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Experimental Section
Materials and Methods. Deuterated solvents were purchased from the Cambridge Isotope

Laboratories and other chemicals were purchased from Millipore Sigma. Solvents were degasified
and dried over molecular sieves (4 A) overnight prior to use. The reagents packed under inert
atmosphere were used as received and all other liquid reagents were degasified before use by
standard Schlenk line technique. 'H, 3C, and B NMR spectra were recorded on a Bruker
AVANCE 500 NMR spectrometer. Boron trifluoride diethyl etherate (BF3-OEt2) was used as the

standard reference for 1B NMR analysis.

Gas chromatography mass spectrometry analyses were performed using Agilent GC-MS
(6890GC, 5975C) equipped with an autosampler (7386B series) and a split/splitless injector
(Agilent Technologies, Santa Clara, CA, USA). Separations were accomplished using a 24.6 m
long DB-5 capillary column, 0.25 mm internal diameter (1.D.) and 0.25 mm film thickness (J&W
Scientific, Rancho Cordova, CA, USA) at a constant helium flowrate of 1.0 mL/min. Samples (1.0
uL) were injected into a single gooseneck splitless liner with glass wool in a pulsed splitless
injection mode with 25 psi for 0.3 min, and solvent delay was set to 2.5 min. The column
temperature program started at 35 °C with a hold of 1 min, followed by the gradient of 20 °C/min
to 320 °C and hold for 1 min. The MS data (total ion chromatogram, TIC) were acquired in the
full scan mode (35-850 m/z) at a scan rate of 1.84 scan/s using the electron ionization (EI) with an

electron energy of 70 eV.

High resolution time-of-flight mass spectrometry (HR-ToF-MS) with electrospray
ionization (ESI) (G1969A, Agilent Technologies, Santa Clara, CA) was performed in a positive
ionization mode. The ESI-HR-ToF-MS analysis was performed by direct infusion at 5 pL/min
using the electrospray (capillary) and fragmentor voltages of 5500 and 250 V, respectively.
Nitrogen was used as a nebulizing gas at a flow rate of 4 L/min and drying gas set at 25 psig. All
samples for ESI-MS were dissolved in acetonitrile (final concentration of 1 pug/mL) no additional
electrolyte was used. The ESI-HR-ToF-MS was calibrated at mass range 100 - 3000 m/z with mass

accuracy error < 10 ppm.

General Procedure for the hydroboration of carbonyls. The hydroboration reactions were
performed using J. Young NMR tubes in a glovebox under nitrogen atmosphere. Calculated
amount of catalyst, Mn-1, (0.002 to 1 mol%) was added to 0.35-0.40 mL of CD3CN at room

S4



temperature. To this was added a carbonyl substrate (0.893 mmol, 1 equiv) followed by
hydroborane (0.982 mmol, 1.1 equiv). The progress of the reaction was monitored by the 'H, 3C,
and 1'B NMR spectroscopies. After the hydroboration reaction was complete, the reaction mixture
was transferred to a round bottom flask/sample vial with acetonitrile and hexane, and hydrolyzed
by mixing with aqueous HCI (1 M). After hydrolysis, the organic layer was extracted with hexane
and subjected to column chromatography using silica with hexane-EtOAc as eluent. The resultant
products were characterized by *H and/or 3C NMR and the conversions of the starting carbonyls
and the yields of the isolated alcoholes were reported in Tables 2 & 3. The identities of the products
were confirmed by comparison of 'H, *C, and/or *B NMR spectra with previous literature

reports.t:2 -3

NMR characterization data
Acetophenone hydroboration product:* *H NMR (500 MHz, CD3CN, 298 K, §): 1.22 (m, 12H,

4CHs), 1.49 (d, 3H, -CHa), 5.26 (g, 1H, -OCH), 7.28 (m, 1H, -Ph), 7.38 (m, 4H, -Ph). 3C {1H}
NMR (125 MHz, CDsCN, 298 K, §): 25.33 (4CHgs), 27.08 (CHs), 73.23 (OCH), 83.51 (-B-
OCHpin), 126.18, 128.08, 129.17, 145.65 (Ph). Hydrolysis product (1-phenylethanol): *H
NMR (500 MHz, CDCls, 298 K, 8): 1.42 (d, 3H, CHs), 4.84 (q, 1H, OCH), 7.18 (d, 2H, Ph), 7.20
(m, 3H, Ph)

Table 2. Entry 1:* p-chloroacetophenone hydroboration product: *H NMR (500 MHz,
CDsCN, 298 K, 8): 1.21 (m, 12H, 4CH3), 1.43 (d, 3H, -CH3), 5.20 (q, 1H, -OCH), 7.31 (m, 4H, -
Ph). B {*H} NMR (99 MHz, CDsCN, 298 K, §): 25.40. Hydrolysis product (1-(4-
chlorophenyl)ethanol): *H NMR (500 MHz, CDCls, 298 K, §): 1.40 (d, 3H, CHs), 4.89 (q, 1H,
OCH), 7.30 (m, 4H, Ph)

Table 2. Entry 2:°> p-bromoacetophenone hydroboration product: *H NMR (500 MHz,
CDsCN, 298 K, 6): 1.20 (m, 12H, 4CH3), 1.43 (d, 3H, -CH3), 5.16 (q, 1H, -OCH), 7.25 (m, 2H, -
Ph), 7.46 (m, 2H, -Ph). !B {*H} NMR (99 MHz, CD3CN, 298 K, §): 25.40. Hydrolysis product
(1-(4-bromophenyl)ethanol): *H NMR (500 MHz, CDCls, 298 K, §): 1.42 (d, 3H, CH3), 4.72 (q,
1H, OCH), 7.18 (m, 2H, Ph), 7.42 (m, 2H, Ph)

Table 2. Entry 3:4 p-trifluoromethyl acetophenone hydroboration product: *H NMR (500
MHz, CD3CN, 298 K, 4): 1.20 (m, 12H, 4CH3), 1.47 (d, 3H, -CH3), 5.29 (g, 1H, -OCH), 7.52 (m,
2H, -Ph), 7.64 (m, 2H, -Ph). 1B {*H} NMR (99 MHz, CD3sCN, 298 K, §): 25.42. Hydrolysis
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product (1-(4-trifluoromethylphenyl)ethanol): *H NMR (500 MHz, CDCls, 298 K, §): 1.51 (d,
3H, CH3), 4.88 (g, 1H, OCH), 7.44 (m, 2H, Ph), 7.57 (m, 2H, Ph)

Table 2. Entry 4:* p-nitroacetophenone hydroboration product: *H NMR (500 MHz, CD3CN,
298 K, 9): 1.21 (m, 12H, 4CH3), 1.46 (d, 3H, CHs3), 5.30 (9, 1H, OCH), 7.55 (d, 2H, Ph), 8.16 (d,
2H, Ph). Hydrolysis product (1-(4-nitrophenyl)ethanol): *H NMR (500 MHz, CDCls, 298 K,
d): 1.49 (d, 3H, CHs), 4.97 (q, 1H, OCH), 7.51 (d, 2H, Ph), 8.04 (d, 2H, Ph).

Table 2. Entry 5:° p-methoxyacetophenone hydroboration product: *H NMR (500 MHz,
CDsCN, 298 K, 3): 1.22 (m, 12H, 4CHs), 1.45 (d, 3H, CHs), 3.63 (s, 3H, OCHs3), 5.18 (q, 1H,
OCH), 6.88 (d, 2H, Ph), 7.27 (d, 2H, Ph). !B {*H} NMR (99 MHz, CDsCN, 298 K, §): 24.39.
Hydrolysis product (1-(4-methoxyphenyl)ethanol): *H NMR (500 MHz, CDCls, 298 K, §): 1.50
(d, 3H, CHg), 3.60 (s, 3H, OCH3), 4.87 (q, 1H, OCH), 6.88 (d, 2H, Ph), 7.27 (d, 2H, Ph).

Table 2. Entry 6:7 p-methylacetophenone hydroboration product: H NMR (500 MHz,
CDsCN, 298 K, 8): 1.22 (m, 12H, 4CHa), 1.47 (d, 3H, CH3), 2.33 (s, 3H, CH3), 5.22 (g, 1H, OCH),
7.16 (d, 2H, Ph), 7.26 (d, 2H, Ph). B {*H} NMR (99 MHz, CD3CN, 298 K, §): 24.49. Hydrolysis
product (1-(4-methylphenyl)ethanol): *H NMR (500 MHz, CDCls, 298 K, §): 1.41 (d, 3H, CHa),
2.25 (s, 3H, CH3), 4.82 (g, 1H, OCH), 7.08 (d, 2H, Ph), 7.15 (d, 2H, Ph).

Table 2. Entry 7:% cyclopropylphenylketone hydroboration product: *H NMR (500 MHz,
CD3CN, 298 K, 6): 0.40-0.50 (m, 4H, cyclopropyl 2CH>), 1.21 (m, 1H, cyclopropyl CH), 1.23 (m,
12H, 4CH3), 4.49 (m, 1H, OCH), 7.28 (m, 1H, Ph), 7.36 (m, 2H, Ph), 7.41 (m, 2H, Ph). Hydrolysis
product (a-cyclopropylbenzylalcohol): *H NMR (500 MHz, CDCls, 298 K, 8): 0.35-0.46 (m, 4H,
cyclopropyl 2CH>), 0.56 (m, 1H, cyclopropyl CH), 4.02 (m, 1H, OCH), 7.20 (m, 1H, Ph), 7.31
(m, 2H, Ph), 7.48 (m, 2H, Ph)

Table 2. Entry 8:5 benzophenone hydroboration product: *H NMR (500 MHz, CD3CN, 298
K, 8): 1.26 (m, 12H, 4CHy), 6.30 (s, 1H, OCH), 7.31 (m, 2H, Ph), 7.39 (m, 4H, Ph), 7.48 (m, 4H,
Ph). Hydrolysis product (a-phenylbenzenemethanol): *H NMR (500 MHz, CDCls, 298 K, §):
2.37 (s, 1H, OH), 5.81 (s, 1H, OCH), 7.28 (m, 2H, Ph), 7.33 (m, 4H, Ph), 7.37 (m, 4H, Ph)

Table 2. Entry 9:8 2-pentanone hydroboration product: *H NMR (500 MHz, CDsCN, 298 K,
5): 0.89 (M, 3H, CHs), 1.13 (M, 2H, CHs), 1.23 (m, 12H, 4CHs), 1.35 (m, 3H, OCHCHs), 1.43 (m,
2H, OCHCHy), 4.11 (m, 1H, OCH)
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Table 2. Entry 10:8 cyclohexanone hydroboration product: *H NMR (500 MHz, CDsCN, 298
K, 8): 1.19 (m, 12H, 4CHj3), 1.25 (m, 4H, CHy), 1.49 (m, 2H, CH>), 1.69 (m, 2H, CH>), 1.78 (m,
2H, CH>), 3.90 (m, 1H, OCH)

Table 2. Entry 11:® 3-cyclohexenone hydroboration product: *H NMR (500 MHz, CDsCN,
298 K, 8): 1.25 (m, 12H, 4CHs), 1.65 (m, 2H, CH>), 1.79 (m, 1H, CH), 1.91 (m, 1H, CH), 2.03 (m,
2H, CHy), 4.58 (m, 1H, OCH), 5.73 (m, 1H, CH=CH), 5.88 (m, 1H, CH=CH). !B {*H} NMR (99
MHz, CDsCN, 298 K, §): 25.17. Hydrolysis product (3-cyclohexene-1-methanol): *H NMR
(500 MHz, CDCls, 298 K, 8): 1.58-2.36 (m, 6H, 3CH>), 4.45 (m, 1H, OCH), 5.62 (m, 1H,
CH=CH), 5.71 (m, 1H, CH=CH)

Table 2. Entry 12:7 benzylideneacetophenone hydroboration product: *H NMR (500 MHz,
CD3CN, 298 K, 6): 1.26 (m, 12H, 4CHs3), 5.81 (m, 1H, -OCH), 6.44 (m, 1H, -OCHCH=CH), 6.74
(m, 1H, -OCHCH=CH), 7.26-7.56 (m, 10H, Ph). !B {"H} NMR (99 MHz, CDsCN, 298 K, §):
26.10. Hydrolysis product (1,3-diphenyl-2-propen-1-ol): *H NMR (500 MHz, CDCls, 298 K,
d): 5.20 (m, 1H, -OCH), 6.35 (m, 1H, -OCHCH=CH), 6.68 (m, 1H, -OCHCH=CH), 7.18-7.46 (m,
10H, -Ph)

Table 2. Entry 13:° 4-phenyl-3-butyne-2-one hydroboration product: *H NMR (500 MHz,
CDsCN, 298 K, 8): 1.24 (m, 12H, 4CH3), 1.52 (d, 3H, -CHs3), 5.05 (q, 1H, -OCH), 7.35 (m, 3H, -
Ph), 7.42 (m, 2H, -Ph). *C {1H} NMR (125 MHz, CD3sCN, 298 K, &): 24.30 (4CHs), 24.92
(4CHs), 61.97 (-OCH), 83.87 (4° C of Bpin), 84.19 (-OCHC=C), 90.89 (-OCHC=CPh), 129.43,
129.73, 132.32, 133.75 (Ph). !B {*H} NMR (99 MHz, CDsCN, 298 K, §): 25.48. Hydrolysis
product (4-phenyl-3-butyne-2-ol): *H NMR (500 MHz, CDCls, 298 K, §): 1.46 (m, 3H, -CH3),
4.84 (m, 1H, -OCH), 7.29 (m, 2H, -Ph), 7.31 (m, 3H, -Ph)

Table 3. Entry 1 & 3:% benzaldehyde hydroboration product: *H NMR (500 MHz, CD3CN,
298 K, §): 1.21 (m, 12H, 4CHs), 4.85 (s, 2H, OCH5), 6.95 (d, 2H, Ph), 7.31 (d, 2H, Ph). 13C {1H}
NMR (125 MHz, CDsCN, 298 K, 3): 25.03 (4CHs), 67.35 (OCH,), 83.76 (B-OCHpin), 127.68,
128.37, 129.32, 140.51 (Ph). “B {*H} NMR (99 MHz, CDsCN, 298 K, &): 24.05. Hydrolysis
product (benzyl alcohol) *H NMR (500 MHz, CDCls, 298 K, &): 4.68 (s, 2H, OCH>), 7.19 (m,
2H, Ph), 7.35-7.40 (m, 3H, Ph)
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Table 3. Entry 2 & 4:° p-methoxybenzaldehyde hydroboration product: *H NMR (500 MHz,
CD3CN, 298 K, 9): 1.26 (m, 12H, 4CH3), 3.78 (s, 3H, OCHj3), 4.83 (s, 2H, OCHy), 6.92 (d, 2H,
Ph), 7.29 (d, 2H, Ph). Hydrolysis product (p-methoxybenzyl alcohol) *H NMR (500 MHz,
CDCls, 298 K, 9): 3.52 (s, 3H, OCH3), 4.61 (s, 2H, OCHy), 6.82 (m, 2H, Ph), 7.11 (m, 2H, Ph).

Table 3. Entry 5:° p-nitro benzaldehyde hydroboration product: *H NMR (500 MHz, CDsCN,
298 K, 8): 1.23 (m, 12H, 4CH3), 4.98 (s, 3H, OCH), 7.52 (d, 2H, Ph), 8.17 (d, 2H, Ph). Hydrolysis
product (p-nitrobenzyl alcohol) *H NMR (500 MHz, CDCls, 298 K, §): 4.81 (s, 2H, OCH,), 7.45
(m, 2H, Ph), 8.09 (m, 2H, Ph).

Table 3. Entry 6:” p-cyanobenzaldehyde hydroboration product: 'H NMR (500 MHz,
CDsCN, 298 K, 3): 1.23 (m, 12H, 4CHs), 4.93 (m, 2H, OCHy), 7.46 (m, 2H, Ph), 7.69 (m, 2H,
Ph). 13C {1H} NMR (125 MHz, CDsCN, 298 K, &): 24.92 (4CHs), 66.44 (OCH,), 83.99 (B-
OCHpin), 111.76, 127.90, 133.16, 145.89 (Ph). Hydrolysis product (p-cyanobenzyl alcohol) *H
NMR (500 MHz, CDCls, 298 K, §): 4.76 (s, 2H, OCHy), 7.42 (m, 2H, Ph), 7.62 (m, 2H, Ph)

Table 3. Entry 7:* p-chlorobenzaldehyde hydroboration product: H NMR (500 MHz,
CDsCN, 298 K, 8): 1.22 (m, 12H, 4CH3), 4.96 (m, 2H, OCH,), 7.45 (m, 2H, Ph), 7.62 (m, 2H,
Ph). 1B {*H} NMR (99 MHz, CD3CN, 298 K, §): 24.92. Hydrolysis product (p-chlorobenzyl
alcohol) *H NMR (500 MHz, CDCls, 298 K, 8): 4.69 (s, 2H, OCH,), 7.39 (m, 2H, Ph), 7.50 (m,
2H, Ph)

Table 3. Entry 8:°* p-bromobenzaldehyde hydroboration product: *H NMR (500 MHz,
CDsCN, 298 K, 8): 1.23 (m, 12H, 4CHs), 4.95 (m, 2H, OCH), 7.43 (m, 2H, Ph), 7.65 (m, 2H,
Ph). 1B {!H} NMR (99 MHz, CDsCN, 298K, §): 24.95. Hydrolysis product (p-bromobenzyl
alcohol) *H NMR (500 MHz, CDCls, 298 K, 3): 4.55 (s, 2H, OCH2), 7.22 (m, 2H, Ph), 7.37 (m,
2H, Ph)

Table 3. Entry 9:” o-bromo benzaldehyde hydroboration product: *H NMR (500 MHz,
CDsCN, 298 K, 8): 1.24 (m, 12H, 4CHa), 4.93 (s, 3H, OCH), 7.19 (m, 1H, Ph), 7.36 (m, 1H, Ph),
7.47 (m, 1H, Ph), 7.54 (d, 1H, Ph). Hydrolysis product (o-bromobenzyl alcohol) *H NMR (500
MHz, CDCls, 298 K, d): 4.72 (s, 2H, OCH>), 7.11 (m, 1H, Ph), 7.28 (m, 1H, Ph), 7.41 (m, 1H,
Ph), 7.48 (m, 1H, Ph)
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Table 3. Entry 10:’ trans-3-phenyl-2-propenal hydroboration product (cinnamaldehyde): 'H
NMR (500 MHz, CDsCN, 298 K, 8): 1.29 (m, 12H, 4CHa), 4.65 (m, 2H, OCH), 6.34 (m, 1H, -
CH=CHPh), 6.36 (m, 1H, -CH=CHPh), 7.23-7.29 (m, 3H, Ph), 7.41 (m, 2H, Ph). 1°C {1H} NMR
(125 MHz, CDsCN, 298 K, 6): 24.30 (4CHs), 25.01 (4CHa), 65.85 (-OCH2), 83.57 (-OCHy>),
131.30 (CH=CHPh), 153.43 (CH=CHPh), 127.26,128.52, 128.50, 137.67 (Ph). 'B {*H} NMR
(99 MHz, CD3CN, 298 K, 8): 25.60. Hydrolysis product (cinnamyl alcohol): *H NMR (500 MHz,
CDCl3, 298 K, §8): 4.12 (s, 2H, OCHy>), 6.20 (m, 1H, -CH=CHPh), 6.34 (m, 1H, -CH=CHPh), 7.01
(m, 2H, Ph), 7.08-7.17 (m, 3H, Ph)

Table 3. Entry 11:* 3-cyclohexenecarboxaldehyde hydroboration product: *H NMR (500
MHz, CD3CN, 298 K, 6): 1.21 (m, 12H, 4CHg), 1.27 (m, 4H, CH>), 2.03 (m, 3H, CH & CH=CH),
3.67 (m, 2H, OCHy), 5.64 (m, 2H, -OCH,). 1B {*H} NMR (99 MHz, CDsCN, 298 K, §): 25.32.
Hydrolysis product (3-cyclohexene-1-methanol) *H NMR (500 MHz, CDCls, 298 K, §): 1.25-
2.52 (m, 6H, CH>), 3.56 (m, 2H, OCHy), 5.61 (m, 2H, CH=CH)

Table 3. Entry 12:°% 1-Decanal hydroboration product: *H NMR (500 MHz, CDsCN, 298 K, §):
0.89 (m, 3H, CHg), 1.22 (m, 12H, 4CHj3), 1.27 (m, 14H, 7CHy), 1.56 (m, 2H, CH), 3.60 (m, 2H,
OCHy).

Table 3. Entry 13:* 2-formylpyridine hydroboration product: *H NMR (500 MHz, CDsCN,
298 K, 8): 1.22 (m, 12H, 4CH3), 4.92 (s, 2H, OCH), 7.38 (m, 1H, pyridine), 7.46 (m, 1H,
pyridine), 7.87 (m, 1H, pyridine), 8.54 (m, 1H, pyridine). *C {1H} NMR (125 MHz, CDsCN, 298
K, 8): 25.58 (4CHz3), 67.25 (-OCH?>), 82.19 (-B-OCpin), 121.17 (pyridine), 124.06 (pyridine),
139.49 (pyridine), 146.29 (pyridine), 149.99 (pyridine). B {*H} NMR (99 MHz, CDsCN, 298 K,
3): 21.25. Hydrolysis product (2-pyridinemethanol) *H NMR (500 MHz, CDCls, 298 K, §): 4.78
(s, 2H, OCHy), 7.31 (m, 1H, pyridine), 7.39 (m, 1H, pyridine), 7.81 (m, 1H, pyridine), 8.42 (m,
1H, pyridine)

Table 3. Entry 14:7 furfural hydroboration product: *H NMR (500 MHz, CDsCN, 298 K, §):
1.26 (m, 12H, 4CH?3), 4.80 (s, 2H, OCH>), 6.32-6.36 (m, 2H, furan ring), 7.48 (m, 1H, furan ring).
Hydrolysis product (2-furanmethanol) *H NMR (500 MHz, CDCls, 298 K, §): 4.72 (s, 2H,
OCHy), 6.01 (m, 1H, furan ring), 6.32 (m, 1H, furan ring), 7.33 (m, 1H, furan ring)
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Table 3. Entry 15:° thiophene-2-carboxaldehyde hydroboration product: *H NMR (500 MHz,
CDsCN, 298 K, 6): 1.29 (m, 12H, 4CH?3), 5.04 (s, 2H, OCH>), 7.02-7.06 (m, 2H, thiophene ring),
7.36 (m, 1H, thiophene ring). Hydrolysis product (2-thiophenemethanol) *H NMR (500 MHz,
CDCl3, 298 K, 8): 4.82 (s, 2H, OCH2), 6.98 (m, 1H, thiophene ring), 7.01 (m, 1H, thiophene ring),
7.28 (m, 1H, thiophene ring)

Acetylbenzaldehyde hydroboration products:*’ 'H NMR (500 MHz, CDsCN, 298 K, §):
(Aldehyde group reduction only) 1.24 (m, 12H, 4CHa), 2.54 (s, 3H, COCHz3), 4.94 (s, 2H, -
OCHy), 7.42 (m, 2H, Ph), 7.93 (m, 2H, Ph). **C {1H} NMR (125 MHz, CDCls, 298 K, §): 24.30
(4CHs), 27.36 (unreacted CHs), 66.65 (-OCH>), 84.12 (4° C of Bpin), 127.27, 129.25, 130.46,
145.57 (Ph), 129.15, 129.57, 133.96, 138.20 (unreacted Ph), 198.28 (unreacted CO of ketone
group). After 2" equivalent of HBpin was added, both aldehyde and ketone groups were
reduced: 1.20 (m, 24H, 4CHjs), 1.40 (m, 3H, OCHCHj3), 4.89 (m, 2H, -OCHy), 5.26 (m, 1H, -
OCH), 7.33 (m, 4H, Ph). Hydrolysis product (a-methyl-1,4-benzenedimethanol) *H NMR (500
MHz, CDCls, 298 K, 3): 1.43 (m, 3H, CHCH3), 4.96 (m, 2H, -OCH>), 5.23 (m, 1H, -OCH), 7.25-
7.32 (m, 4H, Ph).

Synthesis of DBpin

OR . BD.THF S O\B D
3- o P
OH 0°C to rt, 6h o

This procedure was adapted from the literature.’® BD3*THF (2 mmol, 1M in THF) solution was
placed in a Schlenk flask equipped with a stir bar under nitrogen. After cooling to 0 °C using an
ice bath, pinacol (2 mmol) was then added slowly and the solution was allowed to warm to rt and
stirred for 6 hours. The resulting solution was stripped off excess THF by using Schlenk technique.
'H and B NMR spectroscopy confirmed the formation of deuterated pinacolborane.
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Figure S1: 1'B NMR spectrum of DBpin in CDsCN

L
-
S
L

T T T T T T T T T T
B ] 4 2 [ppm]

Figure S2. *H NMR spectra of AcPh and reaction progress between AcPh and HBpin
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Figure S4. *H NMR spectra of reaction between p-Br-AcPh and HBpin
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Figure S8. *H NMR spectra of reaction between p-Me-AcPh and HBpin
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Figure S10. *H NMR spectra of reaction between Benzophenone and HBpin
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Figure S12. *H NMR spectra of reaction between Cyclohexanone and HBpin
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Figure S14. *H NMR spectra of reaction between PhnCHO and HBpin
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Figure S16. *H NMR spectra of reaction between p-CN-PhCHO and HBpin
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Figure S18. *H NMR spectra of reaction between cyclohexenecarboxaldehyde and HBpin
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Figure S20. *H NMR spectra of reaction between 2-formylpyridine and HBpin
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Figure S22. !B NMR spectra of reaction between AcPh and HBpin
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Figure S24. !B NMR spectra of reaction between p-Br-AcPh and HBpin
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Figure S26. 1'B NMR spectra of reaction between p-Me-AcPh and HBpin
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Figure S27. 1'B NMR spectra of reaction between 2-cyclohexenone and HBpin
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Figure S28. 1'B NMR spectra of reaction between trans-3-phenyl-2-propenal (cinnamaldehyde)
and HBpin
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Figure S29. 1'B NMR spectra of reaction between Cyclohexenecarboxaldehyde and HBpin
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Figure S30. !B NMR spectra of reaction between 2-formylpyridine and HBpin
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Figure S32. 13C NMR spectra of reaction between PhCHO and HBpin
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Figure S34. 13C NMR spectra of reaction between 2-formylpyridine and HBpin
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Figure S35. 13C NMR spectra of reaction between trans-3-phenyl-2-propenal (cinnamaldehyde)
and HBpin

S28



100 [ *1e6]
‘

0]

©/\O_Bpin . O)J\CHB

(0]
©)‘\CH3 solvent
CHO
o 0
©)LH ;Ivent
1. _JJI
T T T T T T T T T
10 8 6 4 2 [ppm]
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Figure S45. *H NMR spectra of competition reaction between HBcat and DBpin with
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Figure S48. GC-MS extracted ion chromatograms of reaction between HBpin with acetophenone

(for molecular ion [M*] =248 m/z and its M+1 peak of 249 m/z occurring due to *3C isotope
corresponding to the presence of 14 carbon atoms).

Table S1 : GC-MS data extracted ion integration of HBpin-AcPh reaction

HBpin + AcPh Reaction

lon 248.00 (247.70 to 248.70)

Peak # Ret Time Type Width Area Start Time | End Time
1 11.702 VB 0.125 29851820 11.213 12.27
lon 249.00 (248.70 to 249.70)
Peak # Ret Time Type Width Area Start Time | End Time
1 11.702 BB 0.097 4686981 11.206 11.998

Percentage of 249 m/z in HBpin + AcPh reaction of 248 m/z ~ 15.7 %
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Figure S49. GC-MS extracted ion chromatograms of competition reaction between HBpin and
DBpin with acetophenone

(Where molecular ion [M*] =248 m/z is formed by reaction with HBpin and peak of 249 m/z may
can be attributed to reaction with DBpin as due to occurrence of *C isotope corresponding to the

presence of 14 carbon atoms).

Table S2: GC-MS data integration of crossover experiment

HBpin + DBpin + AcPh Reaction

lon 248.00 (247.70 to 248.70)

Peak # Ret Time Type Width Area Start Time | End Time
1 11.71 BV 0.102 18437171 11.207 11.896
lon 249.00 (248.70 to 249.70)
Peak # Ret Time Type Width Area Start Time | End Time
2 11.708 \AY 0.067 8558193 11.533 11.908

Percentage of m/z 249 (of m/z 248) with in HBpin + DBpin + AcPh Reaction = 46.41 %
The original isotopic D labelled product (m/z 249) is 46.41 — 15.70 = 30.71 %

The calculated H/D products ratio is thus approximately 69.3:30.7 ~ 2.3
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The ESI-HR-ToF-MS study of the reaction system was evaluated based on analysis of Mn-1
alone (Fig. S50) and following the reaction with HBPin in different ratios (Fig S51)
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Figure S50. ESI-ToF-MS of Mn-1

Ca2HsN302Mn full mass range [M*] 559.2965 , thus with mass accuracy errors of 18 ppm, and
narrow mass range regions for monomer (a) and Mn; and Mn3 species (b, c).
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As shown in Fig. S51 below, no adduct of (salen)MnN-HBpin or (salen)Mn-HBpin was detected using the
ESI-HR ToF MS. Similarly as for catalyst alone dimeric species could be observed in the region of m/z
1109 (Mn-1 and HBpin 1:3), corresponding to a nitrogen bridged dinuclear species (Fig. S51). However,
similar dinuclear species also showed up in the ESI of Mn-1 alone without HBpin, but with 5 less mass
units (m/z 1104, which could be assigned to a nitrogen bridged dimer), Fig. S51. We assume that the salen
backbone hydrogenation, mostly likely at the imine double bond, could also take place under such
conditions. When 1:1 ratio of Mn-1:HBpin was used, the dimeric species was observed at m/z 1107 (Fig.
S51), likely due to a partial hydrogenation. In support of this, the imine peak of Mn-1 at 8.02 ppm in *H
NMR was observed to disappear when HBpin was added to the catalyst solution prepared with CDCl; at

room temperature while other signals of Mn-1 remained intact, at least initially.
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Figure S51. ESI-ToF-MS of reaction products for Mn-1 with HBpin at different ratios
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