Supporting Information

Highly Selective Hydroboration of Carbonyls by a Manganese Catalyst: Insight into the Reaction Mechanism

Srikanth Vijjamarri, Timothy M. O’Denius, Bin Yao, Alena Kubatova, and Guodong Du*

Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States

Contents

Experimental Section 4
NMR characterization data 5
Representative Spectra 11
Figure S1: ${ }^{11} \mathrm{~B}$ NMR spectrum of DBpin in $\mathrm{CD}_{3} \mathrm{CN}$ 11
Figure $\mathrm{S} 2 .{ }^{1} \mathrm{H}$ NMR spectra of AcPh and reaction progress between AcPh and HBpin 11
Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{Cl}-\mathrm{AcPh}$ and HB pin 12
Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{Br}-\mathrm{AcPh}$ and HB pin 12
Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{CF}_{3}-\mathrm{AcPh}$ and HB pin. 13
Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{NO}_{2}-\mathrm{AcPh}$ and HBpin 13
Figure $\mathrm{S} 7 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{MeO}-\mathrm{AcPh}$ and HBpin 14
Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{Me}-\mathrm{AcPh}$ and HB pin 14
Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between Cyclopropylphenylketone and HBpin 15
Figure $\mathrm{S} 10 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between Benzophenone and HBpin 15
Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between 2-pentanone and HBpin 16
Figure S12. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between Cyclohexanone and HBpin 16
Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between 2-cyclohexenone and HBpin 17
Figure S14. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between PhCHO and HBpin 17
Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{MeO}-\mathrm{PhCHO}$ and HBpin 18
Figure S16. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{CN}-\mathrm{PhCHO}$ and HBpin 18
Figure S17. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $o-\mathrm{Br}-\mathrm{PhCHO}$ and HBpin 19
Figure S18. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between cyclohexenecarboxaldehyde and HBpin 19
Figure S19. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between Decanal and HBpin 20
Figure $\mathrm{S} 20 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between 2-formylpyridine and HBpin 20
Figure S21. ${ }^{11}$ B NMR spectra of HBpin 21
Figure S22. ${ }^{11}$ B NMR spectra of reaction between AcPh and HBpin 21
Figure $\mathrm{S} 23 .{ }^{11} \mathrm{~B}$ NMR spectra of reaction between $p-\mathrm{Cl}-\mathrm{AcPh}$ and HB pin 22
Figure $\mathrm{S} 24 .{ }^{11} \mathrm{~B}$ NMR spectra of reaction between $p-\mathrm{Br}-\mathrm{AcPh}$ and HB pin 22
Figure $\mathrm{S} 25 .{ }^{11} \mathrm{~B}$ NMR spectra of reaction between $p-\mathrm{CF}_{3}-\mathrm{AcPh}$ and HBpin 23
Figure S26. ${ }^{11}$ B NMR spectra of reaction between $p-\mathrm{Me}-\mathrm{AcPh}$ and HBpin 23
Figure S27. ${ }^{11}$ B NMR spectra of reaction between 2-cyclohexenone and HBpin 24
Figure S28. ${ }^{11}$ B NMR spectra of reaction between trans-3-phenyl-2-propenal (cinnamaldehyde) and HBpin 24
Figure S29. ${ }^{11}$ B NMR spectra of reaction between Cyclohexenecarboxaldehyde and HBpin 25
Figure S30. ${ }^{11}$ B NMR spectra of reaction between 2-formylpyridine and HBpin. 25
Figure S31. ${ }^{13} \mathrm{C}$ NMR spectra of reaction between AcPh and HB pin 26
Figure S32. ${ }^{13} \mathrm{C}$ NMR spectra of reaction between PhCHO and HBpin 26
Figure S33. ${ }^{13} \mathrm{C}$ NMR spectra of reaction between $p-\mathrm{CN}-\mathrm{PhCHO}$ and HBpin 27
Figure S34. ${ }^{13} \mathrm{C}$ NMR spectra of reaction between 2-formylpyridine and HB pin 28
Figure S35. ${ }^{13} \mathrm{C}$ NMR spectra of reaction between trans-3-phenyl-2-propenal (cinnamaldehyde) and HBpin 28
Figure S36. ${ }^{1} \mathrm{H}$ NMR spectra of intermolecular competition between AcPh and PhCHO with HB pin .29
Figure S37. ${ }^{1} \mathrm{H}$ NMR spectra of intermolecular competition between $p-\mathrm{MeO}-\mathrm{AcPh}$ and $p-\mathrm{MeO} \mathrm{PhCHO}$ with HBpin 29
Figure $\mathrm{S} 38 .{ }^{1} \mathrm{H}$ NMR spectra of intermolecular competition between $p-\mathrm{NO}_{2}-\mathrm{AcPh}$ and $p-\mathrm{NO}_{2} \mathrm{PhCHO}$ with HBpin 30
Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra of intramolecular chemoselective reaction of acetylbenzaldehyde with HBpin 30
Figure S40. ${ }^{1} \mathrm{H}$ NMR spectra of competitive reaction between AcPh and $p-\mathrm{CH}_{3} \mathrm{O}-\mathrm{AcPh}$ with HBpin .31
Figure S41. ${ }^{1} \mathrm{H}$ NMR spectra of competition reaction between AcPh and $p-\mathrm{NO}_{2}-\mathrm{AcPh}$ with HB pin. 31
Figure $\mathrm{S} 42 .{ }^{1} \mathrm{H}$ NMR spectra of competition reaction between AcPh and $p-\mathrm{CF}_{3}-\mathrm{AcPh}$ with HBpin 32
Figure S43. ${ }^{11} \mathrm{~B}$ (top) and ${ }^{1} \mathrm{H}$ (bottom) NMR of catalyst (Mn-1) with HBpin and AcPh 33
Figure S44. Reaction scheme of HBcat and DBpin with acetophenone 34
Figure S45. ${ }^{1} \mathrm{H}$ NMR spectra of competition reaction between HBcat and DBpin with acetophenone (5 min) 34
Figure S46. ${ }^{1} \mathrm{H}$ NMR spectra of competitive reaction between HBcat and DBpin with acetophenone (1 h) 35
Figure S47. ${ }^{1}$ H NMR spectra of competition reaction between HBcat and DBpin with acetophenone (5 min to 36 h) 35
Figure S48. GC-MS extracted ion chromatograms of reaction between HBpin with acetophenone 36
Figure S49. GC-MS extracted ion chromatograms of competition reaction between HBpin and DBpin with acetophenone 37
Figure S50. ESI-ToF-MS of Mn-1 38
Figure S51. ESI-ToF-MS of reaction products for $\mathbf{M n} \mathbf{- 1}$ with HBpin at different ratios 39
References 40

Experimental Section

Materials and Methods. Deuterated solvents were purchased from the Cambridge Isotope Laboratories and other chemicals were purchased from Millipore Sigma. Solvents were degasified and dried over molecular sieves ($4 \AA$) overnight prior to use. The reagents packed under inert atmosphere were used as received and all other liquid reagents were degasified before use by standard Schlenk line technique. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{11} \mathrm{~B}$ NMR spectra were recorded on a Bruker AVANCE 500 NMR spectrometer. Boron trifluoride diethyl etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right)$ was used as the standard reference for ${ }^{11} \mathrm{~B}$ NMR analysis.

Gas chromatography mass spectrometry analyses were performed using Agilent GC-MS (6890GC, 5975C) equipped with an autosampler (7386B series) and a split/splitless injector (Agilent Technologies, Santa Clara, CA, USA). Separations were accomplished using a 24.6 m long DB-5 capillary column, 0.25 mm internal diameter (I.D.) and 0.25 mm film thickness (J\&W Scientific, Rancho Cordova, CA, USA) at a constant helium flowrate of $1.0 \mathrm{~mL} / \mathrm{min}$. Samples $(1.0$ $\mu \mathrm{L}$) were injected into a single gooseneck splitless liner with glass wool in a pulsed splitless injection mode with 25 psi for 0.3 min , and solvent delay was set to 2.5 min . The column temperature program started at $35^{\circ} \mathrm{C}$ with a hold of 1 min , followed by the gradient of $20^{\circ} \mathrm{C} / \mathrm{min}$ to $320^{\circ} \mathrm{C}$ and hold for 1 min . The MS data (total ion chromatogram, TIC) were acquired in the full scan mode ($35-850 \mathrm{~m} / \mathrm{z}$) at a scan rate of $1.84 \mathrm{scan} / \mathrm{s}$ using the electron ionization (EI) with an electron energy of 70 eV .

High resolution time-of-flight mass spectrometry (HR-ToF-MS) with electrospray ionization (ESI) (G1969A, Agilent Technologies, Santa Clara, CA) was performed in a positive ionization mode. The ESI-HR-ToF-MS analysis was performed by direct infusion at $5 \mu \mathrm{~L} / \mathrm{min}$ using the electrospray (capillary) and fragmentor voltages of 5500 and 250 V , respectively. Nitrogen was used as a nebulizing gas at a flow rate of $4 \mathrm{~L} / \mathrm{min}$ and drying gas set at 25 psig . All samples for ESI-MS were dissolved in acetonitrile (final concentration of $1 \mu \mathrm{~g} / \mathrm{mL}$) no additional electrolyte was used. The ESI-HR-ToF-MS was calibrated at mass range $100-3000 \mathrm{~m} / \mathrm{z}$ with mass accuracy error < 10 ppm .

General Procedure for the hydroboration of carbonyls. The hydroboration reactions were performed using J. Young NMR tubes in a glovebox under nitrogen atmosphere. Calculated amount of catalyst, Mn-1, (0.002 to $1 \mathrm{~mol} \%$) was added to $0.35-0.40 \mathrm{~mL}$ of $\mathrm{CD}_{3} \mathrm{CN}$ at room
temperature. To this was added a carbonyl substrate ($0.893 \mathrm{mmol}, 1$ equiv) followed by hydroborane ($0.982 \mathrm{mmol}, 1.1$ equiv). The progress of the reaction was monitored by the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{11} \mathrm{~B}$ NMR spectroscopies. After the hydroboration reaction was complete, the reaction mixture was transferred to a round bottom flask/sample vial with acetonitrile and hexane, and hydrolyzed by mixing with aqueous $\mathrm{HCl}(1 \mathrm{M})$. After hydrolysis, the organic layer was extracted with hexane and subjected to column chromatography using silica with hexane-EtOAc as eluent. The resultant products were characterized by ${ }^{1} \mathrm{H}$ and/or ${ }^{13} \mathrm{C}$ NMR and the conversions of the starting carbonyls and the yields of the isolated alcoholes were reported in Tables $2 \& 3$. The identities of the products were confirmed by comparison of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and/or ${ }^{11} \mathrm{~B}$ NMR spectra with previous literature reports. ${ }^{1,2,3}$

NMR characterization data

Acetophenone hydroboration product: ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.22(\mathrm{~m}, 12 \mathrm{H}$, $\left.4 \mathrm{CH}_{3}\right), 1.49\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 5.26(\mathrm{q}, 1 \mathrm{H},-\mathrm{OCH}), 7.28(\mathrm{~m}, 1 \mathrm{H},-\mathrm{Ph}), 7.38(\mathrm{~m}, 4 \mathrm{H},-\mathrm{Ph}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 25.33\left(4 \mathrm{CH}_{3}\right), 27.08\left(\mathrm{CH}_{3}\right), 73.23(\mathrm{OCH}), 83.51$ (-BOCHpin), 126.18, 128.08, 129.17, 145.65 (Ph). Hydrolysis product (1-phenylethanol): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): $1.42\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.84$ (q, 1H, OCH), 7.18 (d, 2H, Ph), 7.20 (m, 3H, Ph)

Table 2. Entry 1: ${ }^{4}$ p-chloroacetophenone hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.21\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 5.20(\mathrm{q}, 1 \mathrm{H},-\mathrm{OCH}), 7.31(\mathrm{~m}, 4 \mathrm{H},-$ Ph). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 25.40. Hydrolysis product (1-(4chlorophenyl)ethanol): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): $1.40(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}$) , $4.89(\mathrm{q}, 1 \mathrm{H}$, OCH), 7.30 (m, 4H, Ph)

Table 2. Entry 2: ${ }^{5}$ p-bromoacetophenone hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.20\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 5.16(\mathrm{q}, 1 \mathrm{H},-\mathrm{OCH}), 7.25(\mathrm{~m}, 2 \mathrm{H},-$ Ph), 7.46 (m, 2H, -Ph). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 25.40 . Hydrolysis product (1-(4-bromophenyl)ethanol): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): $1.42\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.72$ (q, 1H, OCH), 7.18 (m, 2H, Ph), 7.42 (m, 2H, Ph)

Table 2. Entry 3: ${ }^{4}$ p-trifluoromethyl acetophenone hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.20\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 5.29(\mathrm{q}, 1 \mathrm{H},-\mathrm{OCH}), 7.52(\mathrm{~m}$, 2H, -Ph), 7.64 (m, 2H, -Ph). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 25.42. Hydrolysis
product (1-(4-trifluoromethylphenyl)ethanol): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): 1.51 (d, 3H, CH3), 4.88 (q, 1H, OCH), 7.44 (m, 2H, Ph), 7.57 (m, 2H, Ph)

Table 2. Entry 4: ${ }^{\boldsymbol{4}} \boldsymbol{p}$-nitroacetophenone hydroboration product: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, 298 K, δ): 1.21 (m, 12H, 4CH3), 1.46 (d, 3H, CH3), 5.30 (q, 1H, OCH), 7.55 (d, 2H, Ph), 8.16 (d, $2 \mathrm{H}, \mathrm{Ph})$. Hydrolysis product (1-(4-nitrophenyl)ethanol): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$, ס): 1.49 (d, 3H, CH3), 4.97 (q, 1H, OCH), 7.51 (d, 2H, Ph), 8.04 (d, 2H, $P h$).

Table 2. Entry 5: ${ }^{6}$ p-methoxyacetophenone hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.22\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.45\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.18(\mathrm{q}, 1 \mathrm{H}$, $\mathrm{OCH}), 6.88$ (d, 2H, Ph), 7.27 (d, 2H, Ph). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 24.39. Hydrolysis product (1-(4-methoxyphenyl)ethanol): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\right.$): 1.50 $\left(\mathrm{d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.87(\mathrm{q}, 1 \mathrm{H}, \mathrm{OCH}), 6.88(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}), 7.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph})$.

Table 2. Entry 6: ${ }^{7}$ p-methylacetophenone hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.22\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 5.22(\mathrm{q}, 1 \mathrm{H}, \mathrm{OCH})$, 7.16 (d, 2H, Ph), 7.26 (d, 2H, Ph). ${ }^{11}$ B $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 24.49. Hydrolysis product (1-(4-methylphenyl)ethanol): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): $1.41\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.25 (s, 3H, CH3), $4.82(\mathrm{q}, 1 \mathrm{H}, \mathrm{OCH}), 7.08$ (d, 2H, Ph), 7.15 (d, 2H, Ph).

Table 2. Entry 7: ${ }^{6}$ cyclopropylphenylketone hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 0.40-0.50\left(\mathrm{~m}, 4 \mathrm{H}\right.$, cyclopropyl $2 \mathrm{CH}_{2}$), $1.21(\mathrm{~m}, 1 \mathrm{H}$, cyclopropyl CH$), 1.23(\mathrm{~m}$, $\left.12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$. Hydrolysis product (α-cyclopropylbenzylalcohol): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): 0.35-0.46 (m, 4H, cyclopropyl $2 \mathrm{CH}_{2}$), $0.56(\mathrm{~m}, 1 \mathrm{H}$, cyclopropyl CH), $4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.31$ (m, 2H, Ph), 7.48 (m, 2H, Ph)

Table 2. Entry 8: ${ }^{6}$ benzophenone hydroboration product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298$ K, ס): $1.26\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.39(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.48(\mathrm{~m}, 4 \mathrm{H}$, Ph). Hydrolysis product (α-phenylbenzenemethanol): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): 2.37 (s, 1H, OH), 5.81 (s, 1H, OCH), 7.28 (m, 2H, Ph), 7.33 (m, 4H, Ph), 7.37 (m, 4H, Ph)

Table 2. Entry 9: ${ }^{8}$ 2-pentanone hydroboration product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$, $\delta): 0.89\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.23\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCHCH}_{3}\right), 1.43(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 4.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH})$

Table 2. Entry 10: ${ }^{8}$ cyclohexanone hydroboration product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298$ $\mathrm{K}, \delta): 1.19\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH})$

Table 2. Entry 11: ${ }^{8}$ 3-cyclohexenone hydroboration product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, $298 \mathrm{~K}, \delta): 1.25\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.03(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH} \mathrm{C}_{2}\right), 4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 5.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 5.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (99 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 25.17. Hydrolysis product (3-cyclohexene-1-methanol): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\right): 1.58-2.36\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 4.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 5.62(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}), 5.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$

Table 2. Entry 12: ${ }^{7}$ benzylideneacetophenone hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.26\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 5.81(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCH}), 6.44(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCHCH}=\mathrm{CH}), 6.74$ (m, 1H, - OCHCH=CH), 7.26-7.56 (m, 10H, Ph). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 26.10. Hydrolysis product (1,3-diphenyl-2-propen-1-ol): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$, ס): $5.20(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCH}), 6.35(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCHCH}=\mathrm{CH}), 6.68(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCHCH}=\mathrm{CH}), 7.18-7.46(\mathrm{~m}$, $10 \mathrm{H},-\mathrm{Ph})$

Table 2. Entry 13: ${ }^{9}$ 4-phenyl-3-butyne-2-one hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.24\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.52\left(\mathrm{~d}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 5.05(\mathrm{q}, 1 \mathrm{H},-\mathrm{OCH}), 7.35(\mathrm{~m}, 3 \mathrm{H},-$ Ph), $7.42(\mathrm{~m}, 2 \mathrm{H},-\mathrm{Ph}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 24.30\left(4 \mathrm{CH}_{3}\right), 24.92$ $\left(4 \mathrm{CH}_{3}\right), 61.97(-\mathrm{OCH}), 83.87\left(4^{\circ} \mathrm{C}\right.$ of Bpin), $84.19(-\mathrm{OCHC} \equiv \mathrm{C}), 90.89(-\mathrm{OCHC} \equiv \mathrm{CPh}), 129.43$, 129.73, 132.32, 133.75 (Ph). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 25.48. Hydrolysis product (4-phenyl-3-butyne-2-ol): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): $1.46\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$, 4.84 (m, 1H, -OCH), 7.29 (m, 2H, -Ph), 7.31 (m, 3H, -Ph)

Table 3. Entry 1 \& 3: ${ }^{6}$ benzaldehyde hydroboration product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, $298 \mathrm{~K}, \delta): 1.21\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}), 7.31(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 25.03\left(4 \mathrm{CH}_{3}\right), 67.35\left(\mathrm{OCH}_{2}\right), 83.76$ (B-OCHpin), 127.68, 128.37, 129.32, 140.51 ($P h$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 24.05. Hydrolysis product (benzyl alcohol) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): 4.68 (s, 2H, OCH O_{2}), 7.19 (m, 2H, Ph), 7.35-7.40 (m, 3H, Ph)

Table 3. Entry 2 \& 4: ${ }^{6}$ p-methoxybenzaldehyde hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.26\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.92(\mathrm{~d}, 2 \mathrm{H}$, $P h$), 7.29 (d, 2H, Ph). Hydrolysis product (p-methoxybenzyl alcohol) ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\right): 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$.

Table 3. Entry 5: ${ }^{6} \boldsymbol{p}$-nitro benzaldehyde hydroboration product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, $298 \mathrm{~K}, \delta): 1.23\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}), 7.52(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}), 8.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph})$. Hydrolysis product (p-nitrobenzyl alcohol) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): $4.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.45$ (m, 2H, Ph), 8.09 (m, 2H, Ph).

Table 3. Entry 6: ${ }^{7}$ p-cyanobenzaldehyde hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.23\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.69(\mathrm{~m}, 2 \mathrm{H}$, Ph). ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 24.92\left(4 \mathrm{CH}_{3}\right), 66.44\left(\mathrm{OCH}_{2}\right), 83.99(\mathrm{~B}-$ OCHpin), 111.76, 127.90, 133.16, 145.89 (Ph). Hydrolysis product (p-cyanobenzyl alcohol) ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\right): 4.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$

Table 3. Entry 7: ${ }^{4}$ p-chlorobenzaldehyde hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.22\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.62(\mathrm{~m}, 2 \mathrm{H}$, Ph). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 24.92. Hydrolysis product (p-chlorobenzyl alcohol) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): 4.69 (s, 2H, OCH_{2}), 7.39 (m, 2H, Ph), 7.50 (m, 2H, Ph)

Table 3. Entry 8: ${ }^{6}$ p-bromobenzaldehyde hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.23\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.65(\mathrm{~m}, 2 \mathrm{H}$, $P h) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 24.95. Hydrolysis product (p-bromobenzyl alcohol) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): $4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.37(\mathrm{~m}$, 2H, Ph)

Table 3. Entry 9: ${ }^{7}$ o-bromo benzaldehyde hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.24\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}), 7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph})$, 7.47 (m, 1H, Ph), 7.54 (d, 1H, Ph). Hydrolysis product (o-bromobenzyl alcohol) ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\right): 4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.41(\mathrm{~m}, 1 \mathrm{H}$, Ph), 7.48 (m, 1H, Ph)

Table 3. Entry 10: ${ }^{7}$ trans-3-phenyl-2-propenal hydroboration product (cinnamaldehyde): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): $1.29\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.34(\mathrm{~m}, 1 \mathrm{H},-$ $\mathrm{CH}=\mathrm{CHPh}), 6.36(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CHPh}), 7.23-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.41(\mathrm{~m}, 2 \mathrm{H}, P h) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 24.30\left(4 \mathrm{CH}_{3}\right), 25.01\left(4 \mathrm{CH}_{3}\right), 65.85\left(-\mathrm{OCH}_{2}\right), 83.57\left(-\mathrm{OCH}_{2}\right)$, 131.30 ($\mathrm{CH}=\mathrm{CHPh}$), 153.43 ($\mathrm{CH}=\mathrm{CHPh}$), 127.26,128.52, 128.50, $137.67(\mathrm{Ph}) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): 25.60. Hydrolysis product (cinnamyl alcohol): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\right): 4.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.20(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CHPh}), 6.34(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CHPh}), 7.01$ (m, 2H, Ph), 7.08-7.17 (m, 3H, Ph)

Table 3. Entry 11: ${ }^{4}$ 3-cyclohexenecarboxaldehyde hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.21\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.03(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \& \mathrm{CH}=\mathrm{CH})$, $3.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.64\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 25.32$. Hydrolysis product (3-cyclohexene-1-methanol) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): 1.25$2.52\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$

Table 3. Entry 12: ${ }^{6}$ 1-Decanal hydroboration product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): $0.89\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~m}, 14 \mathrm{H}, 7 \mathrm{CH}_{2}\right), 1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60(\mathrm{~m}, 2 \mathrm{H}$, OCH_{2}).

Table 3. Entry 13: ${ }^{4}$ 2-formylpyridine hydroboration product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, $298 \mathrm{~K}, \delta): 1.22\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.38(\mathrm{~m}, 1 \mathrm{H}$, pyridine), $7.46(\mathrm{~m}, 1 \mathrm{H}$, pyridine), $7.87\left(\mathrm{~m}, 1 \mathrm{H}\right.$, pyridine), $8.54\left(\mathrm{~m}, 1 \mathrm{H}\right.$, pyridine). ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298$ $\mathrm{K}, \delta): 25.58\left(4 \mathrm{CH}_{3}\right), 67.25\left(-\mathrm{OCH}_{2}\right), 82.19$ (-B-OCpin), 121.17 (pyridine), 124.06 (pyridine), 139.49 (pyridine), 146.29 (pyridine), 149.99 (pyridine). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(99 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right.$, ס): 21.25. Hydrolysis product (2-pyridinemethanol) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\right.$): 4.78 $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.31(\mathrm{~m}, 1 \mathrm{H}$, pyridine $), 7.39(\mathrm{~m}, 1 \mathrm{H}$, pyridine $), 7.81(\mathrm{~m}, 1 \mathrm{H}$, pyridine $), 8.42(\mathrm{~m}$, 1H, pyridine)

Table 3. Entry 14: ${ }^{7}$ furfural hydroboration product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): $1.26\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 4.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.32-6.36(\mathrm{~m}, 2 \mathrm{H}$, furan ring), $7.48(\mathrm{~m}, 1 \mathrm{H}$, furan ring $)$. Hydrolysis product (2-furanmethanol) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): 4.72 (s, 2 H , $\left.\mathrm{OCH}_{2}\right), 6.01(\mathrm{~m}, 1 \mathrm{H}$, furan ring), $6.32(\mathrm{~m}, 1 \mathrm{H}$, furan ring), $7.33(\mathrm{~m}, 1 \mathrm{H}$, furan ring)

Table 3. Entry 15: ${ }^{6}$ thiophene-2-carboxaldehyde hydroboration product: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta\right): 1.29\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 5.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.02-7.06(\mathrm{~m}, 2 \mathrm{H}$, thiophene ring), $7.36\left(\mathrm{~m}, 1 \mathrm{H}\right.$, thiophene ring). Hydrolysis product (2-thiophenemethanol) ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\right): 4.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.98(\mathrm{~m}, 1 \mathrm{H}$, thiophene ring), $7.01(\mathrm{~m}, 1 \mathrm{H}$, thiophene ring), $7.28(\mathrm{~m}, 1 \mathrm{H}$, thiophene ring)

Acetylbenzaldehyde hydroboration products: ${ }^{4,7}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \delta$): (Aldehyde group reduction only) $1.24\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.94(\mathrm{~s}, 2 \mathrm{H},-$ OCH_{2}), $7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta$): 24.30 $\left(4 \mathrm{CH}_{3}\right), 27.36$ (unreacted CH_{3}), $66.65\left(-\mathrm{OCH}_{2}\right), 84.12\left(4^{\circ} \mathrm{C}\right.$ of Bpin), 127.27, 129.25, 130.46, 145.57 (Ph), 129.15, 129.57, 133.96, 138.20 (unreacted Ph), 198.28 (unreacted CO of ketone group). After $2^{\text {nd }}$ equivalent of HBpin was added, both aldehyde and ketone groups were reduced: $1.20\left(\mathrm{~m}, 24 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCHCH}_{3}\right), 4.89\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right), 5.26(\mathrm{~m}, 1 \mathrm{H},-$ OCH), 7.33 (m, 4H, Ph). Hydrolysis product ($\boldsymbol{\alpha}$-methyl-1,4-benzenedimethanol) ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta\right): 1.43\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 4.96\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right), 5.23(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCH}), 7.25-$ 7.32 (m, 4H, Ph).

Synthesis of DBpin

This procedure was adapted from the literature. ${ }^{10} \mathrm{BD}_{3} \bullet \mathrm{THF}(2 \mathrm{mmol}, 1 \mathrm{M}$ in THF) solution was placed in a Schlenk flask equipped with a stir bar under nitrogen. After cooling to $0{ }^{\circ} \mathrm{C}$ using an ice bath, pinacol (2 mmol) was then added slowly and the solution was allowed to warm to rt and stirred for 6 hours. The resulting solution was stripped off excess THF by using Schlenk technique. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopy confirmed the formation of deuterated pinacolborane.

Representative Spectra

Figure $\mathrm{S} 1:{ }^{11} \mathrm{~B}$ NMR spectrum of DB pin in $\mathrm{CD}_{3} \mathrm{CN}$

Figure $\mathrm{S} 2 .{ }^{1} \mathrm{H}$ NMR spectra of AcPh and reaction progress between AcPh and HB pin

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{Cl}-\mathrm{AcPh}$ and HBpin

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{Br}-\mathrm{AcPh}$ and HB pin

Figure $55 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{CF}_{3}-\mathrm{AcPh}$ and HB pin

Figure $\mathrm{S} 6 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{NO}_{2}-\mathrm{AcPh}$ and HB pin

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{MeO}-\mathrm{AcPh}$ and HB pin

nion
 $\stackrel{\perp}{\underset{\sim}{\omega}}$

Figure $\mathrm{S} 8 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between p-Me- AcPh and HBpin

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between Cyclopropylphenylketone and HBpin

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between Benzophenone and HBpin

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between 2-pentanone and HBpin

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between Cyclohexanone and HBpin

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between 2-cyclohexenone and HBpin

W	¢\%	
Σ	\之	\i \sum
1	1 ।	¢'

$\begin{aligned} & \text { し.0 } \\ & \dot{\%} \\ & \dot{\Sigma} \end{aligned}$	

Bpin

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between PhCHO and HBpin

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{MeO}-\mathrm{PhCHO}$ and HBpin

Figure $\mathrm{S} 16 .{ }^{1} \mathrm{H}$ NMR spectra of reaction between $p-\mathrm{CN}-\mathrm{PhCHO}$ and HBpin

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between $o-\mathrm{Br}-\mathrm{PhCHO}$ and HBpin

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectra of reaction between cyclohexenecarboxaldehyde and HBpin

Figure S19. ${ }^{1}$ H NMR spectra of reaction between Decanal and HBpin

Figure S20. ${ }^{1}$ H NMR spectra of reaction between 2-formylpyridine and HBpin

Figure S21. ${ }^{11}$ B NMR spectra of HBpin

Figure S22. ${ }^{11} \mathrm{~B}$ NMR spectra of reaction between AcPh and HBpin

Figure S23. ${ }^{11}$ B NMR spectra of reaction between $p-\mathrm{Cl}-\mathrm{AcPh}$ and HBpin

Figure $\mathrm{S} 24 .{ }^{11} \mathrm{~B}$ NMR spectra of reaction between $p-\mathrm{Br}-\mathrm{AcPh}$ and HBpin

Figure $\mathrm{S} 25 .{ }^{11} \mathrm{~B}$ NMR spectra of reaction between $p-\mathrm{CF}_{3}-\mathrm{AcPh}$ and HBpin

Figure $\mathrm{S} 26 .{ }^{11} \mathrm{~B}$ NMR spectra of reaction between $p-\mathrm{Me}-\mathrm{AcPh}$ and HBpin

```
LT*GZ-
```


Figure S27. ${ }^{11}$ B NMR spectra of reaction between 2-cyclohexenone and HBpin

Figure S28. ${ }^{11}$ B NMR spectra of reaction between trans-3-phenyl-2-propenal (cinnamaldehyde) and HBpin

Figure S29. ${ }^{11}$ B NMR spectra of reaction between Cyclohexenecarboxaldehyde and HBpin

Figure S30. ${ }^{11}$ B NMR spectra of reaction between 2-formylpyridine and HBpin

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectra of reaction between AcPh and HB pin

Figure $\mathrm{S} 32 .{ }^{13} \mathrm{C}$ NMR spectra of reaction between PhCHO and HBpin

Figure S33. ${ }^{13} \mathrm{C}$ NMR spectra of reaction between $p-\mathrm{CN}-\mathrm{PhCHO}$ and HBpin

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectra of reaction between 2-formylpyridine and HBpin

Figure S35. ${ }^{13} \mathrm{C}$ NMR spectra of reaction between trans-3-phenyl-2-propenal (cinnamaldehyde) and HBpin

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectra of intermolecular competition between AcPh and PhCHO with HBpin

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectra of intermolecular competition between $p-\mathrm{MeO}-\mathrm{AcPh}$ and $p-\mathrm{MeO}$ PhCHO with HBpin

Figure $\mathrm{S} 38 .{ }^{1} \mathrm{H}$ NMR spectra of intermolecular competition between $p-\mathrm{NO}_{2}-\mathrm{AcPh}$ and $p-\mathrm{NO}_{2}$ PhCHO with HBpin

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra of intramolecular chemoselective reaction of acetylbenzaldehyde with HBpin

Figure $\mathrm{S} 40 .{ }^{1} \mathrm{H}$ NMR spectra of competitive reaction between AcPh and $p-\mathrm{CH}_{3} \mathrm{O}-\mathrm{AcPh}$ with HBpin

Figure $\mathrm{S} 41 .{ }^{1} \mathrm{H}$ NMR spectra of competition reaction between AcPh and $p-\mathrm{NO}_{2}-\mathrm{AcPh}$ with HBpin

Figure $\mathrm{S} 42 .{ }^{1} \mathrm{H}$ NMR spectra of competition reaction between AcPh and $p-\mathrm{CF}_{3}-\mathrm{AcPh}$ with HBpin

Figure S43. ${ }^{11} \mathrm{~B}$ (top) and ${ }^{1} \mathrm{H}$ (bottom) NMR of catalyst (Mn-1) with HBpin and AcPh

Figure S44. Reaction scheme of HBcat and DBpin with acetophenone
(10a and 10b are the expected products; 10c and 3a are the crossover products)

Figure $\mathrm{S} 45 .{ }^{1} \mathrm{H}$ NMR spectra of competition reaction between HBcat and DBpin with acetophenone (5 min)

Figure S46. ${ }^{1} \mathrm{H}$ NMR spectra of competitive reaction between HBcat and DBpin with acetophenone (1 h)

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectra of competition reaction between HBcat and DBpin with acetophenone (5 min to 36 h)

$m / z 248$

Figure S48. GC-MS extracted ion chromatograms of reaction between HBpin with acetophenone (for molecular ion $\left[\mathrm{M}^{+}\right]=248 \mathrm{~m} / \mathrm{z}$ and its $\mathrm{M}+1$ peak of $249 \mathrm{~m} / \mathrm{z}$ occurring due to ${ }^{13} \mathrm{C}$ isotope corresponding to the presence of 14 carbon atoms).

Table S1: GC-MS data extracted ion integration of HB pin- AcPh reaction

HBpin + AcPh Reaction							
Ion 248.00 (247.70 to 248.70)							
Peak \#	Ret Time	Type	Width	Area	Start Time	End Time	
1	11.702	VB	0.125	$\mathbf{2 9 8 5 1 8 2 0}$	11.213	12.27	
Ion 249.00 $(248.70$ to 249.70)							
Peak \#	Ret Time	Type	Width	Area	Start Time	End Time	
1	11.702	BB	0.097	$\mathbf{4 6 8 6 9 8 1}$	11.206	11.998	

Percentage of $249 \mathrm{~m} / \mathrm{z}$ in HBpin +AcPh reaction of $248 \mathrm{~m} / \mathrm{z} \sim 15.7 \%$

Figure S49. GC-MS extracted ion chromatograms of competition reaction between HBpin and DBpin with acetophenone
(Where molecular ion $\left[\mathrm{M}^{+}\right]=248 \mathrm{~m} / \mathrm{z}$ is formed by reaction with HBpin and peak of $249 \mathrm{~m} / \mathrm{z}$ may can be attributed to reaction with DB pin as due to occurrence of ${ }^{13} \mathrm{C}$ isotope corresponding to the presence of 14 carbon atoms).

Table S2: GC-MS data integration of crossover experiment

HBpin + DBpin + AcPh Reaction							
Ion 248.00 (247.70 to 248.70)							
Peak \#	Ret Time	Type	Width	Area	Start Time	End Time	
1	11.71	BV	0.102	$\mathbf{1 8 4 3 7 1 7 1}$	11.207	11.896	
Ion 249.00 (248.70 to 249.70)							
Peak \#	Ret Time	Type	Width	Area	Start Time	End Time	
2	11.708	VV	0.067	$\mathbf{8 5 5 8 1 9 3}$	11.533	11.908	

Percentage of $m / z 249$ (of m/z 248) with in HBpin + DBpin + AcPh Reaction $=46.41 \%$
The original isotopic \mathbf{D} labelled product $(m / z 249)$ is $46.41-15.70=30.71 \%$
The calculated H/D products ratio is thus approximately 69.3:30.7 ≈ 2.3

The ESI-HR-ToF-MS study of the reaction system was evaluated based on analysis of Mn-1 alone (Fig. S50) and following the reaction with HBPin in different ratios (Fig S51)
a)

b)

c)

$\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Mn}\left[\mathrm{M}+\mathrm{H}^{+}\right]$mass required 560.3048; mass found 560.3065
mass accuracy error 18 ppm
$\mathbf{M n}_{2}$ species
$\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Mn}_{2}\left[2 \mathrm{M}^{+}\right]$mass required 1122.6249 ; mass found 1122.5928
M / z of 1104.6066 could be attributed to a nitrogen-bridged dimer or loss of water with mass errors of -15 ppm .
Mn_{3} species
$\mathrm{C}_{96} \mathrm{H}_{139} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{Mn}_{3}$ mass required 1664.8959; mass found 1664.9091

Figure S50. ESI-ToF-MS of Mn-1

$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Mn}$ full mass range $\left[\mathrm{M}^{+}\right] 559.2965$, thus with mass accuracy errors of 18 ppm , and narrow mass range regions for monomer (a) and Mn_{2} and Mn_{3} species (b, c).

As shown in Fig. S51 below, no adduct of (salen)MnN-HBpin or (salen)Mn-HBpin was detected using the ESI-HR ToF MS. Similarly as for catalyst alone dimeric species could be observed in the region of m / z 1109 (Mn-1 and HBpin 1:3), corresponding to a nitrogen bridged dinuclear species (Fig. S51). However, similar dinuclear species also showed up in the ESI of Mn-1 alone without HBpin, but with 5 less mass units (m / z 1104, which could be assigned to a nitrogen bridged dimer), Fig. S51. We assume that the salen backbone hydrogenation, mostly likely at the imine double bond, could also take place under such conditions. When 1:1 ratio of $\mathbf{M n}-\mathbf{1}: \mathrm{HB}$ pin was used, the dimeric species was observed at $\mathrm{m} / \mathrm{z} 1107$ (Fig. S51), likely due to a partial hydrogenation. In support of this, the imine peak of $\mathbf{M n}-1$ at 8.02 ppm in ${ }^{1} \mathrm{H}$ NMR was observed to disappear when HBpin was added to the catalyst solution prepared with CDCl_{3} at room temperature while other signals of $\mathbf{M n} \mathbf{- 1}$ remained intact, at least initially.

a) Mn-1: HBpin (1:3)

c) $\mathbf{M n} \mathbf{- 1}: \mathrm{HBpin}(1: 1)$

$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Mn}\left[\mathrm{M}^{+} \mathrm{5} 55.2940\right.$ required 545.3025 found
b) Mn-1: HBpin (1:3) zoomed on dimers

d) Mn-1: HBpin (1:1) zoomed on dimers

$\mathrm{C}_{64} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Mn}_{2} 1107.6145$ (1107.5966)
$\mathrm{C}_{64} \mathrm{H}_{97} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Mn}_{2} 1109.6301$ (1109.6190)
reported as mass required (mass found)

Figure S51. ESI-ToF-MS of reaction products for Mn-1 with HBpin at different ratios

References

1 Tamang, S. R.; Findlater, M. J. Org. Chem. 2017, 82, 12857-12862.
2 Verma, P. K.; Sethulekshmi, A. S.; Geetharani, K. Org. Lett. 2018, 20, 7840-7845.
3 Wang, W.; Shen, X.; Zhao, F.; Jiang, H.; Yao, W.; Pullarkat, S. A.; Xu, L.; Ma, M. J. Org. Chem. 2018, 83, 6974.

4 Zeng, H.; Wu, J.; Li, S.; Hui, C.; Ta, A.; Cheng, S. -Y.; Zheng, S.; Zhang, G. Org. Lett. 2019, 21, 401-406.
5 Zhang, G.; Zeng, H.; Wu, J.; Yin, Z.; Zheng, S.; Fettinger, J. C. Angew. Chem. Int. Ed. 2016, 55, 14369-14372.
6 V. K. Jakhar, M. K. Barman and S. Nembenna, Org. Lett., 2016, 18, 4710-4713.
7 Qi, X.; Zheng, T.; Zhou, J.; Dong, Y.; Zuo, X.; Li, X.; Sun, H.; Fuhr, O.; Fenske, D. Organometallics 2019, 38, 268-277.
8 Shin, W. K.; Kim, H.; Jaladi, A. K.; An, D. K. Tetrahedron 2018, 74, 6310-6315.
9 Panteleev, J.; Huang, R. Y.; Lui, E. K. J.; Lautens, M. Org. Lett. 2011, 13, 5314-5317.
10 Lessard, S.; Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2009, 131, 9612-9613.

