1	Supporting Information
2	Roles of Oxygen Vacancies in the Bulk and Surface of CeO_2 for
3	Toluene Catalytic Combustion
4	
5	
6	Ziang Suª, Wenhao Yangª, Chizhong Wangª, Shangchao Xiongª, Xingzhong Cao ^b ,
7	Yue Peng*, Wenzhe Si*, Yibin Weng ^c , Ming Xue ^c , and Junhua Li ^a
8	
9	^a State Key Joint Laboratory of Environment Simulation and Pollution Control, School
10	of Environment, Tsinghua University, Beijing 100084, China
11	^b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049,
12	China
13	° State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of
14	Safety and Environmental Technology, Beijing 102206, China
15	
16	*Corresponding author.
17	E-mail: pengyue83@tsinghua.edu.cn (Yue Peng)
18	E-mail: siwenzhe521@126.com (Wenzhe Si)
19	
20	

S1

- 21
- 22 Content including: 19 pages, 11 figures, and 1 table

23 **1. Experimental Section**

24 1.1. Details of Catalyst Synthesis

25 CeO₂-S were synthesized via a previously reported method with some 26 modifications.¹ Ce(NO₃)₃·6H₂O (2.5 g) and polyvinyl pyrrolidone (K30, 1 g) were 27 dissolved in ethylene glycol (70 mL) to form a transparent solution. Deionized water 28 (10 mL) was added to the solution and stirred for 30 min. Subsequently, the mixture 29 was transferred into a 100 mL Teflon-lined stainless steel autoclave and kept in an 30 oven at 160 °C for 24 h.

CeO₂-R and CeO₂-C were synthesized according to a method reported in the literature.² NaOH (19.2 g) and Ce(NO₃)₃·6H₂O (1.736 g) were dissolved in deionized water (70 mL and 10 mL, respectively). The two solutions were mixed under vigorous stirring and stirred for another 30 min. Then, the mixture was transferred into a 100 mL Teflon-lined stainless steel autoclave and kept in an oven at 100 °C and 180 °C for 24 h to obtain CeO₂-R and CeO₂-C samples, respectively.

After cooling to room temperature, the products obtained in the above steps were collected by centrifugation and washed with deionized water and ethanol several times. Then the products were dried at 80 °C for 12 h and calcinated at 500 °C for 3 h in static air with the heating rate of 2 °C/min.

41 **1.2. Details of Catalyst Characterizations**

For Ce $M_{4,5}$ -edge EELS spectra, all spectra were corrected by the zero-loss peak, and the background was subtracted using the power-law model. The Fourier-ratio deconvolution was also applied to eliminate the influence of sample thickness. The white-line ratios of Ce $M_{4,5}$ -edge were also calculated based on the second derivative method to quantitatively determine the Ce³⁺ concentration because the M_5/M_4 ratio increases linearly as the proportion of Ce³⁺ rises.^{3, 4} The reference values of M_5/M_4 ratio for pure Ce³⁺ (1.3) and Ce⁴⁺ (0.9) were obtained from the literature.^{3, 5}

For Ce L₃-edge XAS spectra, the radiation was monochromatized by a Si (111) double-crystal monochromator. EXAFS analysis was processed via the Athena software.⁶

52 For PALS spectra, a 13 μCi ²²Na positron source was sandwiched between two 53 pieces of sample flakes. Total counts of 2×10⁶ were acquired for all spectra to ensure 54 accuracy. The obtained spectra were fitted by Lifetime 9.0 software and decomposed 55 into three lifetime components. PALS is an effective technique to investigate the size, 56 location, and relative concentration of oxygen vacancies in CeO₂-based catalysts.⁷ In 57 general, the electron density at the annihilation site has a great influence on the 58 positron lifetime, and the lifetime increases with the decrease of electron density.⁸

For O₂-TPD experiments, all samples were pretreated under inert gas at 300 °C for 1h. After cooling to 50 °C, the gas flow was changed to 50 mL·min⁻¹ of 5% O₂/He and maintained for 1 h. After that, the samples were purged with He flow for 1h and then heated from 50 °C to 1000 °C at the rate of 10°C·min⁻¹. For H₂-TPR experiments, all samples were pretreated under Ar flow at 300 °C for 1h. After cooling to room temperature, the gas flow was changed to 50 mL·min⁻¹ of 5% H₂/Ar and maintained for 1 h. After that, the samples were heated to 1000 °C at the rate of 10°C·min⁻¹. The

S4

66 formed water vapor was removed by a cooler. Signals were recorded by a TCD67 detector.

For Toluene-TPD experiments, all samples were treated in the reaction atmosphere (1000 ppm toluene + 21% O_2 + 79% N_2 , 100 mL·min⁻¹) at 50 °C to adsorb toluene. After catalyst adsorption is saturated, the gas flow was changed to 100 mL·min⁻¹ of N_2 . The samples were firstly purged with N_2 for 1h and then heated from 50 °C to 800 °C at the rate of 10°C·min⁻¹. The concentrations of toluene, CO, and CO₂ were recorded by the FTIR detector.

For In-situ DRIFTS, all samples were purged with air at 300 °C for 1 h to remove impurities adsorbed on the surface. After pretreatment, toluene (300 ppm toluene + $21\%O_2 + 79\% N_2$) was introduced to the reaction cell at 30 °C and maintained for 1 h. Thereafter, the temperature was gradually raised to 250 °C and kept at each sampling temperature for 15 min before the spectra collection.

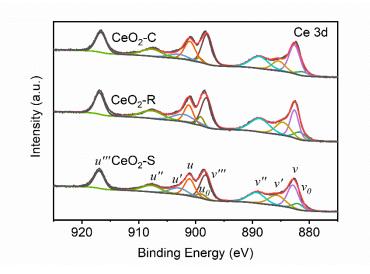
1.3. Details of Catalytic Performance Evaluation and Stability Test

80 Surface Ce³⁺ sites normalized reaction rates (r_{Ce3+} , s⁻¹) and S_{BET} normalized reaction 81 rates (r_S , mol·m⁻²·s⁻¹) were calculated by the following formula

82
$$r_{Ce^{3+}} \left(s^{-1} \right) = - \frac{C_{inlet} \cdot F}{m_{cat} \cdot S_{BET} \cdot [Ce^{3+}] \cdot \rho} \cdot \ln(1 - X_{toluene})$$
(1)

83
$$P_{S}(\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}) = -\frac{C_{\text{inlet}} \cdot F}{m_{\text{cat}} \cdot S_{\text{BET}}} \cdot \ln(1 - X_{\text{toluene}})$$
(2)

where C_{inlet} refer to the toluene concentration in the inlet gas, $F \pmod{\text{s}^{-1}}$ is the flow rate, m_{cat} (g) is the mass of catalyst, $S_{\text{BET}} \pmod{\text{s}^{-1}}$ is the specific surface area calculated via BET method, $[\text{Ce}^{3+}_{\text{sur}}]$ (%) is the surface Ce³⁺ proportion derived from ⁸⁷ Ce 3d XPS spectra (Figure S1, Table 1), ρ (mol·m⁻²) is the density of surface Ce atoms ⁸⁸ calculated by CeO₂ surface models (Figure S2).


The 100 h stability test of CeO₂-S was conducted on the same device as catalytic performance evaluation. 100 mg of CeO₂-S (40–60 mesh) was treated in the reaction atmosphere (1000 ppm toluene + 21% O₂ + 79% N₂, 100 mL·min⁻¹), and the temperature was maintained at 220 °C for 100 h.

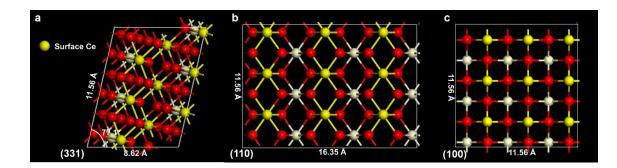
93 **1.4. Details of DFT+U Calculation**

First-principles calculations based on density functional theory (DFT) were carried out with the Vienna Ab-initio simulation package (VASP) and PW91 functional. ^{9, 10} The interaction between core electrons and valence electrons was expressed by the projector-augmented wave (PAW) method.¹¹ The cutoff energy of the plane-wave basis set was set to 400 eV. To guarantee the accuracy, the convergence criteria of energy and force were set to 10^{-6} eV and $0.02 \text{ eV}\cdot\text{Å}^{-1}$, respectively. DFT+U with U = 5 eV was applied to treat Ce 4f orbital.^{12, 13}

To simulate CeO₂ samples, three slab models were constructed with a vacuum 101 region of 15 Å. For CeO₂-S with a step-like structure, a 3×2 (331) slab model was 102 employed.¹² For CeO₂-R, a 3 × 3 (110) slab model was used. For CeO₂-C, a 3 × 3 103 104 (100) slab model was built, and half of the top oxygen atoms were moved to the bottom for simulation of surface reconstruction.^{13, 14} Before calculation, no more than half of 105 the atomic layers from the bottom were fixed. The Brillouin zone of (331) model was 106 sampled using a Monkhorst–Pack k-point set of 2 × 1 × 1, whereas those of other two 107 models were sampled by a $2 \times 2 \times 1$ k-point set to acquire similar sampling densities. 108

110 2. Supporting Figures

111

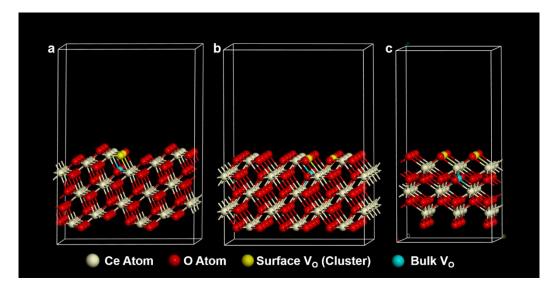

112 **Figure S1.** Ce 3d XPS spectra of CeO₂ samples.

All spectra were deconvoluted into ten components. Specifically, the peaks of $3_{d5/2}$ include v_0 , v, v', v'', and v''', and the peaks of $3d_{3/2}$ consist of u_0 , u, u', u'', and $u'''^{15, 16}$ Among the components, the spin-orbit split doublets including v, v'', v''', u, u'', and u'''arise from the 4f configuration of Ce⁴⁺, and the other four peaks indicate the presence of Ce³⁺.¹⁷ After the deconvolution, the proportions of surface Ce³⁺ ([Ce³⁺_{sur}]) were calculated by the equation

119

where v_{0} , v, v', v'', v''', u_{0} , u, u', u'', and u''' refers to the integrated intensities of corresponding peaks. The [Ce³⁺_{sur}] values are shown in Table 1.

122

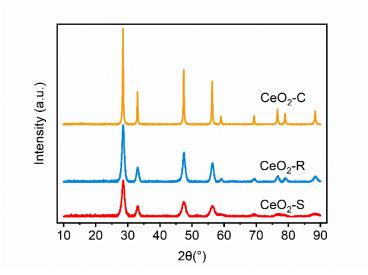


124

Figure S2. Top views of CeO₂ surface structures. (**a**) (331) plane for CeO₂-S, (**b**) (110) plane for CeO₂-R, (**c**) (100) plane for CeO₂-C.

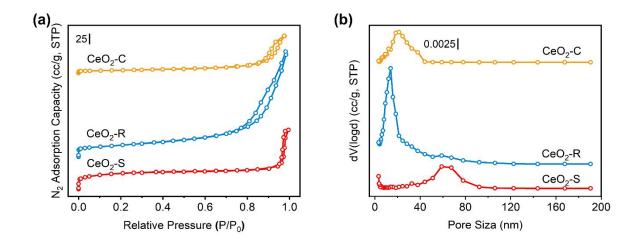
127 3×3 supercell surface structures of CeO₂ (110) and (100) planes were built to 128 calculate the surface Ce atom concentrations (ρ , mol·m⁻²) of CeO₂-R and CeO₂-C.

- According to the previously reported literature, (331) plane was chosen for CeO_2 -S to
- 130 simulate the (111) planes with step-like structures.¹²
- 131


133

134 Figure S3. CeO₂ slab models for DFT+U calculation. (a) (331) slab model for CeO₂-S,

(b) (110) slab model for CeO_2 -R, (c) (100) slab model for CeO_2 -C. The white, red,


136 yellow, and blue atoms refer to Ce atom, O atom, surface oxygen vacancy (clusters),

137 and bulk oxygen vacancy, respectively.

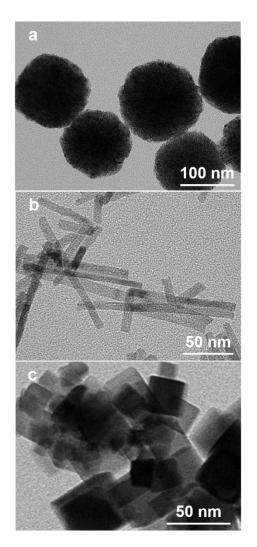
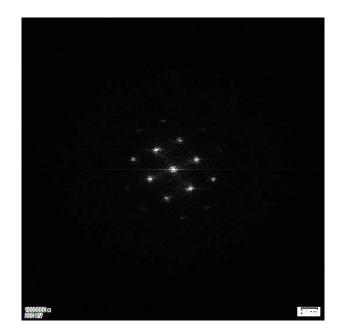
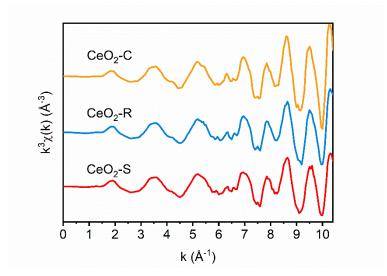


Figure S4. XRD patterns of CeO₂ samples.


Figure S5. (a) N₂ adsorption-desorption isotherms and (b) BJH pore size distributions

144 of nanoceria catalysts.



- 149 Figure S6. Low-magnification TEM images of CeO₂ samples. (a) CeO₂-S, (b) CeO₂-
- 150 R, (**c**) CeO₂-C.

151

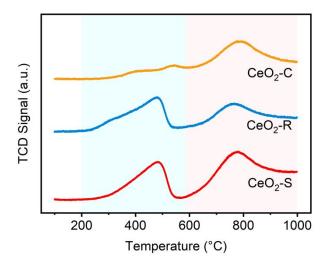
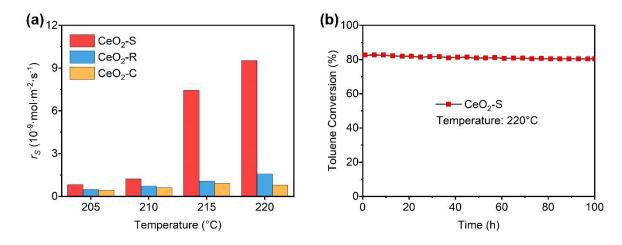
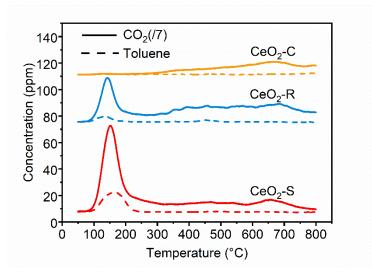


Figure S7. SAED images of CeO₂-S.




The peak at a lower temperature (200–600 °C) is attributed to the reduction of Ce⁴⁺ on the top layers of CeO₂ particle: the main peak at ~ 480 °C arises from the active lattice oxygen, whereas the shoulder peak at ~ 300 °C is due to the adsorbed oxygen species. ^{18, 19} Consistent with O₂-TPD, CeO₂-R exhibits the highest amount of adsorbed oxygen. However, much more lattice oxygen of CeO₂-S was reducted than CeO₂-R and CeO₂-C, endowing this sample with excellent redox property and catalytic combustion activity.

170 **Figure S10.** (a) S_{BET} normalized reaction rates of CeO₂ samples for toluene catalytic

171 combustion, (**b**) stability test profile of CeO_2 -S.

172

Figure S11. Toluene-TPD profile of CeO₂ samples.

176 3. Supporting Table

177 **Table S1.** Assignment of the in-situ DRIFTS bands for toluene adsorption and

178 catalytic combustion.

Wavenumber (cm ⁻¹)	Vibration	Species
3000-3500 (br)	<i>о</i> (О–Н) (Polymerized) ª	Water ²⁰
2966 (s)	<i>о</i> (С–Н) ª	Aromatic ring ²¹
2940 (m), 2860 (s)	<i>о</i> (С–Н) ª	Methyl group 22
2917 (m), 2820 (m)	<i>о</i> (С–Н) ª	Methylene group ²²
1918 (w)	<i>о</i> (С=О) ^а	Maleic anhydride ^{23, 24}
1650 (s)	<i>о</i> (С=О) ^а	Aldehyde group ²⁵
1635 (w)	<i>ō</i> (H–O–H) ⁵	Water 20
1589 (vs), 1530 (vs), 1295 (s)	<i>о</i> (-СОО ⁻) ^а	Carboxylate c 21, 26
1573 (vs), 1525 (vs)	<i>0</i> (-СОО-) а	Bidentate carbonate ²⁷
1560 (s), 1500 (m)	<i>o</i> (C=C) ª	Aromatic ring ²⁶
1430 (vs)	<i>ð</i> (C−H) ^ь	Methylene group 28
1380 (s)	<i>ð</i> (C−H) ^ь	Methyl group 28
1112 (vs), 1062 (vs), 1040 (vs)	<i>о</i> (С–О) а	Phenolate ²⁹
937 (w)	<i>δ</i> (C=C) ^b	Maleic anhydride 23, 24
906 (s), 888 (s), 855 (s)	<i>ð</i> (C–H) ⁵	Aromatic ring ²⁶

179 ^a σ refers to stretching vibration.

180 ^b δ refers to bending vibration.

181	^c Carboxylate species	refer to benzoate at	low temperatures	and chain carboxylate
			ion comportation ou	and onlain our only late

182 at high temperatures.

187 **References**:

- Liu, W.; Liu, X.; Feng, L.; Guo, J.; Xie, A.; Wang, S.; Zhang, J.; Yang, Y., The
 synthesis of CeO₂ nanospheres with different hollowness and size induced by copper
 doping. *Nanoscale* 2014, *6*, (18), 10693-700.
- Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.;
 Yan, C. H., Shape-selective synthesis and oxygen storage behavior of ceria
 nanopolyhedra, nanorods, and nanocubes. *J. Phys. Chem. B* 2005, *109*, (51), 2438024385.
- 195 3. Yang, G.; Mobus, G.; Hand, R. J., Cerium and boron chemistry in doped
 196 borosilicate glasses examined by EELS. *Micron* 2006, *37*, (5), 433-441.
- Spadaro, M. C.; Luches, P.; Bertoni, G.; Grillo, V.; Turner, S.; Van Tendeloo, G.;
 Valeri, S.; D'Addato, S., Influence of defect distribution on the reducibility of CeO_{2-x}
- 199 nanoparticles. *Nanotechnology* **2016**, *27*, (42).
- 5. Lavkova, J.; Khalakhan, I.; Chundak, M.; Vorokhta, M.; Potin, V.; Matolin, V.;
 Matolinova, I., Growth and composition of nanostructured and nanoporous cerium
 oxide thin films on a graphite foil. *Nanoscale* **2015**, *7*, (9), 4038-4047.
- 203 6. Ravel, B.; Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-
- ray absorption spectroscopy using IFEFFIT. *J. Synchrotron Radiat.* 2005, *12*, (4), 537541.
- 7. Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X., Tuning the
 relative concentration ratio of bulk defects to surface defects in TiO₂ nanocrystals
 leads to high photocatalytic efficiency. *J. Am. Chem. Soc.* 2011, *133*, (41), 16414-

209 16417.

8. Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye,
 B.; Xie, Y., Vacancy associates promoting solar-driven photocatalytic activity of
 ultrathin bismuth oxychloride nanosheets. *J. Am. Chem. Soc.* 2013, *135*, (28), 10411-7.
 9. Kresse, G.; Furthmuller, J., Efficiency of ab-initio total energy calculations for
 metals and semiconductors using a plane-wave basis set. *Comp. Mater. Sci.* 1996, *6*,
 (1), 15-50.

- 216 10. Perdew, J. P.; Wang, Y., Accurate and simple analytic representation of the
 217 electron-gas correlation-energy. *Phys. Rev. B* 1992, *45*, (23), 13244-13249.
- 218 11. Blochl, P. E., Progector Augmented-Wave Method. *Phys. Rev. B* 1994, *50*, (24),
 219 17953-17979.
- 12. Liu, J. C.; Wang, Y. G.; Li, J., Toward rational design of oxide-supported single-
- atom catalysts: Atomic dispersion of gold on ceria. *J. Am. Chem. Soc.* 2017, *139*, (17),
 6190-6199.
- 13. Wang, J.; Tan, H. Y.; Yu, S. Z.; Zhou, K. B., Morphological effects of gold clusters
 on the reactivity of ceria surface oxygen. *ACS Catal.* 2015, *5*, (5), 2873-2881.
- 14. Nolan, M., Hybrid density functional theory description of oxygen vacancies in the
- 226 CeO₂ (110) and (100) surfaces. *Chem. Phys. Lett.* **2010**, *499*, (1-3), 126-130.
- 15. Hu, Z.; Liu, X.; Meng, D.; Guo, Y.; Guo, Y.; Lu, G., Effect of ceria crystal plane on
- the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation.
- 229 ACS Catal. **2016**, *6*, (4), 2265-2279.
- 16. Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M., Activity of CeO_x

- and TiO_x nanoparticles grown on Au(111) in the water-gas shift reaction. *Science* **2007**, *318*, (5857), 1757-1760.
- 17. Yang, F.; Graciani, J.; Evans, J.; Liu, P.; Hrbek, J.; Sanz, J. F.; Rodriguez, J. A.,
- 234 CO oxidation on inverse CeO_x/Cu(111) catalysts: high catalytic activity and ceria-
- 235 promoted dissociation of O₂. J. Am. Chem. Soc. **2011**, *133*, (10), 3444-51.
- 236 18. Huang, H.; Dai, Q. G.; Wang, X. Y., Morphology effect of Ru/CeO₂ catalysts for
- the catalytic combustion of chlorobenzene. *Appl. Catal. B-Environ.* **2014**, *158*, 96-105.
- 19. Afzal, S.; Quan, X.; Lu, S., Catalytic performance and an insight into the
 mechanism of CeO₂ nanocrystals with different exposed facets in catalytic ozonation
- 240 of p-nitrophenol. *Appl. Catal. B-Environ.* **2019**, *248*, 526-537.
- 241 20. Qu, Z.; Bu, Y.; Qin, Y.; Wang, Y.; Fu, Q., The effects of alkali metal on structure of
- manganese oxide supported on SBA-15 for application in the toluene catalytic
 oxidation. *Chem. Eng. J.* 2012, *209*, 163-169.
- 244 21. Zhao, S.; Hu, F.; Li, J., Hierarchical core-shell Al₂O₃@Pd-CoAlO microspheres for
- low-temperature toluene combustion. ACS Catal. 2016, 6, (6), 3433-3441.
- 246 22. Wang, M.; Zhang, F.; Zhu, X.; Qi, Z.; Hong, B.; Ding, J.; Bao, J.; Sun, S.; Gao, C.,
- 247 DRIFTS evidence for facet-dependent adsorption of gaseous toluene on TiO₂ with
- relative photocatalytic properties. *Langmuir* **2015**, *31*, (5), 1730-1736.
- 249 23. Santos, V. P.; Pereira, M. F. R.; Orfao, J. J. M.; Figueiredo, J. L., The role of lattice
- 250 oxygen on the activity of manganese oxides towards the oxidation of volatile organic
- 251 compounds. *Appl. Catal. B-Environ.* **2010**, *99*, (1-2), 353-363.
- 252 24. Yang, L.; Zhang, F.; Endo, T.; Hirotsu, T., Microstructure of maleic anhydride

- grafted polyethylene by high-resolution solution-state NMR and FTIR spectroscopy.
- 254 *Macromolecules* **2003**, *36*, (13), 4709-4718.
- 255 25. Hou, Z.; Zhou, X.; Lin, T.; Chen, Y.; Lai, X.; Feng, J.; Sun, M., The promotion effect
- of tungsten on monolith $Pt/Ce_{0.65}Zr_{0.35}O_2$ catalysts for the catalytic oxidation of toluene.
- 257 New J. Chem. 2019, 43, (15), 5719-5726.
- 258 26. Zhao, L.; Zhang, Z.; Li, Y.; Leng, X.; Zhang, T.; Yuan, F.; Niu, X.; Zhu, Y.,

259 Synthesis of Ce_aMnO_x hollow microsphere with hierarchical structure and its excellent

- catalytic performance for toluene combustion. Appl. Catal. B-Environ. 2019, 245, 502-
- 261 512.
- 262 27. Chen, X.; Cai, S.; Yu, E.; Chen, J.; Jia, H., MnO_x/Cr₂O₃ composites prepared by
- pyrolysis of Cr-MOF precursors containing in situ assembly of MnO_x as high stable
 catalyst for toluene oxidation. *Appl. Surf. Sci.* 2019, *475*, 312-324.
- 265 28. Busca, G., Infrared studies of the reactive adsorption of organic molecules over
- 266 metal oxides and of the mechanisms of their heterogeneously-catalyzed oxidation.
- 267 *Catal. Today* **1996**, *27*, (3-4), 457-496.
- 268 29. Rainone, F.; Bulushev, D. A.; Kiwi-Minsker, L.; Renken, A., DRIFTS and transient269 response study of vanadia/titania catalysts during toluene partial oxidation. *Phys.*270 *Chem. Chem. Phys.* **2003**, *5*, (20), 4445-4449.