Supporting Information ## Three-Dimensional Inverse Opal TiO₂ Coatings to Enable the Gliding of Viscous Oils Lacey D. Douglas, 1,2 Thomas E. O'Loughlin, 1,2 Cody J. Chalker, 1,2 Nicholas Cool, 1,2 Subodh Gupta, 3 James D. Batteas, 1,2 Sarbajit Banerjee*, 1,2 **Video S1.** The rapid gliding of heavy oil off of the 3D inverse opal titania coating. The coating was prepared using a 1:1 (v/v) of TiO₂:PS colloidal dispersions and further functionalized with PFOPA. **Video S2.** Heavy oil on an unfunctionalized steel substrate. **Figure S1.** XPS spectra of 1500 nm TiO_2 particles acquired in (A) C 1s (red: adventitious C, blue: $K^+ 2p_{3/2}$, teal: $K^+ 2p_{1/2}$, pink: O-C/O-C=O) (B) F 1s and (C) O 1s (red: lattice O, blue: Ti-OH) regions. **Figure S2.** XPS spectra of PFOPA acquired in (A) C 1s (red: C-H/C-C, teal: -<u>CF₂</u>-CH₂-pink: O-C/O-C=O, blue: C-P/-<u>CH₂</u>-CF₂-) (B) F 1s (red: -CF₂/-CF₃, blue: F⁻) and (C) O 1s (red: P=O, blue: P-O, teal: P-OH) regions. ¹Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA ²Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA ³Cenovus Energy Inc., 225 6 Ave SW, Calgary, AB T2P 0M5, Canada ^{*}Email: banerjee@chem.tamu.edu