.0^{\circ}$ (c 0.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC (Chiralpak IA; 97.5:2.5 hexane:isopropanol, $0.2 \mathrm{~mL} / \mathrm{min} ; \mathbf{8 g}: \operatorname{tr}=23.0 \mathrm{~min}$ (major), 24.0 min (minor); 97:3 er.

```
Acq. Operaltor : SYSTEM
Seq. Line : 1
Acq. Instrument : Wasa_LC1 Location : 61
Injection Date : 2/13/2020 5:35:45 PM Inj : 1
Inj Volume : 4.000 \mul
Acq. Method : C:\Chem32\1\Data\JOE 2020-02-13 17-34-27\column6 2.58IPA 97.5% hexane 40min
                                -0.2mL.M
Last changed : 2/13/2020 5:34:32 PM by SYSTEM
```


S-120

```
Signal 2: DAD1 B, Sig=210,4 Ref=360,100
```

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	23.026		0.4035	1.44252 e 4	536.82739	51.7382
2	24.072		0.3885	1.34559 e 4	536.65869	48.2618

Acq. Operator $:$ SYSTEM	Seq. Line :	2	
Acq. Instrument $:$ Wasa_LC1	Location $:$	62	
Injection Date	$: 2 / 13 / 2020$	$6: 16: 42 \mathrm{PM}$	Inj $:$

Inj Volume : $4.000 \mu \mathrm{l}$
Acq. Method : C:\Chem32\1\Data\JOE 2020-02-13 17-34-27\column6 2.5% IPA 97.5% hexane 40 min $-0.2 \mathrm{~mL} . \mathrm{M}$
Last changed : 2/13/2020 5:34:32 PM by SYSTEM

Signal 2: DAD1 B, Sig=210, 4 Ref $=360,100$

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	22.764		0.3995	4.11189 e 4	1715.43152	96.8637
2	23.783		0.4273	1331.37109	51.93531	3.1363

8h

Ethyl 3-((2S,4S)-1-(4-methoxy-2,6-dimethylphenyl)-4-phenylpyrrolidin-2-yl)propiolate

 (8h)(S)-1-(4-Methoxy-2,6-dimethylphenyl)-3-phenylpyrrolidine (\boldsymbol{S})-1u was reacted with ethyl 3(trimethylsilyl)propiolate 2b following General Procedure C. The trans:cis ratio was determined to be $10.1: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified product mixtures. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $\left.=1: 19\right), \mathbf{8 h}$ was obtained as a colorless liquid ($51 \mathrm{mg}, 68 \%$). The absolute and relative configuration of $\mathbf{8 h}$ was assigned in analogy to $\mathbf{8 g}$ (see SI Section 3).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dt}, J=6.8$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (s, 2H), 4.44 (dd, $J=7.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84$ (ddd, J $=17.7,10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.56-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.14(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8157.4, 153.9, 141.1, 135.5, 128.6, 127.9, 127.2, 126.7, 113.7, 90.6, 74.4, 61.8, 57.7, 55.2, 52.9, 44.1, 40.5, 18.9, 14.0; IR (neat) v 2196, 2847, 2226, 1701, 1601, 1485, 1243, 1153, 1037, $699 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right): 378.2064$; found: $378.2063 ;[\alpha]^{25}{ }_{D}=$ $-25.5^{\circ}\left(c\right.$ 0.6, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC (Chiralpak AY-3; 99.5:0.5 hexane:isopropanol, $0.5 \mathrm{~mL} / \mathrm{min}$; 8h: $\mathrm{tr}=14.9 \mathrm{~min}$ (minor), 21.6 min (major); 88:12 er.

8g_rac1_JZC2137C_n1_AY-3_2
8g_rac1-JZC2137C-n1-AY-3_2
8g_rac1_JZC2137C_n1_AY-3_2.Icd
:995_05_40min_05mL..cm : batch8. Icb

2/12/2020 4:14:36 PM

Sample Type
Acquired by Processed by
mV

Detector A Channel 1220 nm

Peak\#	Ret. Time	Area	Area\%
1	14.916	32360232	51.050
2	21.591	31028467	48.950
Total		63388699	100.000

Sample Name : 8g_ee2 JZC2194B AY-3 4
Sample ID
8g_ee2_JZC2194B_AY-3_4
Data Filename : 8 g gee2_JZC2194B_AY-3_4.Icd
Method Filename : $9950540 \mathrm{~min} 05 \mathrm{~mL} . \mathrm{Icm}$
Batch Filename : batch8.lcb
Vial \#
$\begin{array}{ll}\text { Injection Volume } & : 10 \mathrm{uL} \\ \text { Date Acquired } & : 2 / 11 / 20204: 21: 14 \mathrm{PM}\end{array}$
Date Acquired $\quad: 2 / 11 / 20204: 21: 14 \mathrm{PM}$

Sample Type	: Unknown
Acquired by	: System Administrator
Processed by	: System Administrator

8i-trans
Ethyl 3-((2R,5R)-1-(4-methoxy-2,6-dimethylphenyl)-5-((R)-1-oxo-1-($(R)-2-0 \times 0-4-$ phenyloxazolidin-3-yl)propan-2-yl)pyrrolidin-2-yl)propiolate (8i-trans)
(R)-3-((R)-2-((R)-1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoyl)-4-
phenyloxazolidin-2-one ($\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R}$)-1v was reacted with ethyl 3-(trimethylsilyl)propiolate 2b following General Procedure C. The trans:cis ratio was determined to be $7.7: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified reaction mixtures. After purification by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $\left.=1: 4\right)$, $\mathbf{8 i}$-trans was obtained as a colorless liquid ($96 \mathrm{mg}, 93 \%$). The relative configuration of 8i-trans was assigned by NOESY and COSY analysis (see SI Section 3).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{q}, J=3.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.56(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dt}, J=12.7,8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{dq}, J=9.0,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{dtd}, J=12.3,7.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dtd}, J=12.2,6.3$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddt}, J=12.3,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{ddt}, J=11.9,9.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.24$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2,157.2$, $153.6,153.1,143.7,140.6,139.5,133.2,128.9,128.3,125.1,113.8,112.4,89.6,74.8,69.7$, $62.4,61.7,57.4,55.21,55.20,52.5,42.1,32.2,30.3,20.1,19.5,15.9,13.9$; IR (neat) $v 2960$, 2847, 2226, 2172, 1775, 1699, 1597, 1380, 1240, 1039, $699 \mathrm{~cm}^{-1}$; HRMS (DART) Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{MH}^{+}\right)$: 519.2489 ; found: 519. $2475 ;[\alpha]^{25}{ }_{D}=-62.2^{\circ}\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

8i-cis
Ethyl
3-((2S,5R)-1-(4-methoxy-2,6-dimethylphenyl)-5-((R)-1-oxo-1-((R)-2-0xo-4-phenyloxazolidin-3-yl)propan-2-yl)pyrrolidin-2-yl)propiolate (8i-cis)

The relative configuration of 8i-cis was assigned by NOESY analysis (see SI Section 3).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{dt}, J=7.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dt}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{td}, J=8.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19$ (dtt, $J=17.6,7.4,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.07$ (dt, $J=10.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.32(\mathrm{tt}, J=12.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.12$ $(\mathrm{m}, 4 \mathrm{H}), 2.07(\mathrm{dh}, J=13.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{ddd}, J=11.9,7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{tt}, J=9.0$, $4.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.15(\mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.8,157.5,153.7$, $153.1,142.8,140.8,139.3,134.7,129.1,129.0,128.4,125.2,114.5,112.8,90.0,74.4,69.9$, 63.8, 61.7, 57.4, 55.3, 53.9, 42.0, 32.2, 29.0, 19.9, 19.4, 14.9, 14.0; IR (neat) v 2876, 2848, 2232, 1779, 1704, 1600, 1465, 1382, 1246, 1194, 1066, 1041, $702 \mathrm{~cm}^{-1} ;$ HRMS (DART) Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{MH}^{+}\right): 519.2489$; found: 519. 2483; $[\alpha]^{25}{ }_{D}=-108.6^{\circ}\left(c 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

7. References

(1) Shang, M. et al. C-H Functionalization of amines via alkene-derived nucleophiles through cooperative action of chiral and achiral Lewis acid catalysts: applications in enantioselective synthesis. J. Am. Chem. Soc. 2018, 140, 10593-10601.
(2) Chang, Y.; Yesilcimen, A.; Cao, M.; Zhang, Y.; Zhang. B.; Chan, J. Z.; Wasa, M. Catalytic deuterium incorporation within metabolically stable β-amino $\mathrm{C}-\mathrm{H}$ bonds of drug molecules J. Am. Chem. Soc. 2019, 141, 14570-14575.
(3) Kojima, R.; Akiyama, S.; Ito, H. A copper(I)-catalyzed enantioselective γ-boryl substitution of trifluoromethyl-substituted alkenes: Synthesis of enantioenriched $\gamma, \gamma-$ gem-difluoroallylboronates. Angew. Chem., Int. Ed. 2018, 57, 7196-7199.
(4) Kraihanzel, C. S. and Losee, M. L. Ethynylsilanes. III. Syntheses of some 2organosilicon bicycle[2.2.1]heptadienes and bicycle[2.2.1]hept-2-enes. J. Org. Chem. 1968, 33, 1983-1986.
(5) Tse, M. D.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao, H.; Döbler, C.; Spannenberg, A.; Mägerlein, W.; Hugl, H.; Beller, M. Chem. Eur. J. 2006, 12, 1855-1874.
(6) Eno, M. S.; Lu, A.; Morken, J. P. Nickel-catalyzed asymmetric Kumada crosscoupling of symmetric cyclic sulfates. J. Am. Chem. Soc. 2016, 138, 7824-7827.
(7) Lovinger, G. J., Morken, J. P. Ni-catalyzed enantioselective conjunctive coupling with $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ electrophiles: A radical-ionic mechanistic dichotomy. J. Am. Chem. Soc. 2017, 139, 17293-17296.
(8) Yoon, T.; MacMillan, D. W. C. Enantioselective Claisen rearrangements: Development of a first generation asymmetric acyl-Claisen reaction. J. Am. Chem. Soc. 2001, 123, 2911-2912.
(9) Patel, S. K.; Murat, K.; Py, S.; Vallee, Y. Asymmetric total synthesis and stereochemical elucidation of the antitumor agent PM-94128. Org. Lett. 2003, 5, 4081-4084.
(10) Petrone, D. A.; Isomura, M.; Franzoni, I.; Rossler, S. L.; Carreira, E. M. Allenylic carbonates in enantioselective iridium-catalyzed alkylations. J. Am. Chem. Soc. 2018, 140, 4697-4704.
(11) Koradin, C.; Gommermann, N.; Polborn, K.; Knochel, P. Synthesis of enantiomerically enriched propargylamines by copper-catalyzed addition of alkynes to enamines. Chem. Eur. J. 2003, 9, 2797-2811.
(12) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem., Int. Ed. 2002, 41, 2596-2599.
(13) Blackmond, D. G. Kinetic profiling of catalytic organic reactions as a mechanistic tool J. Am. Chem. Soc. 2015, 137, 10852-10866.
(14) Cain, F. M.; Hughes, R. P.; Glueck, D. S.; Golen, J. A.; Moore, C. E.; Rheingold, A. L. Synthesis and structure of intermediates in copper-catalyzed alkylation of diphenylphosphine. Inorg. Chem. 2010, 49, 7650-7662.
(15) Simmons, E. M.; Hartwig, J. F. On the interpretation of deuterium kinetic isotope effects in C-H bond functionalizations by transition-metal complexes. Angew. Chem., Int. Ed. 2012, 51, 3066-3072.
(16) Dureen, M. A.; Stephan, D. W. Terminal Alkyne Activation by Frustrated and Classical Lewis Acid/Phosphine Pairs. J. Am. Chem. Soc. 2009, 131, 8396-8397.
(17) Strasǎk, T.; Sykora, J.; Lamac, M.; Kubista, J.; Horaćek, M.; Gyepes, R.; Pinkas, J. Reactivity of a Titanocene Pendant Si-H Group toward Alcohols. Unexpected

Formation of Siloxanes from the Reaction of Hydrosilanes and $\mathrm{Ph}_{3} \mathrm{COH}$ Catalyzed by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. Organometallics 2013, 32, 4122-4129.

Di Saverio, A.; Focante, F.; Camurati, I.; Resconi, L.; Beringhelli, T.; D’Alfonso, G.; Donghi, D.; Maggioni, D.; Mercandelli, P.; Sironi, A. Oxygen-Bridged Borate Anions from Tris(pentafluorophenyl)borane: Synthesis, NMR Characterization, and Reactivity. Inorg. Chem. 2005, 44, 5030-5041.
(19) Millot, N.; Santini, C. C.; Fenet, B.; Basset, J. M. Formation and characterization of zwitterionic stereoisomers from the reaction of $B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{NEt}_{2} \mathrm{Ph}:(E)$ - and $(Z)-\left[\mathrm{EtPhN}^{+}=\mathrm{CHCH}_{2}-\mathrm{B}^{-}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$. Eur. J. Inorg. Chem. 2002, 2002, 3328-3335.
(20) Webb, J. D.; Laberge, V. S.; Geier, S. J.; Stephan, D. W.; Crudden, C. M. Borohydrides from Organic Hydrides: Reactions of Hantzschs Esters with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. Chem. Eur. J. 2010, 16, 4895-4902.
(21) 7 i required longer ${ }^{13} \mathrm{C}$ NMR acquisition during which trimethylsilyl group was fallen off to afford 10. For corresponding ${ }^{13} \mathrm{C}$ NMR, see: N-Benzhydryl- N-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)prop-2-yn-1-amine (p45)

8. NMR Spectra

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3c

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 g$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 (

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

30

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

응융융

〇in

${ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\qquad
${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8c-trans

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8d

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8f
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8g-trans
\%
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8g-trans

${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8h-trans

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8i-trans

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9j-O-TBS

${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12a

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

15-trans

9. X-Ray Crystallography Data

Table S15. Crystal data and structure refinement for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}$.

Identification code	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}$
Empirical formula	C 23 H 25 Br N 2 O 3
Formula weight	457.36
Temperature	173(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$a=31.9630(17) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=9.8050(5) \AA \quad \beta=112.711(3)^{\circ}$.
	$\mathrm{c}=15.0555(8) \AA \quad \gamma=90^{\circ}$.
Volume	$4352.5(4) \AA^{3}$
Z	8
Density (calculated)	$1.396 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.783 \mathrm{~mm}^{-1}$
F(000)	1888
Crystal size	$0.480 \times 0.180 \times 0.100 \mathrm{~mm}^{3}$
Theta range for data collection	2.997 to 66.526°.
Index ranges	$-37<=\mathrm{h}<=34,0<=\mathrm{k}<=11,0<=1<=17$
Reflections collected	3790
Independent reflections	$3790[\mathrm{R}(\mathrm{int})=0.1009]$
Completeness to theta $=66.526^{\circ}$	98.8\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7528 and 0.4332
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3790 / 258 / 278
Goodness-of-fit on F^{2}	1.071
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0611, \mathrm{wR} 2=0.1753$
R indices (all data)	$\mathrm{R} 1=0.0826, \mathrm{wR} 2=0.1919$
Extinction coefficient	n / a
Largest diff. peak and hole	0.704 and -0.647e..$^{-3}$

Table S16. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x		y	z
		$\mathrm{U}(\mathrm{eq})$		
$\mathrm{Br}(1)$	$4645(1)$	$4818(1)$	$8410(1)$	$102(1)$
$\mathrm{O}(1)$	$2346(1)$	$5189(2)$	$7608(2)$	$72(1)$
$\mathrm{O}(2)$	$2035(1)$	$3146(2)$	$7683(2)$	$72(1)$
$\mathrm{O}(3)$	$2085(1)$	$9312(3)$	$5196(2)$	$83(1)$
$\mathrm{N}(1)$	$2703(1)$	$3164(3)$	$7568(3)$	$70(1)$
$\mathrm{C}(1)$	$4033(2)$	$4296(4)$	$8101(3)$	$78(1)$
$\mathrm{C}(2)$	$3927(2)$	$2965(4)$	$8208(3)$	$74(1)$
$\mathrm{C}(3)$	$3484(1)$	$2620(4)$	$8017(3)$	$69(1)$
$\mathrm{C}(4)$	$3143(1)$	$3597(4)$	$7716(3)$	$67(1)$
$\mathrm{C}(5)$	$3255(2)$	$4934(4)$	$7597(4)$	$79(1)$
$\mathrm{C}(6)$	$3703(2)$	$5272(4)$	$7804(4)$	$85(1)$
$\mathrm{C}(7)$	$2366(1)$	$3966(4)$	$7629(3)$	$66(1)$
$\mathrm{C}(8)$	$1644(1)$	$3829(4)$	$7738(3)$	$70(1)$
$\mathrm{C}(9)$	$1294(2)$	$4050(4)$	$6781(3)$	$70(1)$
$\mathrm{C}(10)$	$1015(2)$	$4204(4)$	$5999(4)$	$80(1)$
$\mathrm{N}(2)$	$914(2)$	$4846(4)$	$4377(3)$	$81(1)$
$\mathrm{C}(11)$	$686(2)$	$4496(5)$	$5009(4)$	$87(1)$
$\mathrm{C}(12)$	$391(8)$	$3269(17)$	$4511(10)$	$96(2)$
$\mathrm{C}(13)$	$668(3)$	$2606(8)$	$4006(6)$	$109(2)$
$\mathrm{C}(14)$	$859(3)$	$3808(9)$	$3636(6)$	$99(2)$
$\mathrm{C}(12 \mathrm{X})$	$430(30)$	$3200(50)$	$4500(20)$	$96(2)$
$\mathrm{C}(13 \mathrm{X})$	$297(7)$	$3530(20)$	$3435(13)$	$99(2)$
$\mathrm{C}(14 \mathrm{X})$	$656(9)$	$4490(30)$	$3374(12)$	$109(2)$
$\mathrm{C}(15)$	$1209(1)$	$5996(4)$	$4559(3)$	$69(1)$
$\mathrm{C}(16)$	$1027(2)$	$7312(5)$	$4359(3)$	$76(1)$
$\mathrm{C}(17)$	$1316(2)$	$8433(4)$	$4562(3)$	$77(1)$
$\mathrm{C}(18)$	$1776(2)$	$8273(4)$	$4965(3)$	$72(1)$
$\mathrm{C}(19)$	$1959(1)$	$6967(4)$	$5150(3)$	$68(1)$
$\mathrm{C}(20)$	$1682(1)$	$5831(4)$	$4961(3)$	$66(1)$
$\mathrm{C}(21)$	$1900(2)$	$4441(4)$	$5148(4)$	$79(1)$
$\mathrm{C}(22)$	$518(2)$	$7512(6)$	$3924(5)$	$105(2)$
	$\mathrm{S}-208$			

$\mathrm{C}(23)$	$1917(2)$	$10679(5)$	$5077(4)$

Table S17. Bond lengths $[\AA]$ and angles [$\left.{ }^{\circ}\right]$ for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}$.

$\mathrm{Br}(1)-\mathrm{C}(1)$	$1.898(5)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.200(4)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.356(4)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.449(5)$
$\mathrm{O}(3)-\mathrm{C}(18)$	$1.367(5)$
$\mathrm{O}(3)-\mathrm{C}(23)$	$1.430(5)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.364(5)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.404(5)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	$0.93(5)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.366(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.373(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.373(6)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.389(5)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.387(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.384(7)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.460(7)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.181(6)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.482(8)$
$\mathrm{N}(2)-\mathrm{C}(15)$	$1.428(5)$
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.445(6)$
$\mathrm{N}(2)-\mathrm{C}(14)$	$1.470(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.534(8)$
$\mathrm{C}(11)-\mathrm{H}(11)$	1.0000
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.52(2)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9900

$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.527(10)$
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9900
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9900
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9900
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.400(6)$
$\mathrm{C}(15)-\mathrm{C}(20)$	$1.403(6)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.391(6)$
$\mathrm{C}(16)-\mathrm{C}(22)$	$1.514(7)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.366(6)$
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.390(5)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.383(5)$
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9500
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.508(6)$
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	$116.1(3)$
$\mathrm{C}(18)-\mathrm{O}(3)-\mathrm{C}(23)$	$117.8(4)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(4)$	$125.8(3)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	$114(3)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	$117(3)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$120.7(4)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Br}(1)$	$118.9(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Br}(1)$	$120.4(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.4(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	120.3
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	120.3

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.9(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.6
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.1(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	123.8(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	117.1(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	119.5(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	120.2
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	120.2
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	120.4(4)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	119.8
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.8
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	124.1(3)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{N}(1)$	127.5(4)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	108.4(3)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	111.1(3)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.4
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.4
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	178.4(5)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	175.3(5)
$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(11)$	121.7(4)
$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(14)$	124.7(4)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(14)$	113.1(4)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	111.4(4)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	103.7(5)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	113.8(9)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{H}(11)$	109.3
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	109.3
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	109.3
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	102.2(10)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	111.3
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	111.3
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	111.3
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	111.3

$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.2
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$104.2(7)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	110.9
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	110.9
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	110.9
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	110.9
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	108.9
$\mathrm{~N}(2)-\mathrm{C}(14)-\mathrm{C}(13)$	$101.9(5)$
$\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	111.4
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	111.4
$\mathrm{~N}(2)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	111.4
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	111.4
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.3
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)$	$119.2(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{N}(2)$	$119.9(4)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{N}(2)$	$120.9(4)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$119.7(4)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(22)$	$120.3(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(22)$	$120.0(4)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$121.0(4)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.5
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(3)$	$125.1(4)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$119.5(4)$
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(19)$	$115.4(4)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$120.9(4)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	119.6
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.6
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$119.6(4)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$118.4(4)$
$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(21)$	$121.9(4)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5

$\mathrm{C}(16)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{C}(16)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{C}(16)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table S18. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*}\right.$ $\left.b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U 13	U^{12}
$\mathrm{Br}(1)$	$80(1)$	$77(1)$	$152(1)$	$7(1)$	$50(1)$	$-1(1)$
$\mathrm{O}(1)$	$79(2)$	$45(1)$	$97(2)$	$6(1)$	$39(2)$	$3(1)$
$\mathrm{O}(2)$	$78(2)$	$47(1)$	$96(2)$	$1(1)$	$41(2)$	$-1(1)$
$\mathrm{O}(3)$	$93(2)$	$52(1)$	$112(2)$	$1(1)$	$47(2)$	$-1(1)$
$\mathrm{N}(1)$	$79(2)$	$45(2)$	$87(2)$	$3(1)$	$35(2)$	$2(1)$
$\mathrm{C}(1)$	$83(3)$	$61(2)$	$99(3)$	$5(2)$	$46(2)$	$4(2)$
$\mathrm{C}(2)$	$84(3)$	$53(2)$	$93(3)$	$7(2)$	$42(2)$	$11(2)$
$\mathrm{C}(3)$	$85(2)$	$46(2)$	$84(3)$	$1(2)$	$41(2)$	$3(2)$
$\mathrm{C}(4)$	$77(2)$	$51(2)$	$78(3)$	$3(2)$	$35(2)$	$1(2)$
$\mathrm{C}(5)$	$82(3)$	$50(2)$	$111(4)$	$11(2)$	$44(3)$	$6(2)$
$\mathrm{C}(6)$	$86(3)$	$52(2)$	$123(4)$	$10(2)$	$46(3)$	$1(2)$
$\mathrm{C}(7)$	$74(2)$	$52(2)$	$73(2)$	$2(2)$	$30(2)$	$-1(2)$
$\mathrm{C}(8)$	$84(2)$	$52(2)$	$84(3)$	$-3(2)$	$44(2)$	$0(2)$
$\mathrm{C}(9)$	$79(2)$	$56(2)$	$82(3)$	$-2(2)$	$39(2)$	$-6(2)$
$\mathrm{C}(10)$	$88(3)$	$63(2)$	$91(3)$	$-1(2)$	$38(2)$	$-12(2)$

$\mathrm{N}(2)$	$90(2)$	$75(2)$	$83(2)$	$-8(2)$	$40(2)$	$-14(2)$
$\mathrm{C}(11)$	$85(3)$	$84(3)$	$95(3)$	$1(2)$	$39(2)$	$-11(2)$
$\mathrm{C}(12)$	$89(5)$	$98(4)$	$101(3)$	$-7(3)$	$37(3)$	$-25(3)$
$\mathrm{C}(13)$	$111(5)$	$95(4)$	$131(5)$	$-37(4)$	$56(4)$	$-40(4)$
$\mathrm{C}(14)$	$107(5)$	$99(4)$	$101(4)$	$-33(3)$	$52(4)$	$-28(4)$
$\mathrm{C}(12 \mathrm{X})$	$89(5)$	$98(4)$	$101(3)$	$-7(3)$	$37(3)$	$-25(3)$
$\mathrm{C}(13 \mathrm{X})$	$107(5)$	$99(4)$	$101(4)$	$-33(3)$	$52(4)$	$-28(4)$
$\mathrm{C}(14 \mathrm{X})$	$111(5)$	$95(4)$	$131(5)$	$-37(4)$	$56(4)$	$-40(4)$
$\mathrm{C}(15)$	$77(2)$	$65(2)$	$69(2)$	$2(2)$	$32(2)$	$-1(2)$
$\mathrm{C}(16)$	$78(2)$	$73(2)$	$83(3)$	$8(2)$	$39(2)$	$5(2)$
$\mathrm{C}(17)$	$90(3)$	$60(2)$	$90(3)$	$11(2)$	$44(2)$	$14(2)$
$\mathrm{C}(18)$	$86(2)$	$57(2)$	$81(3)$	$5(2)$	$39(2)$	$2(2)$
$\mathrm{C}(19)$	$77(2)$	$59(2)$	$74(3)$	$0(2)$	$35(2)$	$3(2)$
$\mathrm{C}(20)$	$81(2)$	$57(2)$	$67(2)$	$2(2)$	$37(2)$	$1(2)$
$\mathrm{C}(21)$	$88(3)$	$58(2)$	$95(3)$	$5(2)$	$39(2)$	$2(2)$
$\mathrm{C}(22)$	$81(3)$	$100(4)$	$133(4)$	$26(3)$	$39(3)$	$17(3)$
$\mathrm{C}(23)$	$114(4)$	$55(2)$	$120(4)$	$1(2)$	$56(3)$	$2(2)$

Table S19. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}$.

	x	y	z	U(eq)
$\mathrm{H}(1 \mathrm{~N})$	2658(15)	2230(50)	7620(30)	84
H(2)	4157	2289	8411	89
H(3)	3410	1701	8092	83
H(5)	3025	5611	7376	95
H(6)	3782	6190	7738	102
H(8A)	1738	4718	8067	84
H(8B)	1518	3270	8124	84
H(11)	486	5270	5029	104
H(12A)	349	2642	4986	115
H(12B)	90	3564	4045	115
H(13A)	475	2024	3467	131
H(13B)	916	2044	4460	131
H(14A)	1153	3575	3598	118
H(14B)	644	4114	2995	118
H(12C)	626	2389	4691	115
H(12D)	157	3049	4649	115
H(13C)	287	2681	3068	118
H(13D)	-6	3962	3166	118
H(14C)	850	4033	3087	131
H(14D)	516	5309	2989	131
H(17)	1191	9324	4419	93
H(19)	2279	6854	5409	82
H(21A)	1899	4062	4544	119
H(21B)	1731	3836	5406	119
H(21C)	2214	4521	5614	119
H(22A)	409	7687	4438	158
H(22B)	373	6688	3571	158
H(22C)	443	8290	3481	158
H(23A)	1743	10860	4393	140
H(23B)	2172	11317	5324	140
H(23C)	1720	10798	5434	140

Table S20. Torsion angles [${ }^{\circ}$] for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}$.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-0.3(7)$
$\mathrm{Br}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$177.4(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$0.2(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$0.8(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	$-177.9(4)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$-24.6(6)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$154.0(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-1.6(7)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$177.0(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-0.5(8)$
$\mathrm{Br}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-178.2(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$1.5(8)$
$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{O}(1)$	$-1.3(5)$
$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	$-179.2(3)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{O}(1)$	$17.4(7)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	$-164.8(4)$
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$90.8(4)$
$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$-60.4(6)$
$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$111.7(6)$
$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$176.9(11)$
$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$-11.1(13)$
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$30.5(14)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-90.7(10)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-39.1(14)$
$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{C}(13)$	$158.8(6)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{C}(13)$	$-13.0(9)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{N}(2)$	$32.0(11)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	$-76.4(6)$
$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	$112.5(7)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(20)$	$102.0(5)$
$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(20)$	$-69.1(7)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-0.2(6)$

$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$178.2(4)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(22)$	$179.9(4)$
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(22)$	$-1.7(6)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-0.6(7)$
$\mathrm{C}(22)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$179.2(5)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(3)$	$-179.5(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$1.8(7)$
$\mathrm{C}(23)-\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(17)$	$5.1(6)$
$\mathrm{C}(23)-\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(19)$	$-176.2(4)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$-2.2(6)$
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$179.0(4)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$1.3(6)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$178.2(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$-0.1(6)$
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$-178.5(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(21)$	$-176.8(4)$
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(21)$	$4.8(6)$

Symmetry transformations used to generate equivalent atoms:

Table S21. Hydrogen bonds for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}$ [\AA and ${ }^{\circ}$].

D-H...A	d(D-H)	d(H...A)	$d(D \ldots A)$	$<(D H A)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \ldots \mathrm{O}(1) \# 1$	$0.93(5)$	$2.03(5)$	$2.928(4)$	$160(4)$

Symmetry transformations used to generate equivalent atoms:
\#1-x+1/2,y-1/2,-z+3/2

