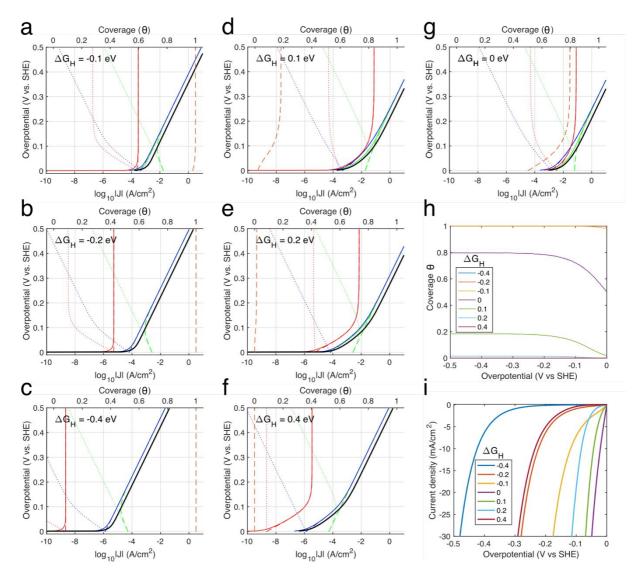
Hydrogen Evolution Reaction Activity of

Heterogeneous Materials – a Theoretical Model

Supporting document


Joakim Ekspong, Eduardo Gracia-Espino*, Thomas Wågberg*

Department of Physics, Umeå University, Umeå 90187, Sweden

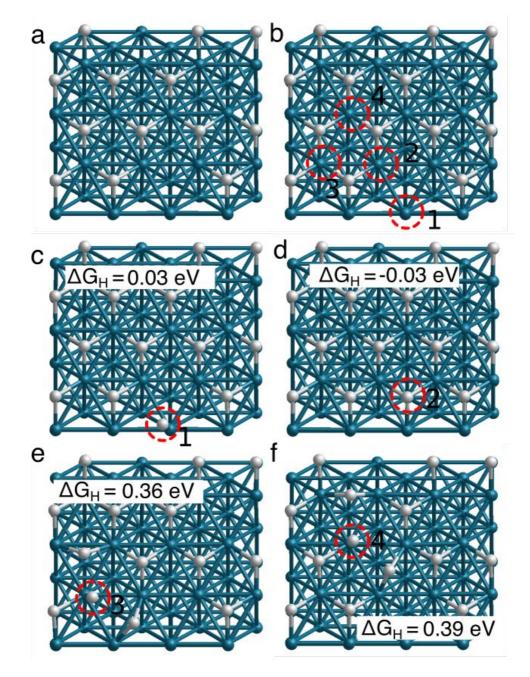

Symbol	Description
R1, R2, R3	Elementary reaction steps corresponding to Volmer, Heyrovsky, and Tafel reactions
ΔG_H	Hydrogen adsorption free energy
i ₀	Exchange current density
θ_{tot}^{*}	Total equilibrium hydrogen coverage
θ_{tot}	Total hydrogen coverage
$ heta_{totDFT}^*$	Total equilibrium hydrogen coverage obtained from the DFT model, used to calculate the ΔG_H .
p_{H_2}	Hydrogen pressure
k	Boltzmann constant
т	Temperature
h	Planck constant
θ_i^*	Equilibrium Occupation of adsorption site (i)
θ_i	Occupation of adsorption site (i)
N _{sites}	Total number of adsorption sites
r	Strength factor of the linear dependence of ΔG_H to the total coverage θ_{tot}
$\overrightarrow{v_i}$	Forward rate of elementary reaction step <i>i</i>
$\overline{\overleftarrow{v_i}}$	Backward rate of elementary reaction step <i>i</i>
v_i	Net rate of reaction <i>i</i> . $(v_i - v_i)$
$\vec{\Delta}G_i^0$	Standard free energy of activation of elementary reaction step <i>i</i>

Table S1. Symbols used in the manuscript and their descriptions.

α, β, γ	Charge transfer coefficients
φ	Inner potential (potential between material and solution)
φ*	Equilibrium inner potential
η	Overpotential
<i>e</i> ₀	Electron charge
a _H	Activity of protons in the solution
G1, G2, G3	"Magnitude" of the exchange current of the three elementary reaction steps
N _{nb}	Number of neighboring sites to site <i>i</i>
Jtot	Total electrical current density

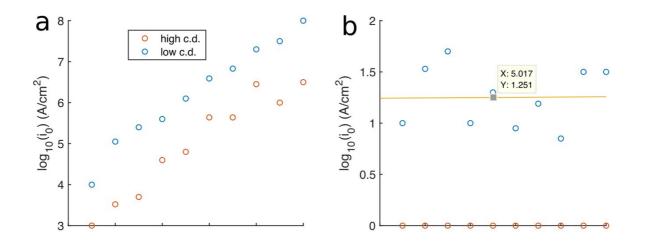

Figure S1. (a-g) Theoretical Tafel plots of homogeneous materials considering different values of ΔG_H . The ΔG_H is varied from -0.4 to 0.4 eV as displayed in each figure. **(h)** The hydrogen coverage against overpotential and **(i)** a voltammetry curves for the same systems are also shown.

Figure S2. (a) Equilibrium H-coverage structure of Pt_{111} with a coverage of 0.81 ML with only fcc adsorption sites occupied. **(b)** Non-equilibrium ontop adsorption sites tested and the final relaxed structures of these are shown in **(c-f)**.

Table S2. The hydrogen adsorption free energies for metals at and above the equilibrium hydrogen coverage. Both ontop and 3-fold adsorption sites are tested above the equilibrium coverage. If fcc sites are filled, the 3-fold sites are hcp and vice versa.

Metal	$\Delta G_H, \theta = eq. (eV)$	ΔG_H OT, $\theta > 1$ ML (eV)	ΔG_H 3-fold, θ > 1 ML (eV)
Pd111	-0.26	0.87	0.57
Pt111	-0.04	~ 0.39 eV. 2 NB-H moves to bridges.	H moves to bridge. 3 NB-H moves to bridge/OT
lr111	-0.05	-	0.11
Fe111	-0.39	0.75	0.86
Ni111	-0.38	1.03	0.88
Co111	-0.47	0.72	0.76
Rh111	-0.16	0.49	0.64

Figure S3. (a) Absolute values of experimental exchange current densities obtained from high current density regions (orange) and low current density regions (blue) for several different elements including, Mo, Pt, Au, Ag, Pd, W. **(b)** Here the i_0 are subtracted for each data point showing the difference between high and low obtained i_0 . The mean difference is calculated to 1.25 ($\log_{10} |A/cm^2|$). Experimental data are taken from ref¹⁻⁵.

Table S3. Theoretical exchange current densities and overpotentials needed for 10 mA/cm^2 for different MoS₂ configurations with different relative amounts of edge-atoms.

Percentage of edge-atoms (%)	Exchange current density log ₁₀ (A/cm ²)	Overpotential at 10 mA/cm ² (V)
0	-17.41	1.64
1	-5.34	0.26
3	-4.86	0.21
5	-4.64	0.18
10	-4.34	0.15
25	-3.94	0.11
50	-3.64	0.09
100	-3.34	0.07

REFERENCES

1. Parsons, R., Handbook of Electrochemical Constants. Butterworths: London, 1959.

2. Conway, B. E.; Steacie, E. W. R., Kinetics of electrolytic hydrogen and deuterium evolution. *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences* 1960, *256* (1284), 128-144.

3. Bockris, J. O. M.; Ammar, I. A.; Huq, A. K. M. S., The Mechanism of the Hydrogen Evolution Reaction on Platinum, Silver and Tungsten surfaces in Acid Solutions. *The Journal of Physical Chemistry* 1957, *61* (7), 879-886.

4. Pentland, N.; Bockris, J. O. M.; Sheldon, E., Hydrogen Evolution Reaction on Copper, Gold, Molybdenum, Palladium, Rhodium, and Iron. *Journal of The Electrochemical Society* 1957, *104* (3), 182. 5. Kibler, L. A.; Hermann, J. M.; Abdelrahman, A.; El-Aziz, A. A.; Jacob, T., New insights on hydrogen evolution at Au single crystal electrodes. *Current Opinion in Electrochemistry* 2018, *9*, 265-270.