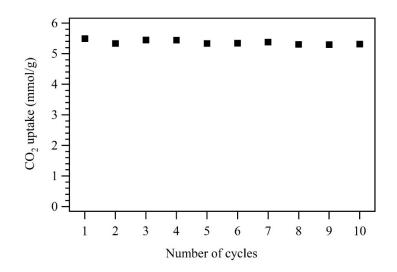
Supporting Information

Enhancement of CO₂ adsorption/desorption properties of solid sorbents using tetraethylenepentamine/diethanolamine blends


Duc Sy Dao,^{a,b} Hidetaka Yamada,^{b,c} Katsunori Yogo^{b,c,*}

^a Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi (VNU-Hanoi), 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam

^b Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan

^c Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan

*To whom correspondence should be addressed. Tel: +81-774-75-2305; Fax: +81-774-75-2318; E-mail: <u>yogo@rite.or.jp</u> (K. Yogo).

Figure S1. CO₂ adsorption–desorption over ten cycles of TEPA40-DEA30/MSU-F after 18-month storage measured using pure CO₂ at 50 °C followed by N₂ sweep at 80°C.

After preparation of TEPA40-DEA30/MSU-F, the obtained dry sorbents were stored in a Laboran screw vial at room temperature for 18 months as in the previous study.^{S1} After that, the cyclic CO₂ adsorption–desorption test was conducted by thermal gravimetric analysis using an analyzer (STA 449 F3 Jupiter, Netzsch Gerätebau-GmbH, Selb, Germany). The sorbent was degassed by heating at 80 °C for 6 h under N₂ flow at a flow rate of 50 mL/min. Then, the sorbent was cooled to 50 °C for the adoption process with pure CO₂ followed by the desorption at 80 °C for 50 min with a N₂ sweep. The adsorption capacity of fresh TEPA40-DEA30/MSU-F was 5.9 mmol/g at 100 kPa CO₂ and 50 °C.^{S2} The result in this figure indicated that the CO₂ uptake was reduced to approximately 5.4 mmol/g during the long-term storage due to the oxidative degradation, as discussed in a previous study.^{S1} However, it was also demonstrated that the CO₂ adsorption–desorption performance can be maintained still stable.

Table S1. Comparison of adsorption capacity of several amine solid sorbents at the CO₂ partial pressure of 10 kPa

Support	Amine	Temperature (°C)		Capacity	Ref.
		Adsorption	Desorption	(mmol/g)	iter.
MSU-F	TEPA-DEA	40	80	5.2	This work
MPS	Linear poly-L-alanine	50	110	3.9	S3
SBA-15	TEPA	75	105	3.5	S4
Fly ash extraction	PEI	75	100	3.0	S5,6
Silica gel	PEI-piperazine	75	100	3.2	S7

MPS: three-dimensional interconnected macroporous silica; SBA-15: Santa Barbara Amorphous-15; The comparison was based on the review by Dutcher et al.^{S8}

References

(S1) Vu, Q. T.; Yamada, H.; Yogo, K. Inhibitors of oxidative degradation of polyamine-modified silica sorbents for CO₂ capture. *Ind. Eng. Chem. Res.* **2019**, *58*, 15598–15605.

(S2) Dao, D. S.; Yamada, H.; Yogo, K. Large-pore mesostructured silica impregnated with blended amines for CO₂ capture. *Ind. Eng. Chem. Res.* **2013**, *52*, 13810–13817.

(S3) Liu, F.-Q.; Wang, L.; Huang, Z.-G.; Li, C.-Q.; Li, W.; Li, R.-X.; Li, W.-H. Amine-tethered adsorbents based on three-dimensional macroporous silica for CO₂ capture from simulated flue gas and air. *ACS Appl. Mater. Interfaces* **2014**, *6*, 4371–4381.

(S4) Zhao, A.; Samanta, A.; Sarkar, P.; Gupta, R. Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. *Ind. Eng. Chem. Res.* **2013**, *52*, 6480–6491.

(S5) Zhang, Z.; Wang, B.; Sun, Q.; Zheng, L. A Novel method for the preparation of CO₂ sorption sorbents with high performance. *Appl. Energy* **2014**, *123*, 179–184.

(S6) Zhang, Z.; Wang, B.; Sun, Q. Fly Ash-derived solid amine sorbents for CO₂ capture from flue gas. *Energy Procedia* **2014**, *63*, 2367–2373.

(S7) Zhang, Z.; Wang, B.; Sun, Q.; Ma, X. Enhancing sorption performance of solid amine sorbents for CO₂ capture by additives. *Energy Procedia* **2013**, *37*, 205–210.

(S8) Dutcher, B.; Fan, M.; Russell, A. G. Amine-based CO₂ capture technology development from the beginning of 2013 – a review. *ACS Appl. Mater. Interfaces.* **2015**, *7*, 2137–2148.