Rational Design of Suprastat, a Novel Selective Histone Deacetylase 6 Inhibitor with the Ability to Potentiate Immunotherapy in Melanoma Models

Satish Noonepalle^{a,†}, Sida Shen^{b,†,‡}, Jakub Ptáček^d, Maurício T. Tavares^{b,}[₱], Guiping Zhang^b, Jan Stránský^e, Jiří Pavlíček^e, Glaucio M. Ferreira^f, Melissa Hadley^a, Guido Pelaez^a, Cyril Bařinka^{*,d}, Alan P. Kozikowski^{*,c}, Alejandro Villagra^{*,a}

^a Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, District of Columbia 20052, United States

^b Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States

^c Bright Minds Biosciences, Toronto, ON M5H 3V9, Canada

^d Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic

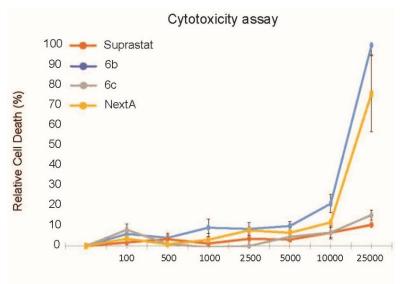
^e Centre of Molecular Structure, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic

^fDepartment of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil

[†]S.N. and S.S contributed equally to this work.

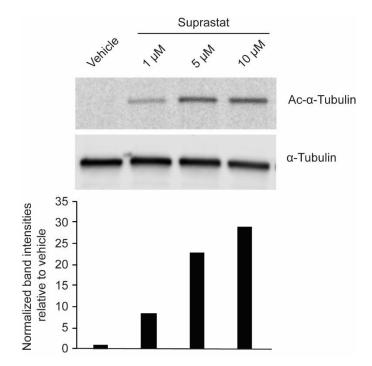
Corresponding Author

*C.B.: Tel: +420-325-873-777; E-mail: Cyril.Barinka@ibt.cas.cz.

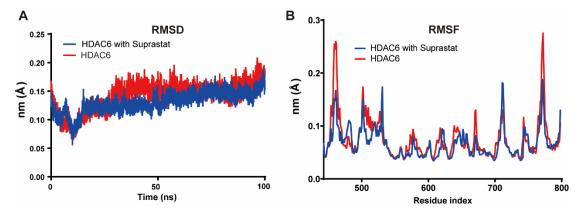

*A.P.K.: Tel: +1-773-793-5866; E-mail: alan@brightmindsbio.com.

*A.V.: Tel: +1-202-994-9547; E-mail: <u>avillagra@gwu.edu</u>.

Table of Contents


1.	Supplementary Figures	
2.	Supplementary Tables	
3.	¹ H NMR and ¹³ C NMR spectra for compounds 6a-c	S8
4.	HPLC purity reports for compounds 6a-c	S11

1. Supplementary Figures



Concentration (nM)

Figure S1. Suprastat induces low cytotoxicity compared to other HDAC6 inhibitors.

Figure S2. RAW 264.7 macrophages treated with increasing concentration of Suprastat. Band intensities quantified and represented as fold change relative to vehicle indicates a dose-dependent effect of Suprastat on α -tubulin acetylation.

Figure S3. Variation of RMSD (A) and RMSF (B) values for HDAC6 and the HDAC6-Suprastat complex along the MD simulations. Values were calculated for the protein backbone.

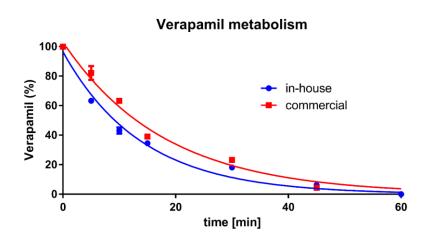
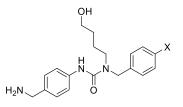
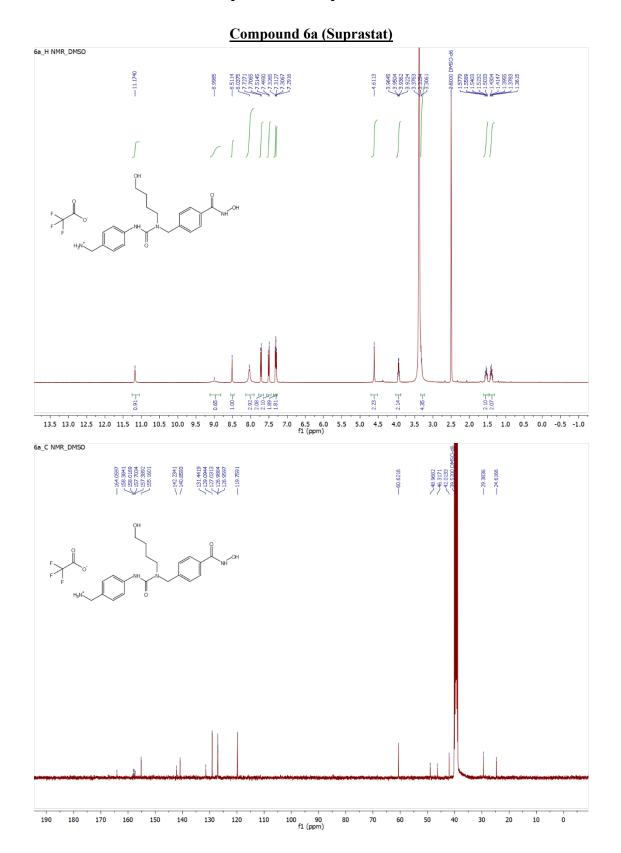
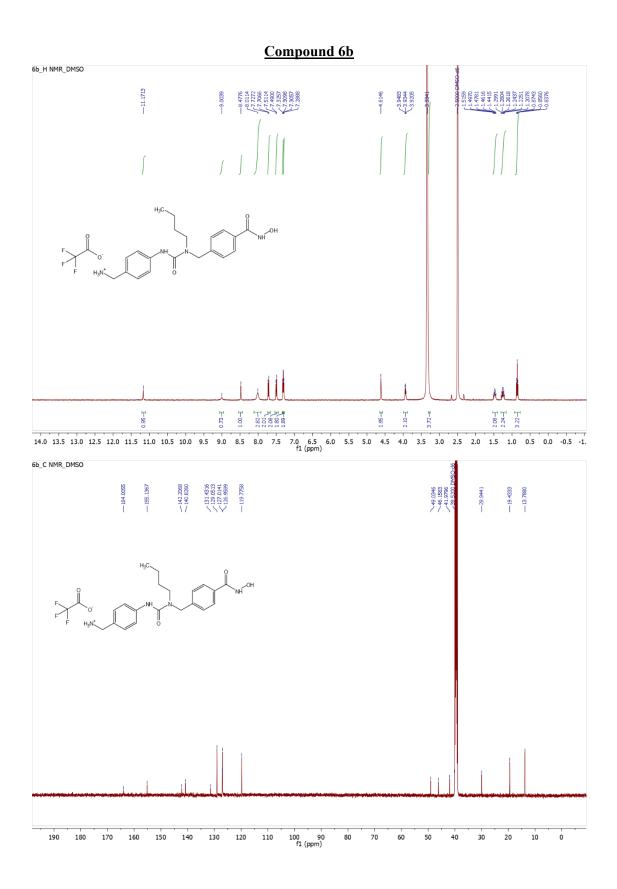



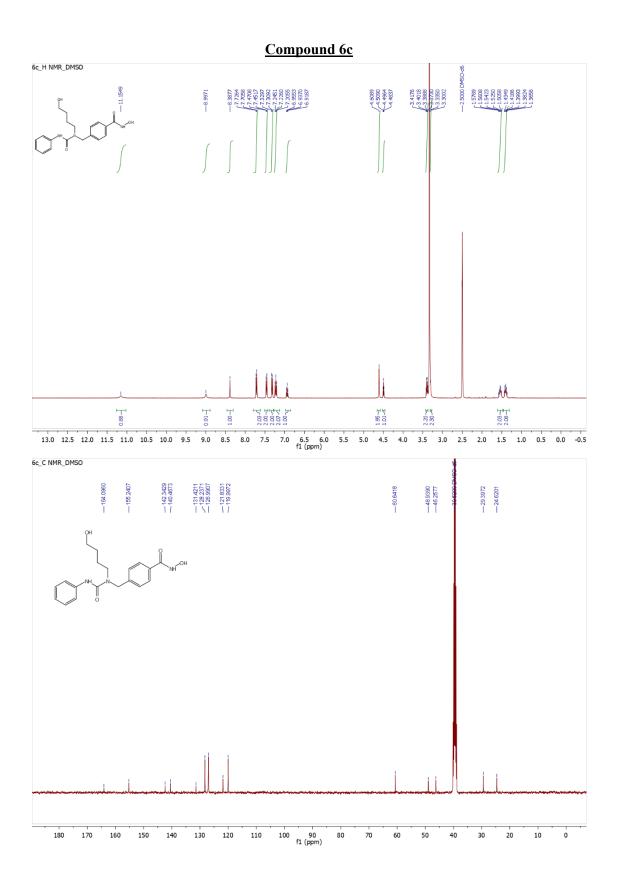
Figure S4. Comparison of commercial and in-house microsomal preparations. Both microsomal preparations were diluted to the final concentration of 0.5 mg/mL (total protein), Verapamil was added to the final concentration of 10 μ M and the reaction started by the addition of NADPH solution. Aliquots were collected at defined time points and samples processed and analyzed by LC-MS. The metabolic activity of our in-house rat liver microsomes (blue) is virtually identical to commercially available preparations (red; rat liver microsomes, RTMCPL, Life Technologies, CA, USA).

2. Supplementary Tables


Table S1. Inhib	itory poter	ncy of NextA and its analog	ues 6d-f against HDAC 1	and HDAC6
Compound	V	HDAC6 (IC., nM)	HDAC1 (IC., nM)	HDAC1/6

Compound	X	HDAC6 (IC ₅₀ , nM)	HDAC1 (IC ₅₀ , nM)	HDAC1/6
Suprastat (6a)	√_№-он	0.4 ± 0.0	117 ± 10	293
6d	√_он	16,755	N.D. ^g	N.D.
6e		>30,000	N.D.	N.D.
6f	он Ү ^в -он	>30,000	N.D.	N.D.
Vorinostat	-	6.7 ± 1.0	31 ± 12	5


X-ray source	BL 14.2, Bessy II
Detector	Pilatus3 2M
Wavelength (Å)	0.9184
Crystal-to-detector distance (mm)	207.4
No. of frames	3600
Exposure per degree (s)	2
Oscillation angle (°)	0.1
Space group	P 1 2 ₁ 1
Unit-cell parameters	A = 54.809 Å, b = 83.811 Å, c = 86.092 Å $\alpha = 90.0^{\circ}, \beta = 98.0^{\circ}, \gamma = 90.000^{\circ}$
Resolution (Å)	85.3 - 1.6 (1.63 - 1.6)
No. of measured reflections	641645 (32445)
No. of unique reflections	100361 (5038)
Average multiplicity	6.7 (6.4)
Completeness (%)	98.8 (99.6)
Average $I/\sigma(I)$	6.5 (1.3)
<i>CC</i> _{1/2}	0.994 (0.612)
R _{merge}	0.16 (1.164)
R _{pim}	0.07 (0.494)
R _{work}	0.191
R _{free}	0.230
R _{all}	0.192
Average ADP (Å ²)	15.0
R.m.s.d, bond lengths (Å)	0.012
R.m.s.d., bond angles (°)	1.7
Solvent content (%)	49.5
Matthews coefficient $(Å^3 \cdot Da^{-1})$	2.433


 Table S2. Crystal data collection and refinement statistics

No. of non-H atoms	6560
No. of monomers in asymmetric unit	2
No. of localized amino acids	2 × 356
No. of water molecules	762
Localized ions	$2 \times Zn^{2+}, 4 \times K^+, 1 \times Cl^-$
Ligands	2× Suprastat, 7 × 1,2-ethanediol, 2 × PEG residue, 1 × DMSO, 1 × glycerol

3. ¹H NMR and ¹³C NMR spectra for compounds 6a-c

4. HPLC purity reports for compounds 6a-c

Compound 6a (Suprastat)

Data File C:\CHEM32\1\DATA\DEF_LC 2016-08-30 15-00-19\SS-5-55-2.D Sample Name: SS-5-55

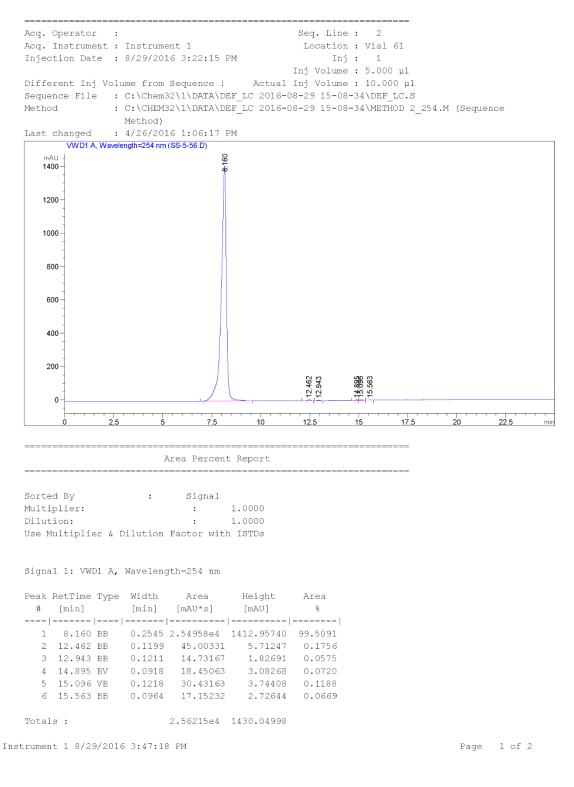
Acq. Instrument Injection Date	: 8/30/201	.6 4 : 57 : 35		Ir Inj Volur	on : Vial 7 nj : 1 ne : 5.000	μl		
Sequence File Method			EF_LC 2016-0 EF_LC 2016-0				í (Seque	ence
Last changed		6 4:34:36	PM					
WWD1 A, W mAU 1	/avelength=254 nm	(SS-5-55-2.D)		Q				
				I1. 840				
3000								
2500 -								
2000 -								
1500 -								
1000 -								
500 -					84			
-			11.118	536	1.382 5.071 5.433 16.184		20.493	
0				16	- <u>↓</u> - <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u>		-70	
	2.5 5	7.5	10	12.5	15	17.5	20	22.5
0	2.0 5	7.5	10	12.5	15	17.5	20	22.0
	A	rea Percen	t Report					
	A 	rea Percen	t Report ======			==		
Sorted By	A 	nrea Percen Signal				==		
Multiplier:		Signal	1.0000					
Multiplier: Dilution:	:	Signal : :	1.0000					
Multiplier:	:	Signal : :	1.0000					
Multiplier: Dilution:	:	Signal : :	1.0000					
Multiplier: Dilution:	: & Dilution	Signal : : Factor wit	1.0000					
Multiplier: Dilution: Use Multiplier	: & Dilution A, Waveleng	Signal : : Factor wit	1.0000	Area				
Multiplier: Dilution: Use Multiplier Signal 1: VWD1	: & Dilution A, Waveleng	Signal : : Factor wit th=254 nm	1.0000 1.0000 h ISTDs	Area %				
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	& Dilution A, Waveleng ype Width [min]	Signal : Factor wit th=254 nm Area [mAU*s]	1.0000 1.0000 h ISTDs Height [mAU]	%	1			
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 1 11.118 BF	: & Dilution A, Waveleng ype Width [min] 	Signal : Factor wit th=254 nm Area [mAU*s] 	1.0000 1.0000 h ISTDs Height [mAU] 	% 0.1183	1			
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	: & Dilution A, Waveleng Vpe Width [min] 	Signal : Factor wit th=254 nm Area [mAU*s] 	1.0000 1.0000 h ISTDs Height [mAU] 	% 0.1183 95.4289				
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 1 11.118 BE 2 11.840 EV 3 12.536 VV	: & Dilution A, Waveleng ype Width [min] 	Signal : Factor wit th=254 nm Area [mAU*s] 29.67868 2.39479e4 82.24677	1.0000 1.0000 h ISTDs Height [mAU] 	% 0.1183 95.4289 0.3277				
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	: & Dilution A, Waveleng ype Width [min] 	Signal : Factor wit th=254 nm Area [mAU*s] 	1.0000 1.0000 h ISTDs Height [mAU] 	<pre>% 0.1183 95.4289 0.3277 0.0753 0.0838</pre>				
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	: & Dilution A, Waveleng ype Width [min] 	Signal : Factor wit th=254 nm Area [mAU*s] 29.67868 2.39479e4 82.24677 18.88880 21.03066 275.78290	1.0000 1.0000 h ISTDs Height [mAU] 	<pre>% 0.1183 95.4289 0.3277 0.0753 0.0838 1.0990</pre>				
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	: & Dilution A, Waveleng ype Width [min] 	Signal : Factor wit th=254 nm Area [mAU*s] 	1.0000 1.0000 h ISTDs Height [mAU] 	<pre>% 0.1183 95.4289 0.3277 0.0753 0.0838 1.0990 2.7413</pre>				
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	: & Dilution A, Waveleng ype Width [min] 	Signal : Factor wit th=254 nm Area [mAU*s] 	1.0000 1.0000 h ISTDs Height [mAU] 	<pre>% 0.1183 95.4289 0.3277 0.0753 0.0838 1.0990 2.7413</pre>	1			
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	: & Dilution A, Waveleng ype Width [min] 	Signal : Factor wit th=254 nm Area [mAU*s] 29.67868 2.39479e4 82.24677 18.88880 21.03066 275.78290 687.93182 31.54695	1.0000 1.0000 h ISTDs Height [mAU] 	<pre>% 0.1183 95.4289 0.3277 0.0753 0.0838 1.0990 2.7413</pre>				
Multiplier: Dilution: Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	: & Dilution A, Waveleng ype Width [min] 	Signal : Factor wit th=254 nm Area [mAU*s] 29.67868 2.39479e4 82.24677 18.88880 21.03066 275.78290 687.93182 31.54695	1.0000 1.0000 h ISTDs Height [mAU] 	<pre>% 0.1183 95.4289 0.3277 0.0753 0.0838 1.0990 2.7413</pre>			Page	1 of 2

Data File C:\CHEM32\1\DATA\DEF_LC 2016-08-30 15-00-19\SS-5-55-2.D Sample Name: SS-5-55

Totals: 2.50950e4 3364.85551

*** End of Report ***

Instrument 1 8/30/2016 5:22:39 PM


Page 2 of 2

Compound 6b Data File C:\CHEM32\1\DATA\DEF_LC 2016-08-30 15-00-19\SS-5-54-2.D Sample Name: SS-5-54

Acq. Operator	:			Seq. Line	: 4			
Acq. Instrument		1		Location		72		
Injection Date					: 1			
				Inj Volume	: 5.00	0 μ1		
Different Inj V	olume from Sec	luence !	Actual	Inj Volume	: 10.0	00 µl		
Sequence File		-						
Method	: C:\CHEM32\1	\DATA\DEF	_LC 2016-0	8-30 15-00	-19\MET	HOD 2_25	4.M (Seque	nce
Tost shanged	Method) : 4/26/2016 1	.06.17 DM						
	avelength=254 nm (SS-5							
mAU -		,	49					
-			11 .349					
800 -								
-								
700 -								
-								
600 -								
500								
500 -			(
400 -								
400 -								
300 -								
200								
-								
100								
-	.736							
0	<u>N</u>			<u> </u>				
	2.5 5	7.5	10	12.5	15	17.5	20	22.5
· · · ·	2.0 J	7.5	10	12.5	15	17.5	20	22.3
	Area	Percent H	Report					
Contod Pr		Gianel						
Sorted By Multiplier:	:	Signal 1.	.0000					
Dilution:			.0000					
Use Multiplier .	& Dilution Fac							
-								
Signal 1: VWD1 2	A, Wavelength=	254 nm						
Dool: DotTime Tra	oo Width	7	Uciabt	7				
Peak RetTime Typ # [min]	pe wiath [min] [m	Area All*sl	Height [mAU]	Area %				
	0.0768 1							
2 11.349 BB	0.1184 660	1.07422 8	351.90906	99.8418				
Totals :	661	1.53280 8	353.88493					
	* * *	End of Re	eport ***					
	* * *	End of Re	eport ***					

Compound 6c

Data File C:\CHEM32\1\DATA\DEF_LC 2016-08-29 15-08-34\SS-5-56.D Sample Name: SS-5-56

Data File C:\CHEM32\1\DATA\DEF_LC 2016-08-29 15-08-34\SS-5-56.D Sample Name: SS-5-56

*** End of Report ***

Instrument 1 8/29/2016 3:47:18 PM

Page 2 of 2