Supporting Information

Highly Selective Hydroboration of Carbonyls by a Manganese Catalyst: Insight into the Reaction Mechanism

Srikanth Vijjamarri, Timothy M. O'Denius, Bin Yao, Alena Kubatova, and Guodong Du*

Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States

Contents

Experimental Section	
NMR characterization data	
Figure S1: ¹¹ B NMR spectrum of DBpin in CD ₃ CN	
Figure S2. ¹ H NMR spectra of AcPh and reaction progress between AcPh and HBpin	.11
Figure S3. ¹ H NMR spectra of reaction between <i>p</i> -Cl-AcPh and HBpin	.12
Figure S4. ¹ H NMR spectra of reaction between <i>p</i> -Br-AcPh and HBpin	.12
Figure S5. ¹ H NMR spectra of reaction between <i>p</i> -CF ₃ -AcPh and HBpin	.13
Figure S6. ¹ H NMR spectra of reaction between <i>p</i> -NO ₂ -AcPh and HBpin	.13
Figure S7. ¹ H NMR spectra of reaction between <i>p</i> -MeO-AcPh and HBpin	.14
Figure S8. ¹ H NMR spectra of reaction between <i>p</i> -Me-AcPh and HBpin	.14
Figure S9. ¹ H NMR spectra of reaction between Cyclopropylphenylketone and HBpin	.15
Figure S10. ¹ H NMR spectra of reaction between Benzophenone and HBpin	.15
Figure S11. ¹ H NMR spectra of reaction between 2-pentanone and HBpin	.16
Figure S12. ¹ H NMR spectra of reaction between Cyclohexanone and HBpin	.16
Figure S13. ¹ H NMR spectra of reaction between 2-cyclohexenone and HBpin	.17
Figure S14. ¹ H NMR spectra of reaction between PhCHO and HBpin	.17
Figure S15. ¹ H NMR spectra of reaction between <i>p</i> -MeO-PhCHO and HBpin	.18
Figure S16. ¹ H NMR spectra of reaction between <i>p</i> -CN-PhCHO and HBpin	.18
Figure S17. ¹ H NMR spectra of reaction between <i>o</i> -Br-PhCHO and HBpin	. 19
Figure S18. ¹ H NMR spectra of reaction between cyclohexenecarboxaldehyde and HBpin	. 19
Figure S19. ¹ H NMR spectra of reaction between Decanal and HBpin	.20
Figure S20. ¹ H NMR spectra of reaction between 2-formylpyridine and HBpin	.20
Figure S21. ¹¹ B NMR spectra of HBpin	.21
Figure S22. ¹¹ B NMR spectra of reaction between AcPh and HBpin	.21
Figure S23. ¹¹ B NMR spectra of reaction between <i>p</i> -Cl-AcPh and HBpin	.22
Figure S24. ¹¹ B NMR spectra of reaction between <i>p</i> -Br-AcPh and HBpin	.22
Figure S25. ¹¹ B NMR spectra of reaction between <i>p</i> -CF ₃ -AcPh and HBpin	.23
Figure S26. ¹¹ B NMR spectra of reaction between <i>p</i> -Me-AcPh and HBpin	.23
Figure S27. ¹¹ B NMR spectra of reaction between 2-cyclohexenone and HBpin	.24
Figure S28. ¹¹ B NMR spectra of reaction between <i>trans</i> -3-phenyl-2-propenal (cinnamaldehyde) and HBpin	
Figure S29. ¹¹ B NMR spectra of reaction between Cyclohexenecarboxaldehyde and HBpin	25
Figure S30. ¹¹ B NMR spectra of reaction between 2-formylpyridine and HBpin	25
Figure S31. ¹³ C NMR spectra of reaction between AcPh and HBpin	

Figure S32. ¹³ C NMR spectra of reaction between PhCHO and HBpin
Figure S33. ¹³ C NMR spectra of reaction between <i>p</i> -CN-PhCHO and HBpin27
Figure S34. ¹³ C NMR spectra of reaction between 2-formylpyridine and HBpin
Figure S35. ¹³ C NMR spectra of reaction between <i>trans</i> -3-phenyl-2-propenal (cinnamaldehyde) and HBpin
Figure S36. ¹ H NMR spectra of intermolecular competition between AcPh and PhCHO with HBpin.29
Figure S37. ¹ H NMR spectra of intermolecular competition between <i>p</i> -MeO-AcPh and <i>p</i> -MeO PhCHO with HBpin
Figure S38. ¹ H NMR spectra of intermolecular competition between <i>p</i> -NO ₂ -AcPh and <i>p</i> -NO ₂ PhCHO with HBpin
Figure S39. ¹ H NMR spectra of intramolecular chemoselective reaction of acetylbenzaldehyde with HBpin
Figure S40. ¹ H NMR spectra of competitive reaction between AcPh and <i>p</i> -CH ₃ O-AcPh with HBpin.31
Figure S41. ¹ H NMR spectra of competition reaction between AcPh and <i>p</i> -NO ₂ -AcPh with HBpin31
Figure S42. ¹ H NMR spectra of competition reaction between AcPh and <i>p</i> -CF ₃ -AcPh with HBpin32
Figure S43. ¹¹ B (top) and ¹ H (bottom) NMR of catalyst (Mn-1) with HBpin and AcPh33
Figure S44. Reaction scheme of HBcat and DBpin with acetophenone
Figure S45. ¹ H NMR spectra of competition reaction between HBcat and DBpin with acetophenone (5 min)
Figure S46. ¹ H NMR spectra of competitive reaction between HBcat and DBpin with acetophenone (1 h)
Figure S47. ¹ H NMR spectra of competition reaction between HBcat and DBpin with acetophenone (5 min to 36 h)
Figure S48. GC-MS extracted ion chromatograms of reaction between HBpin with acetophenone 36
Figure S49. GC-MS extracted ion chromatograms of competition reaction between HBpin and DBpin with acetophenone
Figure S50. ESI-ToF-MS of Mn-1
Figure S51. ESI-ToF-MS of reaction products for Mn-1 with HBpin at different ratios
References

Experimental Section

Materials and Methods. Deuterated solvents were purchased from the Cambridge Isotope Laboratories and other chemicals were purchased from Millipore Sigma. Solvents were degasified and dried over molecular sieves (4 Å) overnight prior to use. The reagents packed under inert atmosphere were used as received and all other liquid reagents were degasified before use by standard Schlenk line technique. ¹H, ¹³C, and ¹¹B NMR spectra were recorded on a Bruker AVANCE 500 NMR spectrometer. Boron trifluoride diethyl etherate (BF₃·OEt₂) was used as the standard reference for ¹¹B NMR analysis.

Gas chromatography mass spectrometry analyses were performed using Agilent GC-MS (6890GC, 5975C) equipped with an autosampler (7386B series) and a split/splitless injector (Agilent Technologies, Santa Clara, CA, USA). Separations were accomplished using a 24.6 m long DB-5 capillary column, 0.25 mm internal diameter (I.D.) and 0.25 mm film thickness (J&W Scientific, Rancho Cordova, CA, USA) at a constant helium flowrate of 1.0 mL/min. Samples (1.0 μ L) were injected into a single gooseneck splitless liner with glass wool in a pulsed splitless injection mode with 25 psi for 0.3 min, and solvent delay was set to 2.5 min. The column temperature program started at 35 °C with a hold of 1 min, followed by the gradient of 20 °C/min to 320 °C and hold for 1 min. The MS data (total ion chromatogram, TIC) were acquired in the full scan mode (35–850 *m/z*) at a scan rate of 1.84 scan/s using the electron ionization (EI) with an electron energy of 70 eV.

High resolution time-of-flight mass spectrometry (HR-ToF-MS) with electrospray ionization (ESI) (G1969A, Agilent Technologies, Santa Clara, CA) was performed in a positive ionization mode. The ESI-HR-ToF-MS analysis was performed by direct infusion at 5 μ L/min using the electrospray (capillary) and fragmentor voltages of 5500 and 250 V, respectively. Nitrogen was used as a nebulizing gas at a flow rate of 4 L/min and drying gas set at 25 psig. All samples for ESI-MS were dissolved in acetonitrile (final concentration of 1 μ g/mL) no additional electrolyte was used. The ESI-HR-ToF-MS was calibrated at mass range 100 - 3000 *m/z* with mass accuracy error < 10 ppm.

General Procedure for the hydroboration of carbonyls. The hydroboration reactions were performed using J. Young NMR tubes in a glovebox under nitrogen atmosphere. Calculated amount of catalyst, Mn-1, (0.002 to 1 mol%) was added to 0.35-0.40 mL of CD₃CN at room

temperature. To this was added a carbonyl substrate (0.893 mmol, 1 equiv) followed by hydroborane (0.982 mmol, 1.1 equiv). The progress of the reaction was monitored by the ¹H, ¹³C, and ¹¹B NMR spectroscopies. After the hydroboration reaction was complete, the reaction mixture was transferred to a round bottom flask/sample vial with acetonitrile and hexane, and hydrolyzed by mixing with aqueous HCl (1 M). After hydrolysis, the organic layer was extracted with hexane and subjected to column chromatography using silica with hexane-EtOAc as eluent. The resultant products were characterized by ¹H and/or ¹³C NMR and the conversions of the starting carbonyls and the yields of the isolated alcoholes were reported in Tables 2 & 3. The identities of the products were confirmed by comparison of ¹H, ¹³C, and/or ¹¹B NMR spectra with previous literature reports.^{1,2,3}

NMR characterization data

Acetophenone hydroboration product:⁴ ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.22 (m, 12H, 4C*H*₃), 1.49 (d, 3H, -C*H*₃), 5.26 (q, 1H, -OC*H*), 7.28 (m, 1H, -*Ph*), 7.38 (m, 4H, -*Ph*). ¹³C {1H} NMR (125 MHz, CD₃CN, 298 K, δ): 25.33 (4C*H*₃), 27.08 (*C*H₃), 73.23 (O*C*H), 83.51 (-B-OCHpin), 126.18, 128.08, 129.17, 145.65 (*Ph*). Hydrolysis product (1-phenylethanol): ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.42 (d, 3H, C*H*₃), 4.84 (q, 1H, OC*H*), 7.18 (d, 2H, *Ph*), 7.20 (m, 3H, *Ph*)

Table 2. Entry 1:⁴ *p*-chloroacetophenone hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.21 (m, 12H, 4CH₃), 1.43 (d, 3H, -CH₃), 5.20 (q, 1H, -OCH), 7.31 (m, 4H, -*Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 25.40. **Hydrolysis product (1-(4-chlorophenyl)ethanol):** ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.40 (d, 3H, CH₃), 4.89 (q, 1H, OCH), 7.30 (m, 4H, *Ph*)

Table 2. Entry 2:⁵ *p*-bromoacetophenone hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.20 (m, 12H, 4CH₃), 1.43 (d, 3H, -CH₃), 5.16 (q, 1H, -OCH), 7.25 (m, 2H, -*Ph*), 7.46 (m, 2H, -*Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 25.40. **Hydrolysis product** (**1-(4-bromophenyl)ethanol):** ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.42 (d, 3H, CH₃), 4.72 (q, 1H, OCH), 7.18 (m, 2H, *Ph*), 7.42 (m, 2H, *Ph*)

Table 2. Entry 3:⁴ *p***-trifluoromethyl acetophenone hydroboration product:** ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.20 (m, 12H, 4CH₃), 1.47 (d, 3H, -CH₃), 5.29 (q, 1H, -OCH), 7.52 (m, 2H, -*Ph*), 7.64 (m, 2H, -*Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 25.42. **Hydrolysis**

product (1-(4-trifluoromethyl**phenyl**)ethanol): ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.51 (d, 3H, C*H*₃), 4.88 (q, 1H, OC*H*), 7.44 (m, 2H, *Ph*), 7.57 (m, 2H, *Ph*)

Table 2. Entry 4:⁴ *p*-nitroacetophenone hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.21 (m, 12H, 4CH₃), 1.46 (d, 3H, CH₃), 5.30 (q, 1H, OCH), 7.55 (d, 2H, *Ph*), 8.16 (d, 2H, *Ph*). Hydrolysis product (1-(4-nitrophenyl)ethanol): ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.49 (d, 3H, CH₃), 4.97 (q, 1H, OCH), 7.51 (d, 2H, *Ph*), 8.04 (d, 2H, *Ph*).

Table 2. Entry 5:⁶ *p*-methoxyacetophenone hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.22 (m, 12H, 4CH₃), 1.45 (d, 3H, CH₃), 3.63 (s, 3H, OCH₃), 5.18 (q, 1H, OCH), 6.88 (d, 2H, *Ph*), 7.27 (d, 2H, *Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 24.39. **Hydrolysis product (1-(4-methoxyphenyl)ethanol):** ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.50 (d, 3H, CH₃), 3.60 (s, 3H, OCH₃), 4.87 (q, 1H, OCH), 6.88 (d, 2H, *Ph*), 7.27 (d, 2H, *Ph*).

Table 2. Entry 6:⁷ *p*-methylacetophenone hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.22 (m, 12H, 4CH₃), 1.47 (d, 3H, CH₃), 2.33 (s, 3H, CH₃), 5.22 (q, 1H, OCH), 7.16 (d, 2H, *Ph*), 7.26 (d, 2H, *Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 24.49. **Hydrolysis product (1-(4-methylphenyl)ethanol):** ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.41 (d, 3H, CH₃), 2.25 (s, 3H, CH₃), 4.82 (q, 1H, OCH), 7.08 (d, 2H, *Ph*), 7.15 (d, 2H, *Ph*).

Table 2. Entry 7:⁶ cyclopropylphenylketone hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 0.40-0.50 (m, 4H, cyclopropyl 2*CH*₂), 1.21 (m, 1H, cyclopropyl *CH*), 1.23 (m, 12H, 4*CH*₃), 4.49 (m, 1H, O*CH*), 7.28 (m, 1H, *Ph*), 7.36 (m, 2H, *Ph*), 7.41 (m, 2H, *Ph*). **Hydrolysis product** (*α*-cyclopropylbenzylalcohol): ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 0.35-0.46 (m, 4H, cyclopropyl 2*CH*₂), 0.56 (m, 1H, cyclopropyl *CH*), 4.02 (m, 1H, O*CH*), 7.20 (m, 1H, *Ph*), 7.31 (m, 2H, *Ph*), 7.48 (m, 2H, *Ph*)

Table 2. Entry 8:⁶ benzophenone hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.26 (m, 12H, 4C*H*₃), 6.30 (s, 1H, OC*H*), 7.31 (m, 2H, *Ph*), 7.39 (m, 4H, *Ph*), 7.48 (m, 4H, *Ph*). **Hydrolysis product** (α-phenylbenzenemethanol): ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 2.37 (s, 1H, *OH*), 5.81 (s, 1H, OC*H*), 7.28 (m, 2H, *Ph*), 7.33 (m, 4H, *Ph*), 7.37 (m, 4H, *Ph*)

Table 2. Entry 9:⁸ **2-pentanone hydroboration product**: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 0.89 (m, 3H, C*H*₃), 1.13 (m, 2H, C*H*₂), 1.23 (m, 12H, 4C*H*₃), 1.35 (m, 3H, OCHC*H*₃), 1.43 (m, 2H, OCHC*H*₂), 4.11 (m, 1H, OC*H*)

Table 2. Entry 10:⁸ **cyclohexanone hydroboration product**: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.19 (m, 12H, 4CH₃), 1.25 (m, 4H, CH₂), 1.49 (m, 2H, CH₂), 1.69 (m, 2H, CH₂), 1.78 (m, 2H, CH₂), 3.90 (m, 1H, OCH)

Table 2. Entry 11:⁸ 3-cyclohexenone hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.25 (m, 12H, 4CH₃), 1.65 (m, 2H, CH₂), 1.79 (m, 1H, CH), 1.91 (m, 1H, CH), 2.03 (m, 2H, CH₂), 4.58 (m, 1H, OCH), 5.73 (m, 1H, CH=CH), 5.88 (m, 1H, CH=CH). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 25.17. Hydrolysis product (3-cyclohexene-1-methanol): ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.58-2.36 (m, 6H, 3CH₂), 4.45 (m, 1H, OCH), 5.62 (m, 1H, CH=CH), 5.71 (m, 1H, CH=CH)

Table 2. Entry 12:⁷ benzylideneacetophenone hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.26 (m, 12H, 4C*H*₃), 5.81 (m, 1H, -OC*H*), 6.44 (m, 1H, -OCHC*H*=CH), 6.74 (m, 1H, -OCHCH=C*H*), 7.26-7.56 (m, 10H, *Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 26.10. Hydrolysis product (1,3-diphenyl-2-propen-1-ol): ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 5.20 (m, 1H, -OC*H*), 6.35 (m, 1H, -OCHC*H*=CH), 6.68 (m, 1H, -OCHCH=C*H*), 7.18-7.46 (m, 10H, *-Ph*)

Table 2. Entry 13:⁹ **4-phenyl-3-butyne-2-one** hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.24 (m, 12H, 4CH₃), 1.52 (d, 3H, -*CH₃*), 5.05 (q, 1H, -OC*H*), 7.35 (m, 3H, -*Ph*), 7.42 (m, 2H, -*Ph*). ¹³C {1H} NMR (125 MHz, CD₃CN, 298 K, δ): 24.30 (4*C*H₃), 24.92 (4*C*H₃), 61.97 (-OCH), 83.87 (4° *C* of Bpin), 84.19 (-OCH*C*=*C*), 90.89 (-OCH*C*=*C*Ph), 129.43, 129.73, 132.32, 133.75 (*Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 25.48. **Hydrolysis product (4-phenyl-3-butyne-2-ol):** ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.46 (m, 3H, -*CH₃*), 4.84 (m, 1H, -OC*H*), 7.29 (m, 2H, -*Ph*), 7.31 (m, 3H, -*Ph*)

Table 3. Entry 1 & 3:⁶ benzaldehyde hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.21 (m, 12H, 4C*H*₃), 4.85 (s, 2H, OC*H*₂), 6.95 (d, 2H, *Ph*), 7.31 (d, 2H, *Ph*). ¹³C {1H} NMR (125 MHz, CD₃CN, 298 K, δ): 25.03 (4*C*H₃), 67.35 (O*C*H₂), 83.76 (B-O*C*Hpin), 127.68, 128.37, 129.32, 140.51 (*Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 24.05. **Hydrolysis product** (benzyl alcohol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.68 (s, 2H, OC*H*₂), 7.19 (m, 2H, *Ph*), 7.35-7.40 (m, 3H, *Ph*)

Table 3. Entry **2 & 4:**⁶ *p*-methoxybenzaldehyde hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.26 (m, 12H, 4CH₃), 3.78 (s, 3H, OCH₃), 4.83 (s, 2H, OCH₂), 6.92 (d, 2H, *Ph*), 7.29 (d, 2H, *Ph*). **Hydrolysis product** (*p*-methoxybenzyl alcohol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 3.52 (s, 3H, OCH₃), 4.61 (s, 2H, OCH₂), 6.82 (m, 2H, *Ph*), 7.11 (m, 2H, *Ph*).

Table 3. Entry 5:⁶*p***-nitro benzaldehyde hydroboration product:** ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.23 (m, 12H, 4C*H*₃), 4.98 (s, 3H, OC*H*), 7.52 (d, 2H, *Ph*), 8.17 (d, 2H, *Ph*). **Hydrolysis product** (*p*-nitrobenzyl alcohol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.81 (s, 2H, OC*H*₂), 7.45 (m, 2H, *Ph*), 8.09 (m, 2H, *Ph*).

Table 3. Entry 6:⁷ *p*-cyanobenzaldehyde hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.23 (m, 12H, 4CH₃), 4.93 (m, 2H, OCH₂), 7.46 (m, 2H, *Ph*), 7.69 (m, 2H, *Ph*). ¹³C {1H} NMR (125 MHz, CD₃CN, 298 K, δ): 24.92 (4*C*H₃), 66.44 (O*C*H₂), 83.99 (B-O*C*Hpin), 111.76, 127.90, 133.16, 145.89 (*Ph*). **Hydrolysis product** (*p*-cyanobenzyl alcohol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.76 (s, 2H, OCH₂), 7.42 (m, 2H, *Ph*), 7.62 (m, 2H, *Ph*)

Table 3. Entry 7:⁴ *p*-chlorobenzaldehyde hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.22 (m, 12H, 4C*H*₃), 4.96 (m, 2H, OC*H*₂), 7.45 (m, 2H, *Ph*), 7.62 (m, 2H, *Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 24.92. **Hydrolysis product** (*p*-chlorobenzyl alcohol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.69 (s, 2H, OC*H*₂), 7.39 (m, 2H, *Ph*), 7.50 (m, 2H, *Ph*)

Table 3. Entry 8:⁶ *p*-bromobenzaldehyde hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.23 (m, 12H, 4C*H*₃), 4.95 (m, 2H, OC*H*₂), 7.43 (m, 2H, *Ph*), 7.65 (m, 2H, *Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298K, δ): 24.95. **Hydrolysis product** (*p*-bromobenzyl alcohol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.55 (s, 2H, OC*H*₂), 7.22 (m, 2H, *Ph*), 7.37 (m, 2H, *Ph*)

Table 3. Entry 9:⁷ *o*-bromo benzaldehyde hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.24 (m, 12H, 4CH₃), 4.93 (s, 3H, OCH), 7.19 (m, 1H, *Ph*), 7.36 (m, 1H, *Ph*), 7.47 (m, 1H, *Ph*), 7.54 (d, 1H, *Ph*). **Hydrolysis product** (*o*-bromobenzyl alcohol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.72 (s, 2H, OCH₂), 7.11 (m, 1H, *Ph*), 7.28 (m, 1H, *Ph*), 7.41 (m, 1H, *Ph*), 7.48 (m, 1H, *Ph*)

Table 3. Entry 10:⁷ *trans*-3-phenyl-2-propenal hydroboration product (cinnamaldehyde): ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.29 (m, 12H, 4C*H*₃), 4.65 (m, 2H, OC*H*₂), 6.34 (m, 1H, - C*H*=CHPh), 6.36 (m, 1H, -CH=C*H*Ph), 7.23-7.29 (m, 3H, *Ph*), 7.41 (m, 2H, *Ph*). ¹³C {1H} NMR (125 MHz, CD₃CN, 298 K, δ): 24.30 (4*C*H₃), 25.01 (4*C*H₃), 65.85 (-OCH₂), 83.57 (-OCH₂), 131.30 (*C*H=CHPh), 153.43 (CH=CHPh), 127.26,128.52, 128.50, 137.67 (*Ph*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 25.60. **Hydrolysis product** (cinnamyl alcohol): ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.12 (s, 2H, OC*H*₂), 6.20 (m, 1H, -C*H*=CHPh), 6.34 (m, 1H, -CH=C*H*Ph), 7.01 (m, 2H, *Ph*), 7.08-7.17 (m, 3H, *Ph*)

Table 3. Entry 11:⁴ **3-cyclohexenecarboxaldehyde hydroboration product**: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.21 (m, 12H, 4CH₃), 1.27 (m, 4H, CH₂), 2.03 (m, 3H, CH & CH=CH), 3.67 (m, 2H, OCH₂), 5.64 (m, 2H, -OCH₂). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 25.32. **Hydrolysis product** (3-cyclohexene-1-methanol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.25-2.52 (m, 6H, CH₂), 3.56 (m, 2H, OCH₂), 5.61 (m, 2H, CH=CH)

Table 3. Entry 12:⁶ **1-Decanal hydroboration product**: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 0.89 (m, 3H, C*H*₃), 1.22 (m, 12H, 4C*H*₃), 1.27 (m, 14H, 7C*H*₂), 1.56 (m, 2H, C*H*₂), 3.60 (m, 2H, OC*H*₂).

Table 3. Entry 13:⁴ **2-formylpyridine hydroboration product**: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.22 (m, 12H, 4CH₃), 4.92 (s, 2H, OCH₂), 7.38 (m, 1H, *pyridine*), 7.46 (m, 1H, *pyridine*), 7.87 (m, 1H, *pyridine*), 8.54 (m, 1H, *pyridine*). ¹³C {1H} NMR (125 MHz, CD₃CN, 298 K, δ): 25.58 (4CH₃), 67.25 (-OCH₂), 82.19 (-B-OCpin), 121.17 (*pyridine*), 124.06 (*pyridine*), 139.49 (*pyridine*), 146.29 (*pyridine*), 149.99 (*pyridine*). ¹¹B {¹H} NMR (99 MHz, CD₃CN, 298 K, δ): 21.25. **Hydrolysis product** (2-pyridinemethanol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.78 (s, 2H, OCH₂), 7.31 (m, 1H, *pyridine*), 7.39 (m, 1H, *pyridine*), 7.81 (m, 1H, *pyridine*), 8.42 (m, 1H, *pyridine*)

Table 3. Entry 14:⁷ **furfural hydroboration product**: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.26 (m, 12H, 4CH₃), 4.80 (s, 2H, OCH₂), 6.32-6.36 (m, 2H, *furan ring*), 7.48 (m, 1H, *furan ring*). **Hydrolysis product** (2-furanmethanol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.72 (s, 2H, OCH₂), 6.01 (m, 1H, *furan ring*), 6.32 (m, 1H, *furan ring*), 7.33 (m, 1H, *furan ring*)

Table 3. Entry 15:⁶ thiophene-2-carboxaldehyde hydroboration product: ¹H NMR (500 MHz, CD₃CN, 298 K, δ): 1.29 (m, 12H, 4CH₃), 5.04 (s, 2H, OCH₂), 7.02-7.06 (m, 2H, *thiophene ring*), 7.36 (m, 1H, *thiophene ring*). Hydrolysis product (2-thiophenemethanol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 4.82 (s, 2H, OCH₂), 6.98 (m, 1H, *thiophene ring*), 7.01 (m, 1H, *thiophene ring*), 7.28 (m, 1H, *thiophene ring*)

Acetylbenzaldehyde hydroboration products:^{4,7} ¹H NMR (500 MHz, CD₃CN, 298 K, δ): (**Aldehyde group reduction only**) 1.24 (m, 12H, 4CH₃), 2.54 (s, 3H, COCH₃), 4.94 (s, 2H, -OCH₂), 7.42 (m, 2H, *Ph*), 7.93 (m, 2H, *Ph*). ¹³C {1H} NMR (125 MHz, CDCl₃, 298 K, δ): 24.30 (4CH₃), 27.36 (unreacted CH₃), 66.65 (-OCH₂), 84.12 (4° *C* of Bpin), 127.27, 129.25, 130.46, 145.57 (*Ph*), 129.15, 129.57, 133.96, 138.20 (unreacted *Ph*), 198.28 (unreacted CO of ketone group). After **2nd equivalent of HBpin was added**, both aldehyde and ketone **groups were reduced: 1.20** (m, 24H, 4CH₃), 1.40 (m, 3H, OCHCH₃), 4.89 (m, 2H, -OCH₂), 5.26 (m, 1H, -OCH), 7.33 (m, 4H, *Ph*). **Hydrolysis product** (*α*-methyl-1,4-benzenedimethanol) ¹H NMR (500 MHz, CDCl₃, 298 K, δ): 1.43 (m, 3H, CHCH₃), 4.96 (m, 2H, -OCH₂), 5.23 (m, 1H, -OCH), 7.25-7.32 (m, 4H, *Ph*).

Synthesis of DBpin

This procedure was adapted from the literature.¹⁰ BD_3 •THF (2 mmol, 1M in THF) solution was placed in a Schlenk flask equipped with a stir bar under nitrogen. After cooling to 0 °C using an ice bath, pinacol (2 mmol) was then added slowly and the solution was allowed to warm to rt and stirred for 6 hours. The resulting solution was stripped off excess THF by using Schlenk technique. ¹H and ¹¹B NMR spectroscopy confirmed the formation of deuterated pinacolborane.

Figure S1: ¹¹B NMR spectrum of DBpin in CD₃CN

Figure S2. ¹H NMR spectra of AcPh and reaction progress between AcPh and HBpin

Figure S3. ¹H NMR spectra of reaction between *p*-Cl-AcPh and HBpin

Figure S4. ¹H NMR spectra of reaction between *p*-Br-AcPh and HBpin

Figure S5. ¹H NMR spectra of reaction between *p*-CF₃-AcPh and HBpin

Figure S6. ¹H NMR spectra of reaction between *p*-NO₂-AcPh and HBpin

Figure S7. ¹H NMR spectra of reaction between *p*-MeO-AcPh and HBpin

Figure S8. ¹H NMR spectra of reaction between *p*-Me-AcPh and HBpin

Figure S9. ¹H NMR spectra of reaction between Cyclopropylphenylketone and HBpin

Figure S10. ¹H NMR spectra of reaction between Benzophenone and HBpin

Figure S11. ¹H NMR spectra of reaction between 2-pentanone and HBpin

Figure S12. ¹H NMR spectra of reaction between Cyclohexanone and HBpin

Figure S13. ¹H NMR spectra of reaction between 2-cyclohexenone and HBpin

Figure S14. ¹H NMR spectra of reaction between PhCHO and HBpin

Figure S15. ¹H NMR spectra of reaction between *p*-MeO-PhCHO and HBpin

Figure S16. ¹H NMR spectra of reaction between *p*-CN-PhCHO and HBpin

Figure S17. ¹H NMR spectra of reaction between *o*-Br-PhCHO and HBpin

Figure S18. ¹H NMR spectra of reaction between cyclohexenecarboxaldehyde and HBpin

Figure S19. ¹H NMR spectra of reaction between Decanal and HBpin

Figure S20. ¹H NMR spectra of reaction between 2-formylpyridine and HBpin

Figure S22. ¹¹B NMR spectra of reaction between AcPh and HBpin

Figure S23. ¹¹B NMR spectra of reaction between *p*-Cl-AcPh and HBpin

Figure S24. ¹¹B NMR spectra of reaction between *p*-Br-AcPh and HBpin

Figure S25. ¹¹B NMR spectra of reaction between *p*-CF₃-AcPh and HBpin

Figure S26. ¹¹B NMR spectra of reaction between *p*-Me-AcPh and HBpin

Figure S27. ¹¹B NMR spectra of reaction between 2-cyclohexenone and HBpin

100

80

60

40

20

Figure S28. ¹¹B NMR spectra of reaction between *trans*-3-phenyl-2-propenal (cinnamaldehyde) and HBpin

0

-20

ppm

-80

-60

-40

Figure S29. ¹¹B NMR spectra of reaction between Cyclohexenecarboxaldehyde and HBpin

Figure S30. ¹¹B NMR spectra of reaction between 2-formylpyridine and HBpin

Figure S31. ¹³C NMR spectra of reaction between AcPh and HBpin

Figure S32. ¹³C NMR spectra of reaction between PhCHO and HBpin

Figure S33. ¹³C NMR spectra of reaction between *p*-CN-PhCHO and HBpin

Figure S35. ¹³C NMR spectra of reaction between *trans*-3-phenyl-2-propenal (cinnamaldehyde) and HBpin

Figure S36. ¹H NMR spectra of intermolecular competition between AcPh and PhCHO with HBpin

Figure S37. ¹H NMR spectra of intermolecular competition between p-MeO-AcPh and p-MeO PhCHO with HBpin

Figure S38. ¹H NMR spectra of intermolecular competition between p-NO₂-AcPh and p-NO₂ PhCHO with HBpin

Figure S39. ¹H NMR spectra of intramolecular chemoselective reaction of acetylbenzaldehyde with HBpin

Figure S40. ¹H NMR spectra of competitive reaction between AcPh and *p*-CH₃O-AcPh with HBpin

Figure S41. ¹H NMR spectra of competition reaction between AcPh and p-NO₂-AcPh with HBpin

Figure S42. ¹H NMR spectra of competition reaction between AcPh and *p*-CF₃-AcPh with HBpin

Figure S43. ¹¹B (top) and ¹H (bottom) NMR of catalyst (Mn-1) with HBpin and AcPh

Figure S44. Reaction scheme of HBcat and DBpin with acetophenone

(10a and 10b are the expected products; 10c and 3a are the crossover products)

Figure S45. ¹H NMR spectra of competition reaction between HBcat and DBpin with acetophenone (5 min)

Figure S46. ¹H NMR spectra of competitive reaction between HBcat and DBpin with acetophenone (1 h)

Figure S47. ¹H NMR spectra of competition reaction between HBcat and DBpin with acetophenone (5 min to 36 h)

Figure S48. GC-MS extracted ion chromatograms of reaction between HBpin with acetophenone

(for molecular ion $[M^+] = 248 \ m/z$ and its M+1 peak of 249 m/z occurring due to ¹³C isotope corresponding to the presence of 14 carbon atoms).

HBpin + AcPh Reaction						
Ion 248.00 (247.70 to 248.70)						
Peak #	Ret Time	Туре	Width	Area	Start Time	End Time
1	11.702	VB	0.125	29851820	11.213	12.27
Ion 249.00 (248.70 to 249.70)						
Peak #	Ret Time	Туре	Width	Area	Start Time	End Time
1	11.702	BB	0.097	4686981	11.206	11.998

Table S1 : GC-MS	data extracted ion	integration of HB	pin-AcPh reaction
	aata entractea ion	megration of mb	

Percentage of 249 m/z in HBpin + AcPh reaction of 248 m/z ~ 15.7 %

Figure S49. GC-MS extracted ion chromatograms of competition reaction between HBpin and DBpin with acetophenone

(Where molecular ion $[M^+] = 248 \ m/z$ is formed by reaction with HBpin and peak of 249 m/z may can be attributed to reaction with DBpin as due to occurrence of ¹³C isotope corresponding to the presence of 14 carbon atoms).

	Table 52. Ge wib data integration of clossover experiment							
	HBpin + DBpin + AcPh Reaction							
Ion 248.00 (247.70 to 248.70)								
Peak #	Ret Time	Туре	Width	Area	Start Time	End Time		
1	11.71	BV	0.102	18437171	11.207	11.896		
	Ion 249.00 (248.70 to 249.70)							
Peak #	Ret Time	Туре	Width	Area	Start Time	End Time		
2	11.708	VV	0.067	8558193	11.533	11.908		

Table S2: GC-MS data integration of crossover experiment

Percentage of m/z 249 (of m/z 248) with in HBpin + DBpin + AcPh Reaction = 46.41 %

The original isotopic **D** labelled product (m/z 249) is 46.41 – 15.70 = 30.71 %

The calculated H/D products ratio is thus approximately $69.3:30.7 \approx 2.3$

The ESI-HR-ToF-MS study of the reaction system was evaluated based on analysis of **Mn-1** alone (Fig. S50) and following the reaction with HBPin in different ratios (Fig S51)

C₃₂H₄₇N₃O₂Mn [M+H⁺] mass required 560.3048; mass found 560.3065

mass accuracy error 18 ppm

Mn₂ species

C₆₄H₉₆N₆O₄Mn₂ [2M⁺] mass required 1122.6249; mass found 1122.5928

M/z of 1104.6066 could be attributed to a nitrogen-bridged dimer or loss of water with mass errors of -15 ppm.

Mn₃ species C₉₆H₁₃₉N₈O₆Mn₃ mass required 1664.8959; mass found 1664.9091

Figure S50. ESI-ToF-MS of Mn-1

 $C_{32}H_{46}N_3O_2Mn$ full mass range [M⁺] 559.2965, thus with mass accuracy errors of 18 ppm, and narrow mass range regions for monomer (a) and Mn_2 and Mn_3 species (b, c).

As shown in Fig. S51 below, no adduct of (salen)MnN-HBpin or (salen)Mn-HBpin was detected using the ESI-HR ToF MS. Similarly as for catalyst alone dimeric species could be observed in the region of m/z 1109 (**Mn-1** and HBpin 1:3), corresponding to a nitrogen bridged dinuclear species (Fig. S51). However, similar dinuclear species also showed up in the ESI of **Mn-1** alone without HBpin, but with 5 less mass units (m/z 1104, which could be assigned to a nitrogen bridged dimer), Fig. S51. We assume that the salen backbone hydrogenation, mostly likely at the imine double bond, could also take place under such conditions. When 1:1 ratio of **Mn-1**:HBpin was used, the dimeric species was observed at m/z 1107 (Fig. S51), likely due to a partial hydrogenation. In support of this, the imine peak of **Mn-1** at 8.02 ppm in ¹H NMR was observed to disappear when HBpin was added to the catalyst solution prepared with CDCl₃ at room temperature while other signals of **Mn-1** remained intact, at least initially.

a) **Mn-1**: HBpin (1:3)

b) Mn-1: HBpin (1:3) zoomed on dimers

 $C_{32}H_{46}N_2O_2Mn \; [M^+] \; 545.2940 \; required \\ 545.3025 \; found$

 $\begin{array}{ll} C_{64}H_{95}N_5O_4Mn_2 & 1107.6145 \ (1107.5966) \\ C_{64}H_{97}N_5O_4Mn_2 & 1109.6301 \ (1109.6190) \\ reported \ as \ mass \ required \ (mass \ found) \end{array}$

Figure S51. ESI-ToF-MS of reaction products for **Mn-1** with HBpin at different ratios

References

1 Tamang, S. R.; Findlater, M. J. Org. Chem. 2017, 82, 12857-12862.

2 Verma, P. K.; Sethulekshmi, A. S.; Geetharani, K. Org. Lett. 2018, 20, 7840-7845.

3 Wang, W.; Shen, X.; Zhao, F.; Jiang, H.; Yao, W.; Pullarkat, S. A.; Xu, L.; Ma, M. J. Org. Chem. **2018**, 83, 69–74.

4 Zeng, H.; Wu, J.; Li, S.; Hui, C.; Ta, A.; Cheng, S. -Y.; Zheng, S.; Zhang, G. Org. Lett. 2019, 21, 401-406.

5 Zhang, G.; Zeng, H.; Wu, J.; Yin, Z.; Zheng, S.; Fettinger, J. C. *Angew. Chem. Int. Ed.* **2016**, *55*, 14369–14372. 6 V. K. Jakhar, M. K. Barman and S. Nembenna, *Org. Lett.*, 2016, **18**, 4710–4713.

7 Qi, X.; Zheng, T.; Zhou, J.; Dong, Y.; Zuo, X.; Li, X.; Sun, H.; Fuhr, O.; Fenske, D. Organometallics **2019**, *38*, 268–277.

8 Shin, W. K.; Kim, H.; Jaladi, A. K.; An, D. K. Tetrahedron 2018, 74, 6310-6315.

9 Panteleev, J.; Huang, R. Y.; Lui, E. K. J.; Lautens, M. Org. Lett. 2011, 13, 5314-5317.

10 Lessard, S.; Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2009, 131, 9612-9613.