Supporting Information

Novel Betulinic Acid-Nucleoside Hybrids with Potent Anti-HIV Activity

Qiang Wang^{†,‡,§}, Yujiang Li[†], Liyun Zheng[§], Xiaowan Huang[§], Yanli Wang^{‡,}*, Chin-Ho Chen,[⊥] Yung-Yi Cheng,[∥] Susan L. Morris-Natschke,[∥] Kuo-Hsiung Lee^{∥,[¬],}*

⁺ High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, 450002, China

^{*} National Health Commission Key Laboratory of Birth Defect Prevention, Zhengzhou, 450002, China

[§] Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou, 450052, China

[⊥] Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States

^{II} Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, United States

 $^{\scriptscriptstyle \bigtriangledown}$ Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan

Table of contents

Experimental Section	S3-S8
Methods for solubility determination	S 9
Compound 6 ¹ H and ¹³ C NMR spectra	S10
Compound 6 HRMS spectrum	S 11
Compound 7 ¹ H and ¹³ C NMR spectra	S12
Compound 7 HRMS spectrum	S 13
Compound 8 ¹ H and ¹³ C NMR spectra	S14
Compound 8 HRMS spectrum	S15
Compound 9 ¹ H and ¹³ C NMR spectra	S16
Compound 9 NOESY spectrum	S17
Compound 9 HRMS spectrum	S18
Compound 10 ¹ H and ¹³ C NMR spectra	S19
Compound 10 HRMS spectrum	S20
Compound 8a ¹ H and ¹³ C NMR spectra	S21
Compound 8a HRMS spectrum	S22
Compound 8b ¹ H and ¹³ C NMR spectra	S23
Compound 8b HRMS spectrum	S24
Compound 8c ¹ H and ¹³ C NMR spectra	S25
Compound 8c HRMS spectrum	S26
Compound 9a ¹ H and ¹³ C NMR spectra	S27
Compound 9a HRMS spectrum	S28
Compound 9b ¹ H and ¹³ C NMR spectra	S29
Compound 9b HRMS spectrum	S 30
Compound 9c ¹ H and ¹³ C NMR spectra	S 31
Compound 9c HRMS spectrum	S32
Compound 10a ¹ H and ¹³ C NMR spectra	S 33
Compound 10a HRMS spectrum	S 34
Compound 10b ¹ H and ¹³ C NMR spectra	S35
Compound 10b HRMS spectrum	S 36
Compound 10c ¹ H and ¹³ C NMR spectra	S 37
Compound 10c HRMS spectrum	S 38
Quantitative ¹ H NMR spectra of betulinic acid and compound 8b with IS	S 39

1. Experimental Section

1.1 Biology

1.1.1 Multi-cycle viral replication in MT4 cell assay.

HIV-1 NL4-3 Nanoluc-sec at a dose of 50 TCID50/well was used to infect MT4 cells (1 \times 105 cells/mL) in the presence of compounds at various concentrations in 96-well plates. The reporter virus, HIV-1 NL4-3 Nanoluc-sec, was created by inserting the secNluc sequence from pNL1.3[secNluc] (Promega Cat#: N1021) in place of the Nef sequence spanning nucleotide 8796-8892 of pNL4-3 plasmid (GenBank: AF324493.2) using Not I and Xho I restriction enzyme sites. Not I site was introduced into pNL4-3 by site directed mutagenesis and the Xho I site was a unique site in pNL4-3. On day 3 post-infection, supernatant samples were harvested and assayed for luciferase activity using the Promega Nano-Glo® luciferase assay system. The antiviral potency is defined as the drug concentration that reduces the luciferase activity by 50% (IC₅₀).

1.1.2 Cytotoxicity Assay.

A CellTiter-Glo® luminescent cytotoxicity assay (Promega) was used to determine the cytotoxicity of the synthesized compounds. MT4 cells were cultured in the presence of various concentrations of the compounds for 3 days. Cytotoxicity of the compounds was determined by following the protocol provided by the manufacturer. The 50% cytotoxic concentration (CC_{50}) was defined as the concentration that caused a 50% reduction of cell viability.

1.2 Chemistry

1.2.1 General Methods

The starting materials were purchased commercially and used directly. DMF and THF contained less than 50 ppm of water and were stored over 4Å molecular sieves. Progress of reactions was monitored using TLC visualized by UV lamp (254 nm) or KMnO₄ developer. Column chromatography was performed using 300 mesh silica gel (Yantai Xinnuo Co. Ltd.). Melting points (mp) were measured on a Shenguang WRR melting point apparatus (Shanghai Precision & Scientific Instrument Co. Ltd.). ¹H and ¹³C NMR spectra were recorded using an Agilent 400 MR (400 MHz for ¹H; 100 MHz for ¹³C) in deuterated solvents. Chemicals shifts are reported in parts per million (δ ppm) relative to TMS or the solvent peak. Coupling constants (*J*) are expressed in hertz (Hz). High-resolution mass spectrometer, (HRMS) analysis was performed using an Agilent 1290-6540 Q-TOF mass spectrometer.

1.2.2 Synthetic procedures

Synthesis of betulonic acid (6).

To a solution of betulin (20.0g, 45.2 mmol) in acetone (400 mL) was added freshly prepared Jones' reagent (200 mL) dropwise over 30 min at 0 °C. The solution was stirred for 20 min at 0 °C, the ice bath was removed and stirring continued for 2 h (monitoring by TLC). The reaction was quenched with MeOH (300 mL) and water (300 mL). The solvent was removed under vacuum and the aqueous residue was extracted with EtOAc (3×200 mL).

The combined organic layer was dried with Na₂SO₄, and the solvent was removed under vacuum. The residue was purified by column chromatography on SiO₂ eluting with CH₂Cl₂/MeOH (10:1) to remove the impurities, then with petroleum ether/EtOAc (4:1) to afford betulonic acid as a white solid (12.2 g, 26.8 mmol, 59.3%), mp 191-193 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 12.10 (s, 1H), 4.69(s, 1H), 4.57 (s, 1H), 2.95 (td, J=11.1, 5.2 Hz, 1H), 2.48-2.30 (m, 2H), 2.26 (td, J=12.6, 3.2 Hz, 1H), 2.15-2.06 (m, 1H), 1.89-1.73 (m, 3H), 1.65 (s, 3H), 1.67-1.60 (m, 1H), 1.54 (t, J=11.3 Hz, 1H), 1.48-1.00 (m, 14H), 1.02-0.96 (m, 1H), 0.98(s, 3H), 0.95(s, 3H), 0.93(s, 3H), 0.90(s, 3H), 0.85(s, 3H). ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 218.5, 177.2, 150.3, 109.7, 55.4, 53.8, 49.0, 48.4, 46.6, 46.5, 42.1, 40.1, 38.8, 37.7, 36.4, 36.3, 33.6, 33.1, 31.6, 30.1, 29.2, 26.4, 25.1, 21.0, 20.7, 19.2, 19.0, 15.7, 15.4, 14.3. HRMS (ESI) calcd for C₃₀H₄₆O₃ [M+H]⁺ 455.3525, found 455.3519.

Synthesis of betulonic acid methyl ester (7).

To a solution of compound **6** (4.54 g, 10.0 mmol) in DMC (40 mL), DBU (6.0 mL, 40 mmol) was added and the mixture was stirred under reflux for 24 h (monitoring by TLC). The mixture was evaporated under vacuum and the residue was dissolved in EtOAc and washed twice with 10% HCl (aq) followed by saturated NaHCO₃. The organic layer was dried over Na₂SO₄ and the solvent was removed under vacuum. The residue was purified by column chromatography on SiO₂ eluting with petroleum ether/EtOAc (20:1) to afford compound **7** as a white solid (3.36 g, 7.2 mmol, 72.0%), mp167-169 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 4.74 (d, J=1.8 Hz, 1H), 4.60 (s, 1H), 3.67 (s, 3H), 3.00 (td, J=10.8, 4.3 Hz, 1H), 2.55-2.34 (m, 2H), 2.30-2.17 (m, 2H), 1.95-1.83 (m, 3H), 1.77-1.70 (m, 1H), 1.69 (s, 3H), 1.60 (t, J=11.5 Hz, 1H), 1.50-1.24 (m, 13H), 1.20-1.14 (m, 1H), 1.07 (s, 3H), 1.05-0.99 (m, 1H), 1.02 (s, 3H), 0.97 (s, 3H), 0.95 (s, 3H), 0.92 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 218.2, 176.6, 150.5, 109.6, 56.5, 54.9, 51.3, 49.9, 49.3, 47.3, 46.9, 42.4, 40.6, 39.6, 38.3, 36.9, 36.9, 34.1, 33.6, 32.1, 30.5, 29.6, 26.6, 25.5, 21.4, 21.0, 19.6, 19.3, 15.9, 15.7, 14.6. HRMS (ESI) calcd for C₃₁H₄₈O₃ [M+H]⁺ 469.3682, found 469.3675.

Synthesis of methyl-2a-propargyl-3-oxolup-20(29)-en-28-oate (8).

A 1M solution of KN(SiMe₃)₂ (32 mL, 32 mmol) in THF was added under nitrogen at room temperature to a stirred solution of compound 7 (2.54 g, 5.4 mmol) in DME (135 mL). After 30 min, 1M Et₃B (40 mL, 40 mmol) in DME was added and the mixture was stirred for Then, a solution of propargyl bromide (4.0 mL, 48 mmol) was added. The 60 min. reaction mixture was stirred for 6 h under nitrogen (monitoring by TLC), neutralized with 3 M HCl (aq), and diluted with water (300 mL). After extraction with EtOAc (3×150 mL), the organic layers were combined, washed with saturated NaHCO₃, and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by column chromatography on SiO_2 eluting with petroleum ether/EtOAc (20:1). Compound 8 was obtained as a pale yellow powder (2.32 g, 4.58 mmol, 84.8%), mp 112-114 °C. ¹H NMR $(DMSO-d_6, 400 \text{ MHz}) \delta$: 4.73-4.68 (m, 1H), 4.57 (s, 1H), 3.60 (s, 3H), 2.98-2.82 (m, 2H), 2.72 (t, J=2.5 Hz, 1H), 2.42 (ddd, J = 16.7, 4.3, 2.7 Hz, 1H), 2.25-2.07 (m, 4H), 1.85-1.73 (m, 2H), 1.71-1.62 (m, 1H), 1.65 (s, 3H), 1.56 (t, *J* = 11.4 Hz, 1H), 1.52-1.20 (m, 11H), 1.14-1.00 (m, 4H), 1.06 (s, 3H), 0.97 (s, 3H), 0.97 (s, 3H), 0.93 (s, 3H), 0.91 (s, 3H). ¹³C NMR (DMSO-d₆, 100 MHz) & 214.4, 175.6, 150.0, 109.8, 83.0, 72.0, 56.3, 55.8, 51.2, 49.2, 48.7, 47.5, 46.6, 45.4, 42.1, 40.4, 40.1, 37.6, 36.8, 36.1, 33.5, 31.4, 29.9, 29.1, 24.9, 24.8, 21.3,

20.7, 19.0, 18.8, 18.8, 15.7, 15.6, 14.3. HRMS (ESI) calcd for $C_{34}H_{50}O_3$ [M+H]⁺ 507.3838, found 507.3831.

Synthesis of methyl-2α-propargyl-3β-hydroxylup-20(29)-en-28-oate (9).

Compound **8** (1.89 g, 3.7 mmol) was dissolved in isopropanol (120 mL), NaBH₄ (2.8 g, 7.4 mmol) was added, and the mixture was stirred at rt for 5h (monitoring by TLC). HCl (3 M, 60 mL) was added slowly. The solution was extracted with EtOAc (3×100 mL), and the combined organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on SiO₂ eluting with petroleum ether/EtOAc (20:1) to afford compound **9** as a white solid (0.98 g, 1.9 mmol, 51.4%), mp 134-136 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 4.70 (d, *J* = 2.1 Hz, 1H), 4.59-4.54 (m, 1H), 4.43 (d, *J* = 6.7 Hz, 1H), 3.60 (s, 3H), 2.92 (td, *J* = 10.7, 5.3 Hz, 1H), 2.73-2.65 (m, 2H), 2.43 (dt, *J* = 16.5, 3.0 Hz, 1H), 2.22 – 1.98 (m, 3H), 1.86-1.73 (m, 3H), 1.69-1.60 (m, 1H), 1.65 (s, 3H), 1.60-1.52 (m, 2H), 1.51-0.96 (m, 13H), 0.94 (s, 3H), 0.87 (s, 3H), 0.85 (s, 3H), 0.79 (s, 3H), 0.73-0.62 (m, 2H), 0.66 (s, 3H). ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 175.6, 150.0, 109.7, 83.5, 79.2, 72.0, 55.8, 55.0, 51.2, 49.9, 48.7, 46.6, 44.1, 42.0, 40.2, 38.8, 37.7, 36.7, 36.1, 34.4, 33.8, 31.4, 29.9, 29.1, 28.4, 24.9, 21.7, 20.5, 18.8, 18.1, 16.6, 16.5, 15.6, 14.4. HRMS (ESI) calcd for C₃₄H₅₂O₃ [M+H]⁺ 509.3995, found 509.3988.

Synthesis of 2α-propargyl-3β-hydroxylup-20(29)-en-28-oic acid (10).

LiI (2.10g, 15 mmol) was added to a stirred solution of compound **9** (508 mg, 1 mmol) in DMF (15 mL). The reaction mixture was heated to reflux under nitrogen for 24 h (monitoring by TLC), diluted with water (10 mL), and neutralized with 10% HCl (aq). The product was extracted with EtOAc (3×30 mL), the extracts were combined and dried over Na₂SO₄, and the solvent was evaporated under vacuum. The residue was purified by column chromatography on SiO₂ eluting with petroleum ether/EtOAc (2:1) to give compound **10** as a white solid (386 mg, 0.78 mmol, 78.0%), mp 170-172 °C. ¹H NMR (CDCl₃, 400 MHz) δ : 4.77-4.71 (m 1H), 4.63-4.57 (m, 1H), 3.07-2.95 (m, 2H), 2.45-2.30 (m, 2H), 2.27 (dt, J=12.6, 2.9 Hz, 1H), 2.24-2.14 (m, 1H), 2.00-1.95 (m, 2H), 1.83 (dd, J=12.8, 3.6 Hz, 1H), 1.79-1.69 (m, 2H), 1.69 (s, 3H), 1.66-1.16 (m, 13H), 1.12-1.02 (m, 1H), 0.98 (s, 6H), 0.94 (s, 3H), 0.87 (s, 3H), 0.85-0.80 (m, 1H), 0.78(s, 3H), 0.76-0.70 (m, 1H). ¹³C NMR (CDCl₃, 40.7, 39.1, 38.4, 37.3, 37.0, 34.8, 34.2, 32.1, 30.5, 29.6, 28.3, 25.5, 22.4, 20.9, 19.3, 18.5, 16.99, 16.2, 16.0, 14.7. HRMS (ESI) calcd for C₃₃H₅₀O₃ [M+H]⁺ 495.3838, found 495.3835.

General Method for Click Reactions.

To a solution of the alkyne (0.24 mmol) in 2mL of t-BuOH/H₂O 1:1 (v:v) was added DIPEA (50 uL, 0.3 mmol) and azide (0.2 mmol). After the mixture was stirred for 15 min, a solution of CuI (4 mg, 0.02 mmol) in CH₃CN (1 mL) was added and the resulting mixture was stirred at rt until azide was gone (monitoring by TLC). The solvent was removed under reduced pressure and the crude residue was purified by column chromatography on silica gel (5-10% MeOH in DCM) to give compounds **8a-c**, **9a-c**, and **10a-c**.

Methyl 2α -{1N[1-(2-deoxy-2 β -fluoro- β -*D*-arabinopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-3-oxolup-20(29)-en-28-oate (8a).

White solid, yield (62.2%), m.p.151-153 °C. ¹H NMR (MeOH- d_4 , 400 MHz) δ : 7.99 (d, J =

7.7 Hz, 1H), 7.87 (s, 1H), 6.80 (dd, J = 11.7, 4.9 Hz, 1H), 6.00 (d, J=7.2 Hz, 1H), 5.37 (dt, J = 53.9, 4.5 Hz, 1H), 4.79 (dd, J = 21.3, 4.2 Hz, 1H), 4.70 (d, J=2.0 Hz, 1H), 4.59 (s, 1H), 4.38~4.18 (m, 2H), 3.66 (s, 3H), 3.26~3.08 (m, 2H), 3.06~2.92 (m, 1H), 2.62 (dd, J = 14.4, 6.9 Hz, 1H), 2.30~2.16 (m, 2H), 2.04 (dd, J = 12.8, 4.9 Hz, 1H), 1.92~1.81 (m, 2H), 1.76~1.53 (m, 3H), 1.68 (s, 3H), 1.53-1.20 (m, 10H), 1.19-1.10 (m, 2H), 1.12 (s, 3H), 1.06 (s, 3H), 1.04 (s, 3H), 1.09-1.00 (m, 2H), 0.98 (s, 3H), 0.98(s, 3H). ¹³C NMR (MeOH-*d*₄, 100 MHz) δ : 218.6, 178.2, 167.0, 156.8, 151.8, 146.8, 143.8, 124.0, 110.4, 98.8 (d, J=7.3 Hz), 96.1(d, J=193.5 Hz), 96.1, 86.5 (d, J=15.6 Hz), 76.4 (d, J=25.4 Hz), 63.2, 58.9, 57.9, 51.9, 51.5, 50.7, 49.6, 48.6, 48.2, 43.7, 43.6, 42.1, 39.7, 38.7, 37.9, 35.4, 33.2, 31.7, 30.9, 27.0, 26.8, 25.7, 22.3, 22.1, 20.4, 19.6, 16.8, 16.6, 15.2. HRMS (ESI) calcd for C₄₃H₆₁FN₆O₇ [M+H]⁺ 793.4664, found 793.4657.

Methyl 2α -{1N[1-(2-deoxy-2 β -fluoro- β -*D*-arabinopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-3-oxolup-20(29)-en-28-oate (8b).

White solid, yield (68.5%), m.p. 162-164 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ : 11.56 (brs, 1H), 7.94 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 6.70 (t, J = 6.9 Hz, 1H), 6.36 (d, J = 5.1 Hz, 1H), 5.99 (brs, 1H), 5.75 (d, J = 8.0 Hz, 1H), 5.40 (dt, J = 54.5, 5.7 Hz, 1H), 4.78 (dt, J = 25.9, 4.9 Hz, 1H), 4.69 (s, 1H), 4.56 (s, 1H), 4.28-4.02 (m, 2H), 3.60 (s, 3H), 3.21-3.00 (m, 2H), 2.98-2.83 (m, 1H), 2.43 (dd, J = 14.7, 7.4 Hz, 1H), 2.22-2.05 (m, 2H), 2.04-1.92 (m, 1H), 1.86-1.70 (m, 2H), 1.64 (s, 3H), 1.61-1.16 (m, 14H), 1.15-1.06 (m, 2H), 1.04-0.93 (m, 1H), 1.03 (s, 3H), 1.01 (s, 3H), 0.98 (s, 3H), 0.92 (s, 3H), 0.89 (s, 3H). ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 215.6, 175.6, 162.9, 150.2, 150.0, 144.5, 141.2, 122.2, 109.8, 101.8, 95.5 (d, J=11.0 Hz), 94.7 (d, J=192.5 Hz), 82.2, 74.0 (d, J=24.1 Hz), 60.6, 56.6, 55.8, 51.3, 49.2, 48.7, 47.7, 46.6, 46.2, 42.1, 41.1, 40.2, 37.6, 36.9, 36.1, 33.5, 31.4, 29.9, 29.1, 25.7, 25.1, 24.9, 21.2, 20.6, 18.9, 18.8, 15.7, 15.6, 14.3. HRMS (ESI) calcd for C₄₃H₆₀FN₅O₈ [M+H]⁺ 794.4504, found 794.4500.

Methyl 2α -{1N[1-(2,3-dideoxy- β -D-ribopentafuranosyl)thymine-3-yl]-1H-1,2,3-triazole-4-yl}-3-oxolup-20(29)-en-28-oate (8c).

White solid, yield (74.8%), m.p.152-154 °C. ¹H NMR(CDCl₃, 400 MHz) δ : 9.73 (s, 1H), 7.56 (s, 2H), 6.29 (t, J = 6.4 Hz, 1H), 5.47-5.34 (m, 1H), 4.72 (s, 1H), 4.58 (s, 1H), 4.45-4.34 (m, 1H), 4.11-3.94 (m, 2H), 3.88-3.74 (m, 1H), 3.67 (s, 3H), 3.24-3.12 (m, 1H), 3.09 (dd, J = 14.4, 6.9 Hz, 1H), 3.03-2.83 (m, 3H), 2.60 (dd, J = 14.4, 4.2 Hz, 1H), 2.27-2.08 (m, 3H), 1.94-1.83 (m, 2H), 1.90 (s, 3H), 1.76-1.65 (m, 1H), 1.67 (s, 3H), 1.60-1.51 (m, 2H), 1.48-1.23 (m, 10H), 1.16-1.06 (m, 3H), 1.12 (s, 3H), 1.03 (s, 3H), 1.02 (s, 3H), 0.96 (s, 3H), 0.94 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 217.4, 176.6, 164.1, 150.5, 150.3, 146.8, 137.7, 122.4, 111.0, 109.7, 87.9, 85.2, 61.3, 58.9, 57.5, 56.4, 51.2, 50.0, 49.3, 48.5, 47.9, 46.9, 42.4, 42.2, 40.7, 38.1, 37.6, 37.5, 36.9, 34.0, 32.1, 30.4, 29.5, 26.4, 25.3, 24.9, 21.4, 21.1, 19.2, 19.2, 16.1, 16.0, 14.6, 12.4. HRMS (ESI) calcd for C₄₄H₆₃N₅O₇ [M+H]⁺ 774.4806, found 774.4802.

$\label{eq:linear} Methyl \ 2\alpha - \{1N[1-(2-deoxy-2\beta-fluoro-\beta-D-arabinopentafuranosyl)cytosine-4-yl] - 1H-1,2,3-triazole-4-yl] - 3\beta-hydroxylup-20(29)-en-28-oate (9a).$

White solid, yield (60.4%), m.p. 163-165 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ : 7.90 (s, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7.33 (br, 1H), 7.29 (br, 1H), 6.83-6.68 (m, 1H), 6.22 (d, J = 5.4 Hz, 1H), 5.85 (t, J = 4.8 Hz, 1H), 5.80 (d, J = 7.3 Hz, 1H), 5.32 (dt, J = 55.5, 5.6 Hz, 1H),

4.79-4.64 (m, 2H), 4.61-4.51 (m, 2H), 4.21-4.07 (m, 2H), 3.58 (s, 3H), 3.14 (d, J = 13.4 Hz, 1H), 2.89 (td, J=10.4, 5.0 Hz, 1H), 2.68 (dd, J = 10.3, 6.5 Hz, 1H), 2.26 (dd, J = 14.2, 9.7 Hz, 1H), 2.18-2.04 (m, 2H), 1.86-1.72 (m, 3H), 1.64 (s, 3H), 1.62-1.53 (m, 3H), 1.47-1.03 (m, 13H), 0.91 (s, 3H), 0.90 (s, 3H), 0.81 (s, 3H), 0.71 (s, 3H), 0.70 (s, 3H), 0.73-0.63 (m, 1H), 0.49 (t, J = 12.7 Hz, 1H). ¹³C NMR (DMSO- d_6 , 400 MHz) δ : 175.6, 165.6, 154.7, 150.0, 144.9, 141.8, 122.0, 109.8, 94.7 (d, J=191.6 Hz), 95.4 (d, J = 10.3 Hz), 94.1, 82.9, 80.3, 74.2 (d, J = 24.5 Hz), 60.8, 55.8, 55.0, 51.2, 49.8, 48.7, 46.6, 44.3, 41.9, 40.1, 38.9, 37.6, 36.7, 36.1, 35.5, 33.8, 31.4, 30.0, 29.1, 28.5, 28.5, 25.0, 20.3, 18.9, 18.2, 16.6, 16.6, 15.6, 14.4. HRMS (ESI) calcd for C₄₃H₆₃FN₆O₇ [M+H]⁺ 795.4821, found 795.4816.

Methyl 2α -{1N[1-(2-deoxy-2 β -fluoro- β -*D*-arabinopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-3 β -hydroxylup-20(29)-en-28-oate (9b).

White solid, yield (68.8%), m.p.174-176 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 11.56 (s, 1H), 7.92 (s, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 6.72 (t, *J* = 7.1 Hz, 1H), 6.31 (d, *J* = 5.6 Hz, 1H), 5.96 (t, *J* = 5.6 Hz, 1H), 5.75 (d, *J* = 8.1 Hz, 1H), 5.41 (dt, *J* = 55.5, 6.0 Hz, 1H), 4.77 (dt, *J* = 25.8, 5.7 Hz, 1H), 4.68 (brs, 1H), 4.58 (d, *J* = 6.5 Hz, 1H), 4.56 (s, 1H), 4.15 (ddd, *J* = 32.8, 12.6, 5.5 Hz, 2H), 3.58 (s, 3H), 3.16-3.09 (m, 1H), 2.89 (td, *J* = 10.4, 5.1 Hz, 1H), 2.68 (dd, *J* = 10.4, 6.7 Hz, 1H), 2.25 (dd, *J* = 14.3, 9.5 Hz, 1H), 2.18-2.04 (m, 2H), 1.86-1.72 (m, 3H), 1.64 (s, 3H), 1.62-1.53 (m, 3H), 1.47-1.03 (m, 14H), 0.91 (s, 3H), 0.90 (s, 3H), 0.81 (s, 3H), 0.71 (s, 3H), 0.70 (s, 3H), 0.73-0.63 (m, 1H), 0.49 (t, *J* = 12.6 Hz, 1H). ¹³C NMR (DMSO-*d*₆, 400 MHz) δ : 175.6, 162.9, 150.2, 150.0, 145.0, 141.2, 122.1, 109.8, 101.8, 94.7 (d, J=192.1 Hz), 95.3 (d, J = 11.0 Hz), 82.2, 80.3, 74.0 (d, J = 25.2 Hz), 60.5, 55.8, 55.0, 51.2, 49.8, 48.7, 46.6, 44.3, 42.0, 40.2, 38.9, 37.6, 36.7, 36.1, 35.5, 33.8, 31.4, 30.0, 29.1, 28.5, 28.5, 25.0, 20.3, 18.9, 18.2, 16.6, 16.6, 15.6, 14.4. HRMS (ESI) calcd for C₄₃H₆₂FN₅O₈ [M+H]⁺ 796.4661, found 796.4656.

Methyl 2α -{1N[1-(2,3-dideoxy- β -D-ribopentafuranosyl)thymine-3-yl]-1H-1,2,3-triazole-4-yl}-3 β -hydroxylup-20(29)-en-28-oate (9c).

White solid, yield (78.3%), m.p.164-166 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 11.4 (s, 1H), 8.00 (s, 1H), 7.82 (brs, 1H), 6.39 (t, J = 6.5 Hz, 1H), 5.35-5.28 (m, 1H), 5.27 (t, J = 5.3 Hz, 1H), 4.68 (s, 1H), 4.60-4.52 (m, 2H), 4.17 (dt, J = 5.8, 3.6 Hz, 1H), 3.74-3.54 (m, 2H), 3.58 (s, 3H), 3.15 (dd, J = 14.1, 2.3 Hz, 1H), 2.95-2.84 (m, 1H), 2.79-2.58 (m, 3H), 2.26 (dd, J = 14.5, 9.4 Hz, 1H), 2.16-2.04 (m, 2H), 1.81 (s, 3H), 1.80-1.68 (m, 3H), 1.64 (s, 3H), 1.62-1.50 (m, 3H), 1.50-1.16 (m, 10H), 1.12-0.93 (m, 3H), 0.92 (s, 3H), 0.90 (s, 3H), 0.81 (s, 3H), 0.71 (s, 3H), 0.69 (s, 3H), 0.71-0.62 (m, 1H), 0.51 (t, J = 12.6 Hz, 1H). ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 175.6, 163.7, 150.4, 150.0, 146.1, 136.2, 122.0, 109.8, 109.5, 84.5, 83.8, 80.3, 60.6, 58.7, 55.8, 55.0, 51.2, 49.9, 48.7, 46.6, 44.4, 42.0, 40.2, 38.9, 37.6, 37.0, 36.6, 36.1, 35.6, 33.8, 31.4, 29.9, 29.1, 28.7, 28.5, 25.0, 20.3, 18.9, 18.2, 16.6, 16.6, 15.6, 14.4, 12.3. HRMS (ESI) calcd for C₄₄H₆₅N₅O₇ [M+H]⁺ 776.4962, found 776.4959.

2α -{1N[1-(2-Deoxy-2\beta-fluoro- β -D-arabinopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-3\beta-hydroxylup-20(29)-en-28-oic acid (10a).

White solid, yield (42.6%), m.p. 189-191 °C. ¹H NMR (MeOH- d_4 , 400 MHz) δ : 7.97 (d, J=7.0 Hz, 1H), 7.89 (s, 1H), 6.85 (dd, J=11.4, 3.6 Hz, 1H), 6.01 (brs, 1H), 5.38 (dt, J=54.1, 4.2 Hz, 1H), 4.80 (dd, J=21.4, 4.0 Hz, 1H), 4.69 (s, 1H), 4.58 (s, 1H), 4.39-4.20 (m, 2H), 3.15 (d, J=12.0 Hz, 1H), 3.06-2.93 (m, 1H), 2.81 (d, J=10.7 Hz, 1H), 2.55 (dd, J=14.1, 8.8 Hz, 1H),

2.36-2.16 (m, 2H), 2,01-1.93 (m, 3H), 1.71-1.57 (m, 3H), 1.68 (s, 3H), 1.46-1.24 (m, 10H), 1.19-1.00 (m, 3H), 0.98 (s, 3H), 0.98 (s, 3H), 0.93 (s, 3H), 0.81 (s, 3H), 0.80 (s, 3H), 0.72 (d, J=8.7 Hz, 1H), 0.60 (t, J=12.8 Hz, 1H). ¹³C NMR (MeOH- d_4 , 100 MHz) δ : 180.6, 167.7, 158.0, 152.1, 146.9, 143.4, 123.9, 110.2, 98.8 (d, J=6.0 Hz), 96.2 (d, J=193.2 Hz), 86.5 (d, J=13.9 Hz), 83.0, 76.4 (d, J=25.2 Hz), 63.2, 57.6, 57.1, 56.0, 52.0, 50.5, 48.6, 46.2, 43.7, 42.0, 40.5, 39.7, 38.5, 38.3, 37.3, 35.6, 33.5, 31.8, 30.9, 29.8, 29.1, 26.9, 22.1, 19.8, 19.7, 17.5, 17.1, 16.7, 15.2. HRMS (ESI) calcd for C₄₂H₆₁FN₆O₇ [M+H]⁺ 781.4664, found 781.4657.

2α -{1N[1-(2-Deoxy-2\beta-fluoro- β -D-arabinopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-3\beta-hydroxylup-20(29)-en-28-oic acid (10b).

White solid, yield (48.8%), m.p. 195-197 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ : 12.03 (brs, 1H), 11.56 (s, 1H), 7.92 (s, 1H), 7.84 (d, J=8.3 Hz, 1H), 6.73 (t, J=7.0 Hz, 1H), 6.30 (d, J=5.6 Hz, 1H), 5.94 (t, J=5.5 Hz, 1H), 5.75 (dd, J=8.1, 1.5 Hz, 1H), 5.42 (dt, J=55.4, 6.0 Hz, 1H), 4.78 (dt, J=25.8, 5.7 Hz, 1H), 4.67 (s, 1H), 4.57 (d, J=6.2 Hz, 1H), 4.55 (s, 1H), 4.16 (ddd, J=31.0, 12.3, 5.8 Hz, 2H), 3.21-3.08 (m, 1H), 2.99-2.85 (m, 1H), 2.69 (dd, J=9.8, 6.3 Hz, 1H), 2.32-2.04 (m, 3H), 1.90-1.71 (m, 3H), 1.68-1.54 (m, 2H), 1.63 (s, 3H), 1.54-1.20 (m, 11H), 1.14-1.01 (m, 2H), 1.01-0.88 (m, 1H), 0.91 (s, 3H), 0.91 (s, 3H), 0.84 (s, 3H), 0.71 (s, 3H), 0.71 (s, 3H), 0.71 (s, 3H), 0.73-0.63 (m, 1H), 0.50 (t, J=12.4 Hz, 1H). ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 177.2, 162.8, 150.2, 145.1, 141.2, 122.2, 109.6, 101.8, 95.3 (d, J=10.9 Hz), 94.7 (d, J=192.3 Hz), 82.2 (d, J=16.0 Hz), 80.3, 74.0 (d, J=24.3 Hz), 60.6, 55.4, 55.0, 49.9, 48.5, 46.6, 44.3, 42.0, 40.2, 38.9, 37.5, 36.7, 36.3, 35.5, 33.8, 31.7, 30.0, 29.1, 28.5, 28.5, 25.0, 20.3, 18.9, 18.2, 16.7, 16.6, 16.6, 15.7, 14.3. HRMS (ESI) calcd for C₄₂H₆₀FN₅O₈ [M+H]⁺ 782.4504, found 782.4498.

$$\label{eq:a-linear} \begin{split} &2\alpha-\{1N[1-(2,3-Dideoxy-\beta-D-ribopenta furanosyl)thymine-3-yl]-1H-1,2,3-triazole-4-yl\}-3\beta\\ &-hydroxylup-20(29)-en-28-oic acid (10c). \end{split}$$

White solid, yield (57.3%), m.p.190-192 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ : 12.06 (brs, 1H), 11.4 (s, 1H), 7.99 (s, 1H), 7.82 (d, J = 1.0 Hz, 1H), 6.39 (t, J = 6.6 Hz, 1H), 5.35-5.28 (m, 1H), 5.27 (t, J = 5.3 Hz, 1H), 4.67 (d, J = 1.8 Hz, 1H), 4.56 (d, J = 6.6 Hz, 1H), 4.55 (s, 1H), 4.17 (dt, J = 5.3, 3.3 Hz, 1H), 3.74-3.54 (m, 2H), 3.15 (dd, J = 14.3, 2.8 Hz, 1H), 2.93 (td, J=10.6, 5.1 Hz, 1H), 2.79-2.58 (m, 3H), 2.31-2.04 (m, 3H), 1.81 (s, 3H), 1.80-1.68 (m, 3H), 1.63 (s, 3H), 1.62-1.55 (m, 2H), 1.50 (t, J=11.5 Hz, 1H), 1.46-1.16 (m, 10H), 1.14-1.02 (m, 2H), 0.99-0.90 (m,1H), 0.92 (s, 3H), 0.90 (s, 3H), 0.84 (s, 3H), 0.71 (s, 3H), 0.69 (s, 3H), 0.71-0.62 (m, 1H), 0.51 (t, J = 13.1 Hz, 1H). ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 177.2, 163.7, 150.4, 150.3, 146.2, 136.2, 122.1, 109.7, 109.6, 84.5, 83.8, 80.3, 60.7, 58.8, 55.4, 55.0, 49.9, 48.5, 46.6, 44.5, 42.0, 40.3, 38.9, 37.5, 37.0, 36.7, 36.3, 35.6, 33.8, 31.7, 30.0, 29.1, 28.7, 28.5, 25.0, 20.4, 18.9, 18.2, 16.6, 16.6, 15.7, 14.4, 12.3. HRMS (ESI) calcd for C₄₃H₆₃N₅O₇ [M+H]⁺ 762.4806, found 762.4802.

Methods for solubility determination of BA and compound 8B by quantitative ¹H NMR:

Preparation of internal standard solution

2,3,5-Triiodobenzoic acid (20.8 mg) was dissolved in methanol- d_4 (2.0 mL) to produce the internal standard solution with a concentration of 10.4 mg/mL. The standard solutions were prepared before use.

Preparation of samples for NMR spectroscopic analysis

Saturated solutions (300 μ L) of BA and compound **8b** in methanol-*d*⁴ were transferred into separate 5 mm NMR tubes. The same volume of internal standard (2,3,5-triiodobenzoic acid) was added into each tube before NMR analysis.

¹H NMR spectroscopy analysis and data processing

All ¹H NMR spectra were recorded on an Agilent 400 MR 400MHz spectrometer operating at a proton NMR frequency of 399.79 MHz. The spectra were measured without sample spinning at a temperature of 298K. Methanol- d_4 was used as the internal lock. The following parameters were used in all ¹H NMR experiments: 16 scans of 64K data points were acquired with a spectral width of 6410 Hz (16 ppm), an acquisition time of 2.56 s, a relaxation delay of 30 s to ensure relaxation for all signals; the exponential window function was selected and the line broadening (LB) was set to 0.3 Hz. Phase and baseline corrections were performed manually prior to signal integration by using MestReNova software (version 10.0.1, Mestrelabs Research SL, Santiago de Compostela, Spain).

Compound	MW	Weight (mg)	μmol	Volume (mL)	Area
BA	456.71 (M _x)	1.47	3.21	0.3	0.5250 (Ax)
8b	793.96 (M _x)	15.78	19.88	0.3	3.2499 (Ax)
2,3,5-triiodobenzoic acid	499.81 (M _{IS})	3.12 (W _{IS})	6.24	0.3	1 (A _{IS})

The quantification of BA and **8b** in this study can be performed by using the following equation:

$$\mathbf{W}\mathbf{x} = -\frac{Ax}{A_{IS}} \times \frac{N_{IS}}{Nx} \times \frac{Mx}{M_{IS}} \times W_{IS} \times P_{IS}$$

Wx is the mass of the analyte,

Ax and AIS represent their integral areas of the analyte and internal standard (IS),

 N_{IS} and Nx correspond to the numbers of spinning protons of internal standard and the analyte (in this experiment, both N_{IS} and Nx = 1),

Mx and M_{IS} are the molecular masses of the analyte and IS,

W_{IS} is the weighed mass of IS,

P_{IS} is the purity of the internal standard. (98.0 %)

The equation can be simplified as follows:

$$Wx = Ax \times \frac{Mx}{M_{IS}} \times 3.0576$$

The calculated solubilities of BA and compound **8b** in methanol are 4.9 mg/mL and 52.6 mg/mL (10.7 mmol/L and 66.3 mmol/L), respectively.

Fig. S1 ¹H NMR spectrum of compound 6 in DMSO- d_6

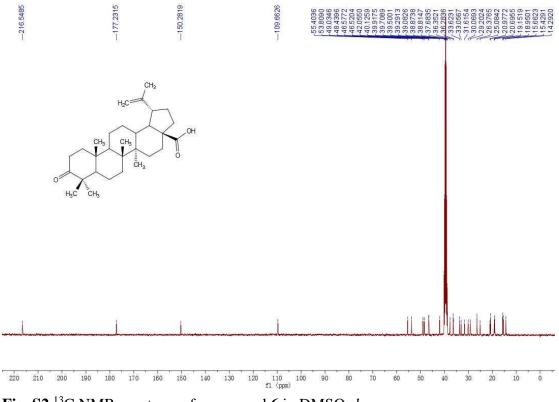


Fig. S2 ¹³C NMR spectrum of compound 6 in DMSO-d₆

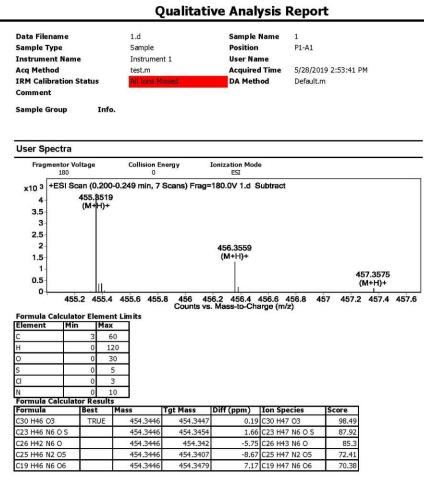
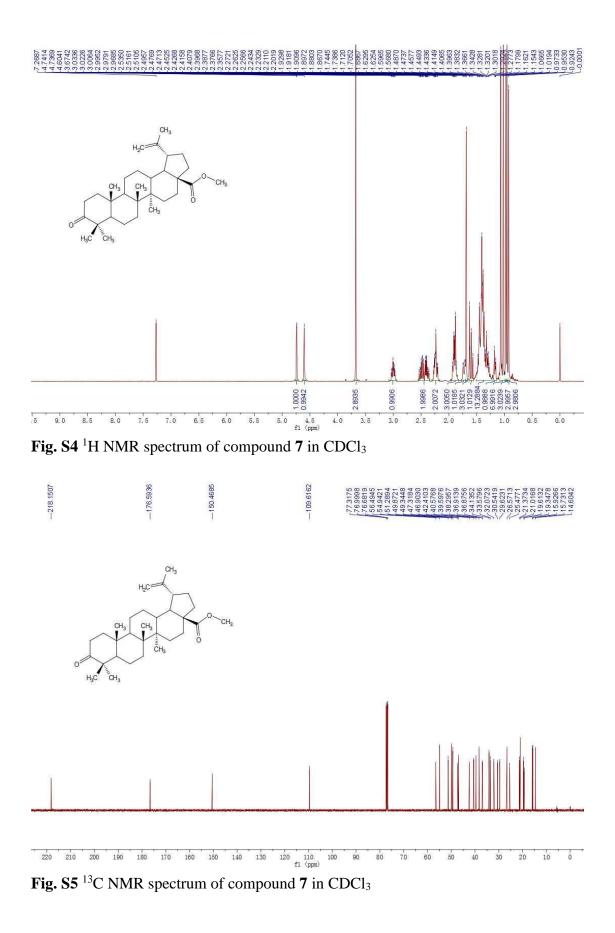



Fig. S3 HRMS spectrum of compound 6

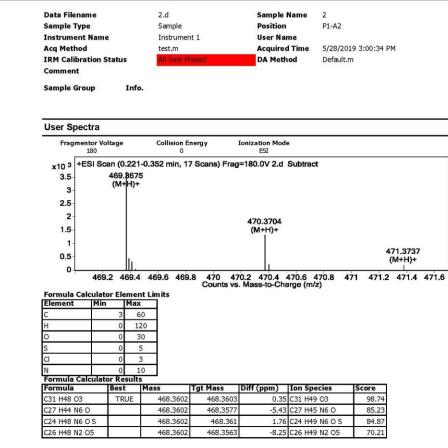


Fig. S6 HRMS spectrum of compound 7

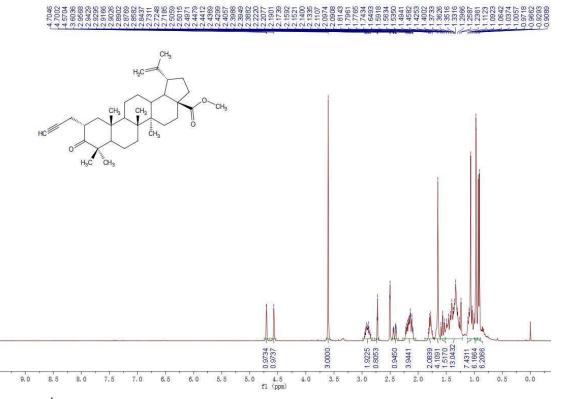


Fig. S7 ¹H NMR spectrum of compound 8 in DMSO- d_6

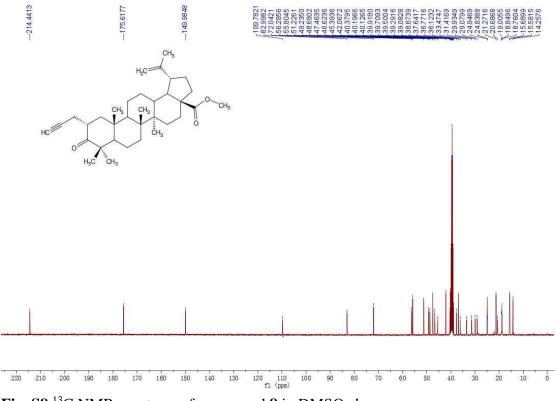


Fig. S8 ¹³C NMR spectrum of compound 8 in DMSO-*d*₆

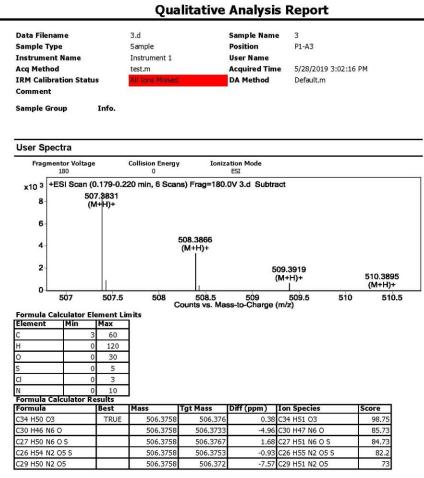


Fig. S9 HRMS spectrum of compound 8

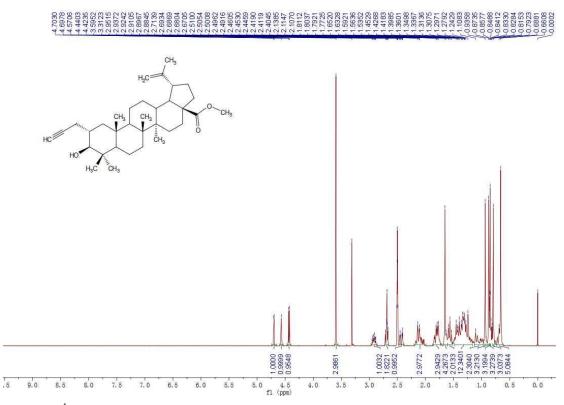


Fig. S10 ¹H NMR spectrum of compound 9 in DMSO-*d*₆

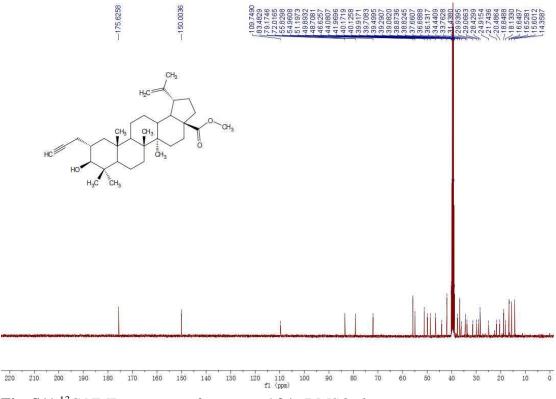


Fig. S11 ¹³C NMR spectrum of compound 9 in DMSO- d_6

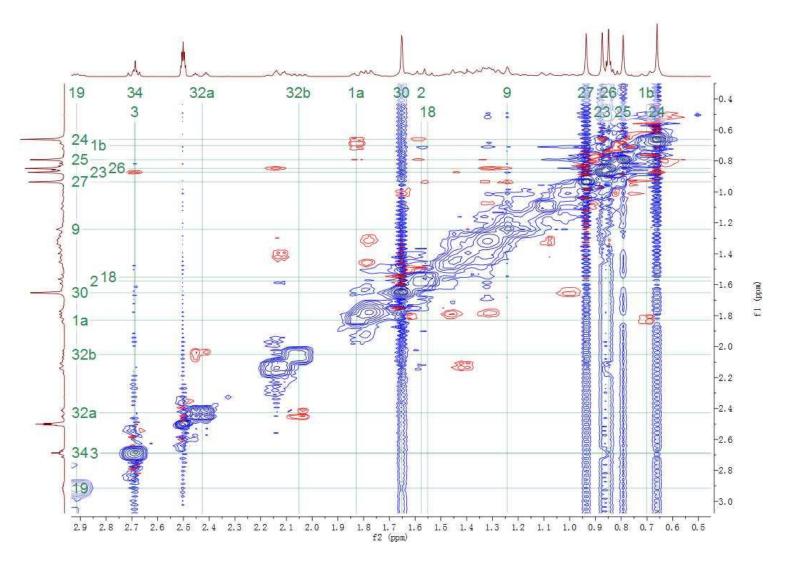


Fig. S12 NOESY spectrum of compound 9

Qualitative Analysis Report

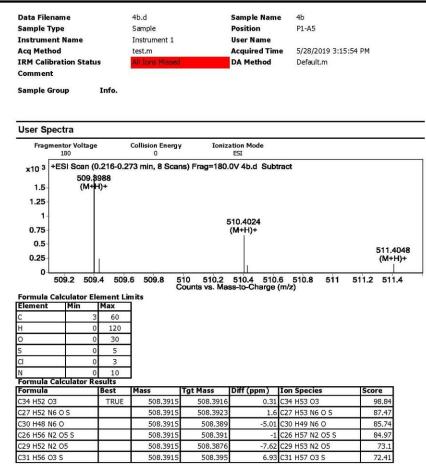


Fig. S13 HRMS spectrum of compound 9

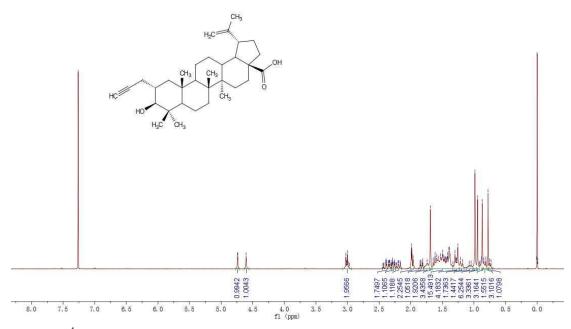


Fig. S14 ¹H NMR spectrum of compound 10 in CDCl₃

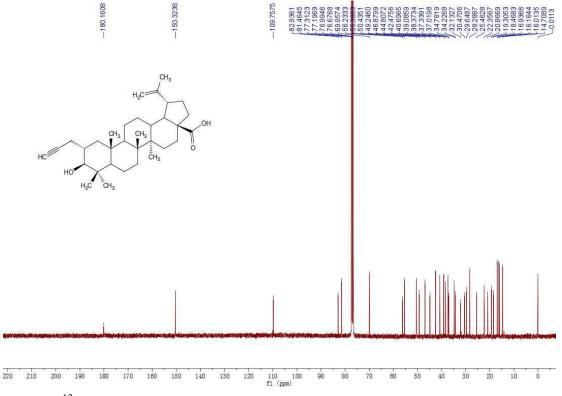


Fig. S15¹³C NMR spectrum of compound 10 in CDCl₃

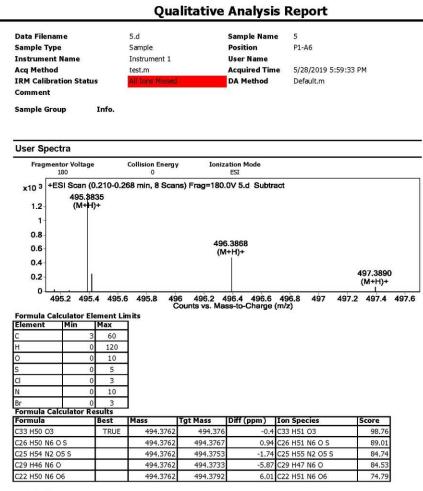


Fig. S16 HRMS spectrum of compound 10

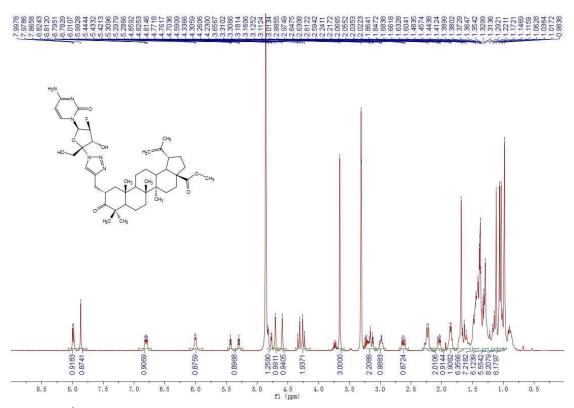


Fig. S17¹H NMR spectrum of compound 8a in MeOH-d₄

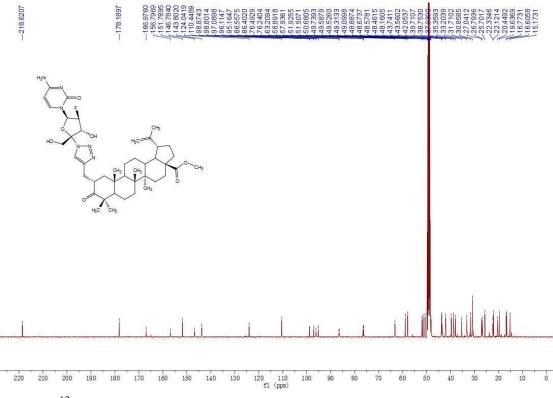


Fig. S18 ¹³C NMR spectrum of compound 8a in MeOH-d₄

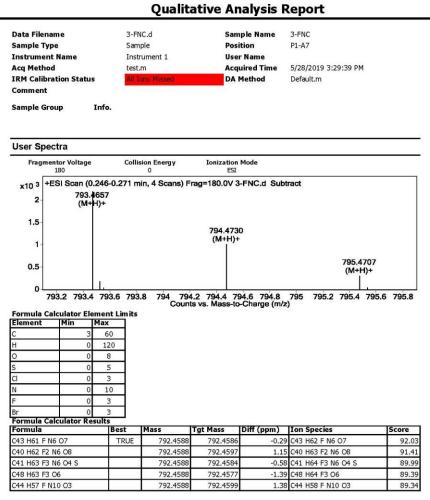
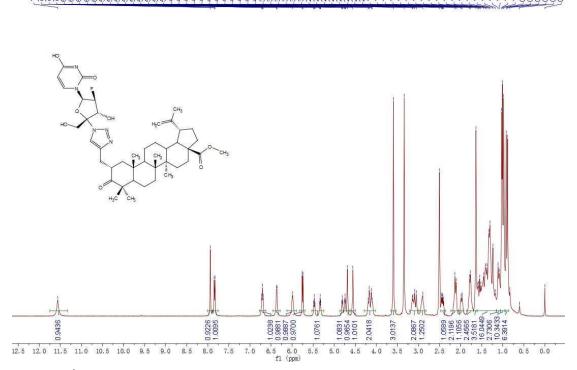



Fig. S19 HRMS spectrum of compound 8a

1,5528 1,5528 1,5528 1,529 1,2519 1,2519 1,2519 1,2519 1,2567 1,1176

Fig. S20 ¹H NMR spectrum of compound 8b in DMSO-*d*₆

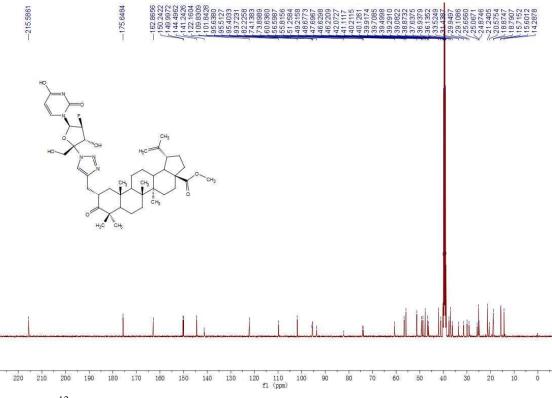


Fig. S21 ¹³C NMR spectrum of compound 8b in DMSO-*d*₆

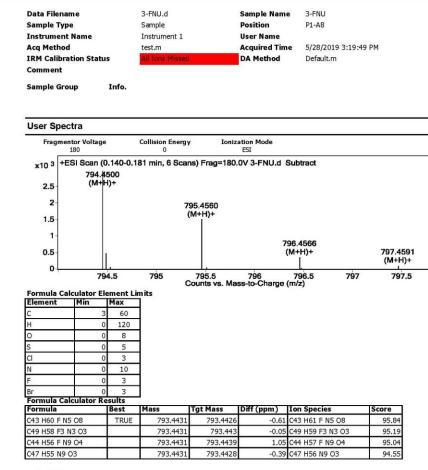


Fig. S22 HRMS spectrum of compound 8b

Fig. S23 ¹H NMR spectrum of compound 8c in CDCl₃

Fig. S24 ¹³C NMR spectrum of compound 8c in CDCl₃

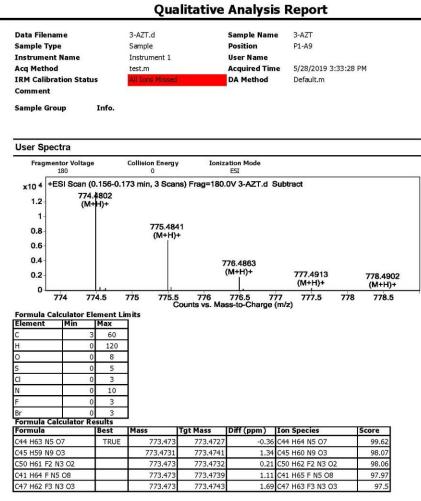


Fig. S25 HRMS spectrum of compound 8c

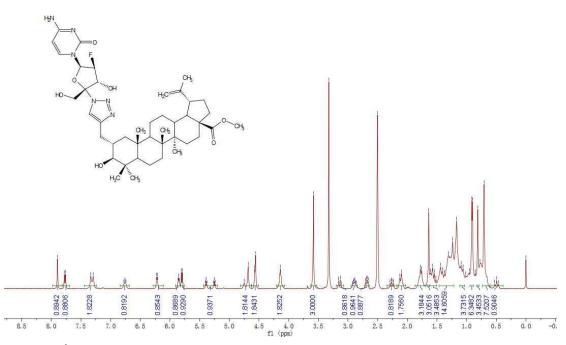


Fig. S26 ¹H NMR spectrum of compound 9a in DMSO-*d*₆

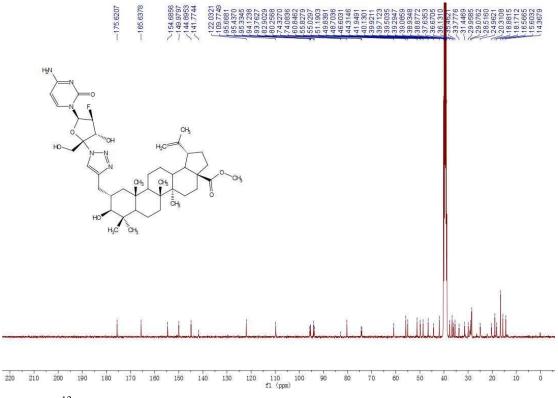


Fig. S27 ¹³C NMR spectrum of compound 9a in DMSO- d_6

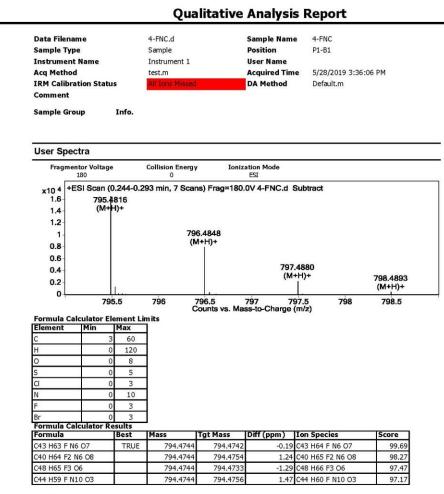


Fig. S28 HRMS spectrum of compound 9a

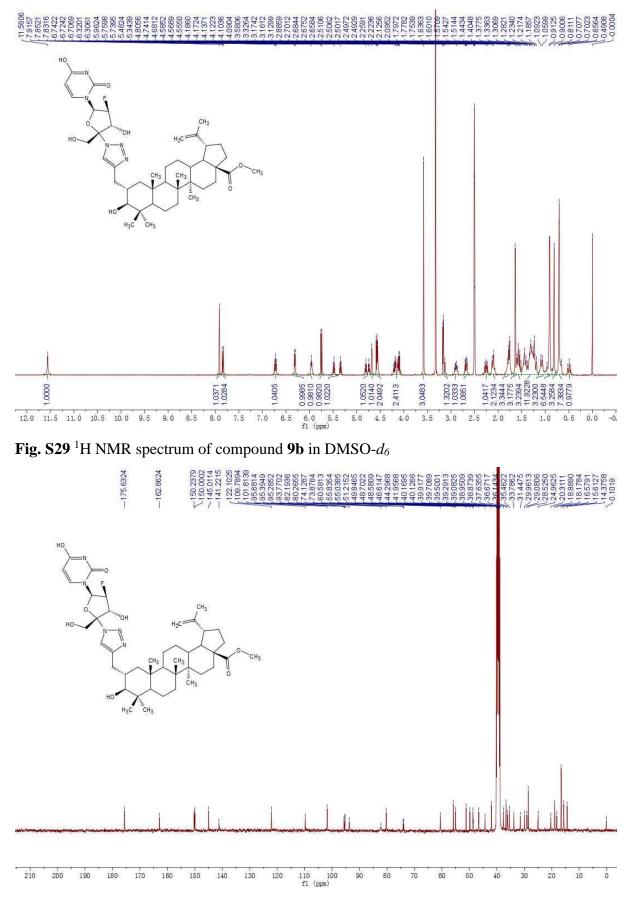


Fig. S30 ¹³C NMR spectrum of compound 9b in DMSO-*d*₆

Qualitative Analysis Report

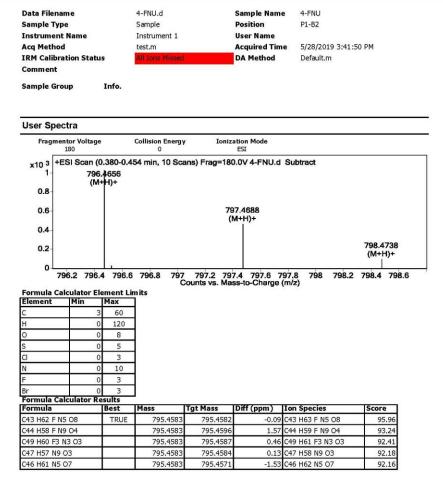


Fig. S31 HRMS spectrum of compound 9b

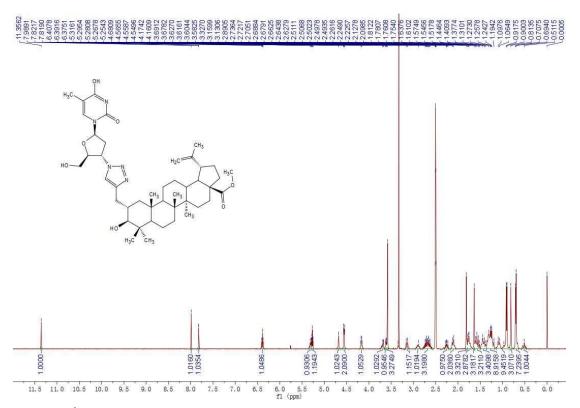


Fig. S32 ¹H NMR spectrum of compound 9c in DMSO-*d*₆

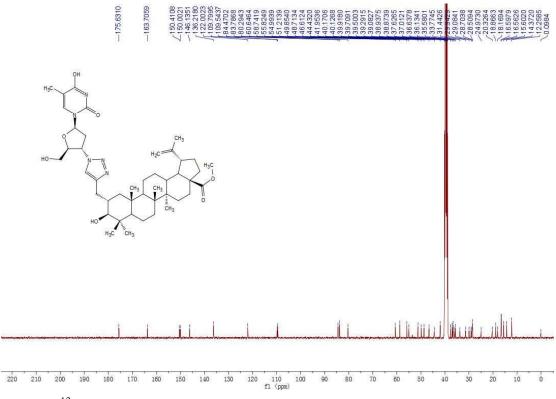


Fig. S33 ¹³C NMR spectrum of compound 9c in DMSO-*d*₆

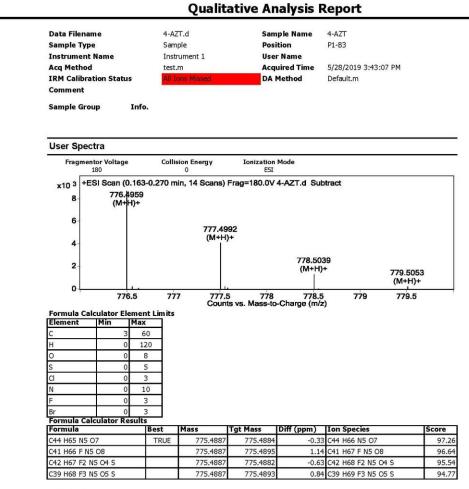


Fig. S34 HRMS spectrum of compound 9c

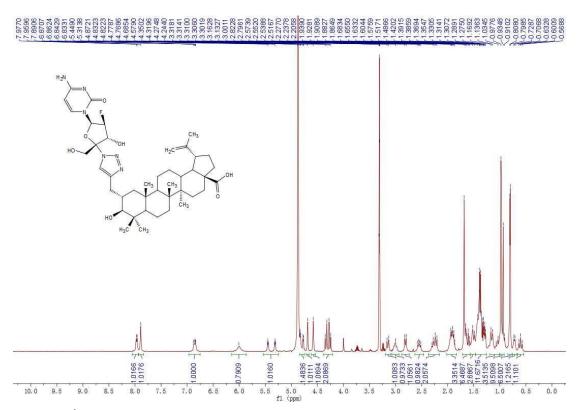


Fig. S35 ¹H NMR spectrum of compound 10a in MeOH-d₄

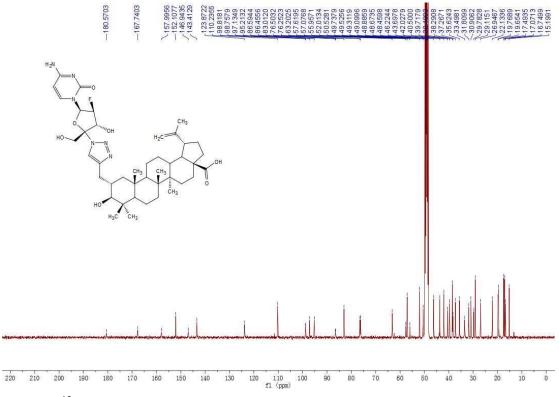


Fig. S36 ¹³C NMR spectrum of compound 10a in MeOH-d₄

Position User Name Acquired Time DA Method	P1-C6 7/3/2019 11:47:29 AM Default.m
Acquired Time	
DA Method	Default.m
Ionization Mode	
180.0V 5-FNC.d Sub	btract
	TU/T
(/84.4/00
1	(M+H)+
783 7	83.5 784 784.5
	ESI 180.0V 5-FNC.d Su

0.0		h.		-	(M+H)+			
Formula Ca		81.5		782.5 Counts vs. Ma	783 ss-to-Charge	783.5 (m/z)	784 78	
Element	Min	Max	7					
С	1	3 60]					
н	(0 120]					
0		0 30]					
CI	(0 3						
Br	(0 3						
N	(0 20						
F		0 3						
Formula Ca Formula	lculator R	Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score	
C42 H61 F N	6 07	TRUE	780.4584			C42 H62 F N6 O7	97.42	
C38 H66 F2	N2 012		780.4584	780.4584	-	C38 H67 F2 N2 O		
C36 H54 F2	N16 O2		780.4585	780.4584	-0.11	C36 H55 F2 N16 0	96.6	
C41 H65 F N	2 011		780.4584	780.4572	-1.48	C41 H66 F N2 O1	1 96.57	
C39 H62 F2	N6 08		780.4584	780.4597	1.67	C39 H63 F2 N6 O	3 95.77	

Fig. S37 HRMS spectrum of compound 10a

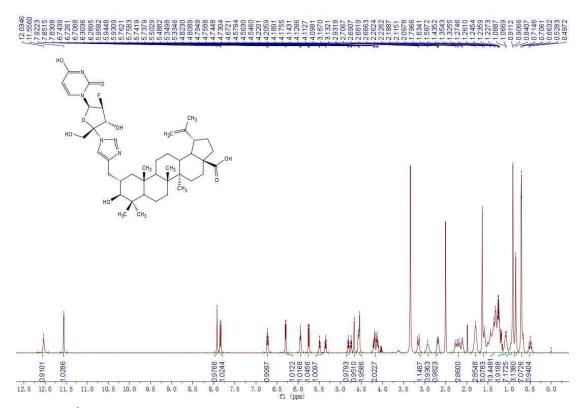


Fig. S38 ¹H NMR spectrum of compound 10b in DMSO-d₆

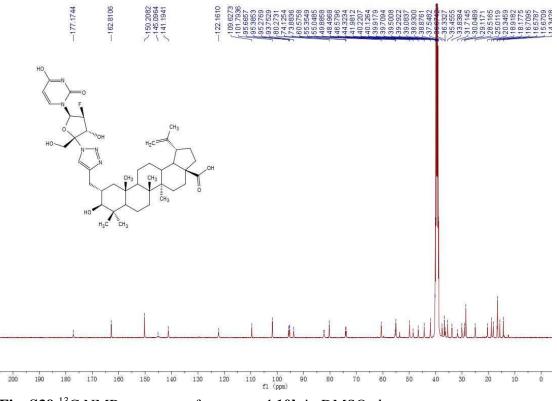


Fig. S39 ¹³C NMR spectrum of compound 10b in DMSO-*d*₆

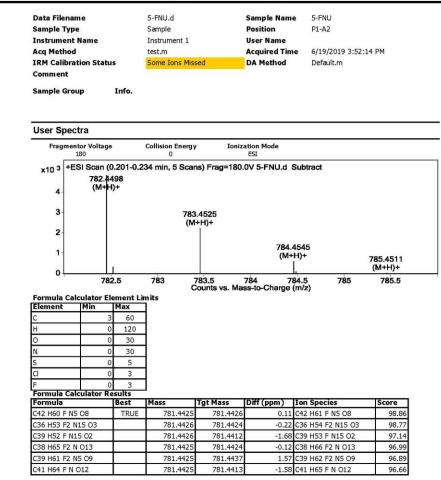


Fig. S40 HRMS spectrum of compound 10b

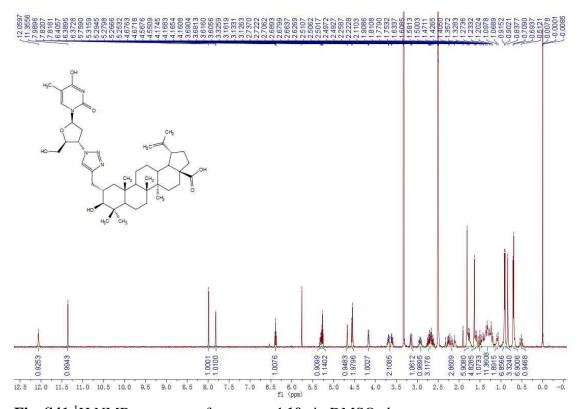


Fig. S41 ¹H NMR spectrum of compound 10c in DMSO-d₆

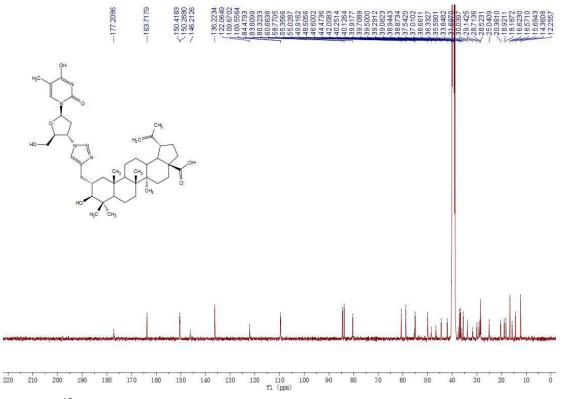
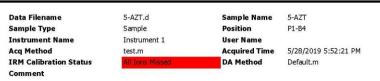



Fig. S42 ¹³C NMR spectrum of compound 10c in DMSO-*d*₆

Qualitative Analysis Report

Sample Group

Info.

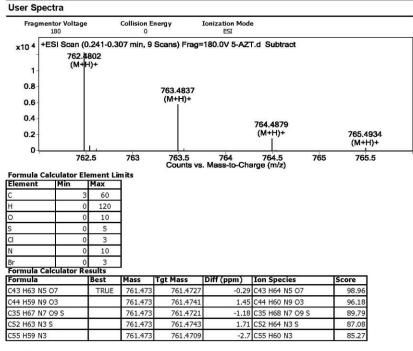


Fig. S43 HRMS spectrum of compound 10c

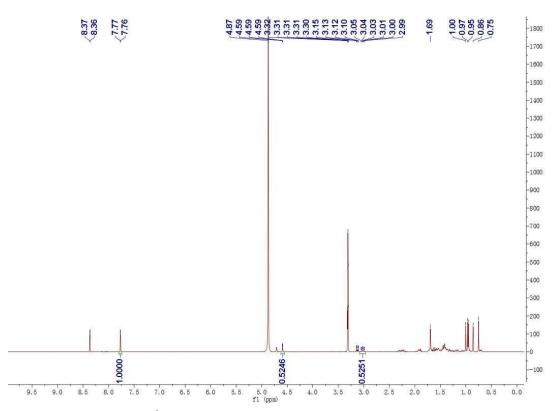


Fig. S44. Quantitative ¹H NMR spectrum of betulinic acid with internal standard

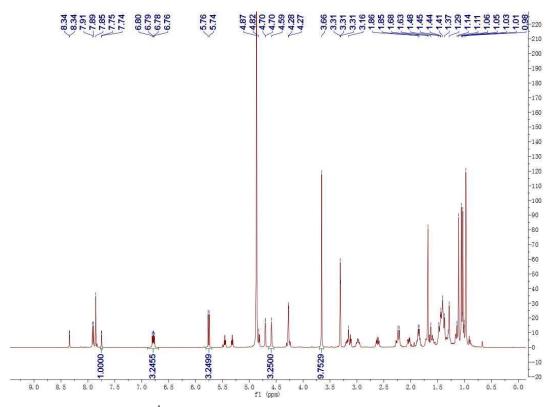


Fig. S45. Quantitative ¹H NMR spectrum of compound 8b with internal standard