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23 1. Experimental Section

24 1.1. Details of Catalyst Synthesis

25 CeO2-S were synthesized via a previously reported method with some 

26 modifications.1 Ce(NO3)3·6H2O (2.5 g) and polyvinyl pyrrolidone (K30, 1 g) were 

27 dissolved in ethylene glycol (70 mL) to form a transparent solution. Deionized water 

28 (10 mL) was added to the solution and stirred for 30 min. Subsequently, the mixture 

29 was transferred into a 100 mL Teflon-lined stainless steel autoclave and kept in an 

30 oven at 160 ℃ for 24 h.

31 CeO2-R and CeO2-C were synthesized according to a method reported in the 

32 literature.2 NaOH (19.2 g) and Ce(NO3)3·6H2O (1.736 g) were dissolved in deionized 

33 water (70 mL and 10 mL, respectively). The two solutions were mixed under vigorous 

34 stirring and stirred for another 30 min. Then, the mixture was transferred into a 100 

35 mL Teflon-lined stainless steel autoclave and kept in an oven at 100 ℃ and 180 ℃ for 

36 24 h to obtain CeO2-R and CeO2-C samples, respectively.

37 After cooling to room temperature, the products obtained in the above steps were 

38 collected by centrifugation and washed with deionized water and ethanol several 

39 times. Then the products were dried at 80 ℃ for 12 h and calcinated at 500 ℃ for 3 h 

40 in static air with the heating rate of 2 ℃/min.

41 1.2. Details of Catalyst Characterizations

42 For Ce M4,5-edge EELS spectra, all spectra were corrected by the zero-loss peak, 

43 and the background was subtracted using the power-law model. The Fourier-ratio 

44 deconvolution was also applied to eliminate the influence of sample thickness. The 
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45 white-line ratios of Ce M4,5-edge were also calculated based on the second derivative 

46 method to quantitatively determine the Ce3+ concentration because the M5/M4 ratio 

47 increases linearly as the proportion of Ce3+ rises.3, 4 The reference values of M5/M4 

48 ratio for pure Ce3+ (1.3) and Ce4+ (0.9) were obtained from the literature.3, 5 

49 For Ce L3-edge XAS spectra, the radiation was monochromatized by a Si (111) 

50 double-crystal monochromator. EXAFS analysis was processed via the Athena 

51 software.6

52 For PALS spectra, a 13 μCi 22Na positron source was sandwiched between two 

53 pieces of sample flakes. Total counts of 2×106 were acquired for all spectra to ensure 

54 accuracy. The obtained spectra were fitted by Lifetime 9.0 software and decomposed 

55 into three lifetime components. PALS is an effective technique to investigate the size, 

56 location, and relative concentration of oxygen vacancies in CeO2-based catalysts.7 In 

57 general, the electron density at the annihilation site has a great influence on the 

58 positron lifetime, and the lifetime increases with the decrease of electron density.8

59 For O2-TPD experiments, all samples were pretreated under inert gas at 300 ℃ for 

60 1h. After cooling to 50 ℃, the gas flow was changed to 50 mL·min-1 of 5% O2/He and 

61 maintained for 1 h. After that, the samples were purged with He flow for 1h and then 

62 heated from 50 ℃ to 1000 ℃ at the rate of 10℃·min-1. For H2-TPR experiments, all 

63 samples were pretreated under Ar flow at 300 ℃ for 1h. After cooling to room 

64 temperature, the gas flow was changed to 50 mL·min-1 of 5% H2/Ar and maintained 

65 for 1 h. After that, the samples were heated to 1000 ℃ at the rate of 10℃·min-1. The 
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66 formed water vapor was removed by a cooler. Signals were recorded by a TCD 

67 detector.

68 For Toluene-TPD experiments, all samples were treated in the reaction atmosphere 

69 (1000 ppm toluene + 21% O2 + 79% N2, 100 mL·min-1) at 50 ℃ to adsorb toluene. 

70 After catalyst adsorption is saturated, the gas flow was changed to 100 mL·min-1 of 

71 N2. The samples were firstly purged with N2 for 1h and then heated from 50 ℃ to 800 

72 ℃ at the rate of 10℃·min-1. The concentrations of toluene, CO, and CO2 were 

73 recorded by the FTIR detector.

74 For In-situ DRIFTS, all samples were purged with air at 300 ℃ for 1 h to remove 

75 impurities adsorbed on the surface. After pretreatment, toluene (300 ppm toluene + 

76 21%O2 + 79% N2) was introduced to the reaction cell at 30 ℃ and maintained for 1 h. 

77 Thereafter, the temperature was gradually raised to 250 ℃ and kept at each sampling 

78 temperature for 15 min before the spectra collection.

79 1.3. Details of Catalytic Performance Evaluation and Stability Test

80 Surface Ce3+ sites normalized reaction rates (rCe3+, s−1) and SBET normalized reaction 

81 rates (rS, mol·m−2·s−1) were calculated by the following formula

82 (1)rCe3 +  (s -1) = -
Cinlet ∙ F

mcat ∙ SBET ∙ [Ce3 +
sur ] ∙ ρ ∙ ln(1 - Xtoluene)

83 (2)rS (mol ∙ m -2 ∙ s -1) = -
Cinlet ∙ F

mcat ∙ SBET ∙ ln(1 - Xtoluene)

84 where Cinlet refer to the toluene concentration in the inlet gas, F (mol·s−1) is the flow 

85 rate, mcat (g) is the mass of catalyst, SBET (m2·g−1) is the specific surface area 

86 calculated via BET method, [Ce3+sur] (%) is the surface Ce3+ proportion derived from 
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87 Ce 3d XPS spectra (Figure S1, Table 1), ρ (mol·m−2) is the density of surface Ce atoms 

88 calculated by CeO2 surface models (Figure S2). 

89 The 100 h stability test of CeO2-S was conducted on the same device as catalytic 

90 performance evaluation. 100 mg of CeO2-S (40−60 mesh) was treated in the reaction 

91 atmosphere (1000 ppm toluene + 21% O2 + 79% N2, 100 mL·min-1), and the 

92 temperature was maintained at 220 ℃ for 100 h.

93 1.4. Details of DFT+U Calculation

94 First-principles calculations based on density functional theory (DFT) were carried 

95 out with the Vienna Ab-initio simulation package (VASP) and PW91 functional. 9, 10 

96 The interaction between core electrons and valence electrons was expressed by the 

97 projector-augmented wave (PAW) method.11 The cutoff energy of the plane-wave 

98 basis set was set to 400 eV. To guarantee the accuracy, the convergence criteria of 

99 energy and force were set to 10-6 eV and 0.02 eV·Å-1, respectively. DFT+U with U = 5 

100 eV was applied to treat Ce 4f orbital.12, 13

101 To simulate CeO2 samples, three slab models were constructed with a vacuum 

102 region of 15 Å. For CeO2-S with a step-like structure, a 3 × 2 (331) slab model was 

103 employed.12 For CeO2-R, a 3 × 3 (110) slab model was used. For CeO2-C, a 3 × 3 

104 (100) slab model was built, and half of the top oxygen atoms were moved to the bottom 

105 for simulation of surface reconstruction.13, 14 Before calculation, no more than half of 

106 the atomic layers from the bottom were fixed. The Brillouin zone of (331) model was 

107 sampled using a Monkhorst–Pack k-point set of 2 × 1 × 1, whereas those of other two 

108 models were sampled by a 2 × 2 × 1 k-point set to acquire similar sampling densities.



S7

109



S8

110 2. Supporting Figures

111

112 Figure S1. Ce 3d XPS spectra of CeO2 samples.

113 All spectra were deconvoluted into ten components. Specifically, the peaks of 3d5/2 

114 include v0, v, v', v'', and v''', and the peaks of 3d3/2 consist of u0, u, u', u'', and u'''.15, 16 

115 Among the components, the spin-orbit split doublets including v, v'', v''', u, u'', and u''' 

116 arise from the 4f configuration of Ce4+, and the other four peaks indicate the presence 

117 of Ce3+.17 After the deconvolution, the proportions of surface Ce3+ ([Ce3+sur]) were 

118 calculated by the equation

119 (3)[Ce3 +
sur ] =

v0 + v' + u0 + u'

v0 + v + v' + v'' + v''' + u0 + u + u' + u'' + u'''

120 where v0, v, v', v'', v''', u0, u, u', u'', and u''' refers to the integrated intensities of 

121 corresponding peaks. The [Ce3+sur] values are shown in Table 1.

122

123
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124

125 Figure S2. Top views of CeO2 surface structures. (a) (331) plane for CeO2-S, (b) (110) 

126 plane for CeO2-R, (c) (100) plane for CeO2-C.

127 3×3 supercell surface structures of CeO2 (110) and (100) planes were built to 

128 calculate the surface Ce atom concentrations (ρ, mol·m-2) of CeO2-R and CeO2-C. 

129 According to the previously reported literature, (331) plane was chosen for CeO2-S to 

130 simulate the (111) planes with step-like structures.12

131

132
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133

134 Figure S3. CeO2 slab models for DFT+U calculation. (a) (331) slab model for CeO2-S, 

135 (b) (110) slab model for CeO2-R, (c) (100) slab model for CeO2-C. The white, red, 

136 yellow, and blue atoms refer to Ce atom, O atom, surface oxygen vacancy (clusters), 

137 and bulk oxygen vacancy, respectively.

138
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139

140 Figure S4. XRD patterns of CeO2 samples.

141
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142

143 Figure S5. (a) N2 adsorption-desorption isotherms and (b) BJH pore size distributions 

144 of nanoceria catalysts.

145

146

147
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148

149 Figure S6. Low-magnification TEM images of CeO2 samples. (a) CeO2-S, (b) CeO2-

150 R, (c) CeO2-C.

151

152
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153

154 Figure S7. SAED images of CeO2-S.

155
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156

157 Figure S8. k2-weighted Ce L3-edge EXAFS spectra of CeO2 samples.

158



S16

159

160 Figure S9. H2-TPR profile of CeO2 samples.

161 The peak at a lower temperature (200−600 ℃) is attributed to the reduction of Ce4+ 

162 on the top layers of CeO2 particle: the main peak at ~ 480 ℃ arises from the active 

163 lattice oxygen, whereas the shoulder peak at ~ 300 ℃ is due to the adsorbed oxygen 

164 species. 18, 19 Consistent with O2-TPD, CeO2-R exhibits the highest amount of 

165 adsorbed oxygen. However, much more lattice oxygen of CeO2-S was reducted than 

166 CeO2-R and CeO2-C, endowing this sample with excellent redox property and catalytic 

167 combustion activity.

168
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169

170 Figure S10. (a) SBET normalized reaction rates of CeO2 samples for toluene catalytic 

171 combustion, (b) stability test profile of CeO2-S.

172
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174 Figure S11. Toluene-TPD profile of CeO2 samples.

175
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176 3. Supporting Table

177 Table S1. Assignment of the in-situ DRIFTS bands for toluene adsorption and 

178 catalytic combustion.

Wavenumber (cm–1) Vibration Species

3000-3500 (br) σ(O–H) (Polymerized) a Water 
20

2966 (s) σ(C–H) a Aromatic ring 
21

2940 (m), 2860 (s) σ(C–H) a Methyl group 
22

2917 (m), 2820 (m) σ(C–H) a Methylene group 
22

1918 (w) σ(C=O) a Maleic anhydride 
23, 24

1650 (s) σ(C=O) a Aldehyde group 
25

1635 (w) δ(H–O–H) b Water 
20

1589 (vs), 1530 (vs), 1295 (s) σ(–COO–) a Carboxylate c 21, 26

1573 (vs), 1525 (vs) σ(–COO–) a Bidentate carbonate27
 

1560 (s), 1500 (m) σ(C=C) a Aromatic ring 
26

1430 (vs) δ(C–H) b Methylene group 
28

1380 (s) δ(C–H) b Methyl group 
28

1112 (vs), 1062 (vs), 1040 (vs) σ(C–O) a Phenolate 
29

937 (w) δ(C=C) b Maleic anhydride 
23, 24

906 (s), 888 (s), 855 (s) δ(C–H) b Aromatic ring 
26

179 a σ refers to stretching vibration.

180 b δ refers to bending vibration.



S20

181 c Carboxylate species refer to benzoate at low temperatures and chain carboxylate 

182 at high temperatures.

183

184

185

186
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