Supporting Information

Silicon-Doped Argyrodite Solid Electrolyte Li₆PS₅I with Improved Ionic Conductivity and Interfacial Compatibility for High-Performance All-Solid-State Lithium Batteries

Jun Zhang,[‡] Lujie Li,[‡] Chao Zheng, Yang Xia, Yongping Gan, Hui Huang, Chu Liang, Xinping He, Xinyong Tao and Wenkui Zhang*

College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou

310014, P.R. China.

[‡]J. Zhang and L. Li contributed equally to this work.

*Corresponding author. E-mail: msechem@zjut.edu.cn

а _{10µт}	8	P	0	
b 10µm	8	P	0	81
С 10µт	8	P	0	81
d 10µm	8	P	0	S1
е 10µm	8	P	0	3
f 10µm	8	P	0	81
g 10µт	8	P	0	ଞା
h 10µт	S	P	0	3

Figure S1. SEM images of (a) Li₆PS₅I, (b-h) Li_{6+x}P_{1-x}Si_xS₅I ($0.1 \le x \le 0.6$) powders and the corresponding element mapping.

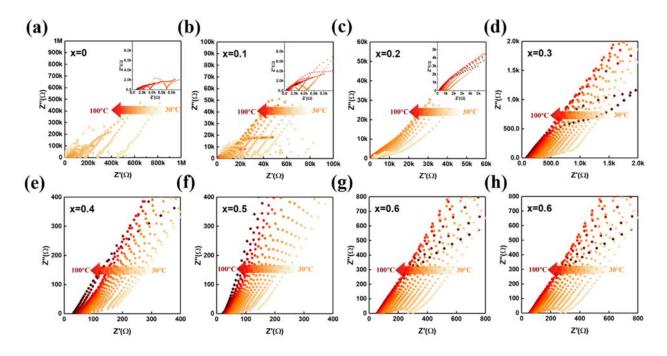
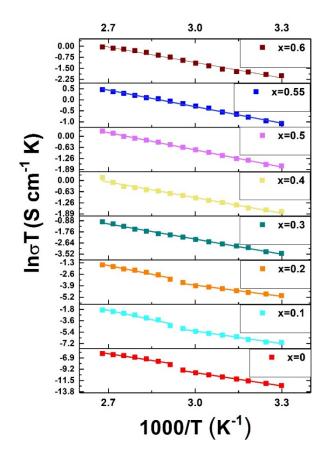



Figure S2. Nyquist plots of the (a) Li₆PS₅I (x = 0), (b-h) Li_{6+x}P_{1-x}Si_xS₅I ($0.1 \le x \le 0.6$) samples measured from 30 °C to 100 °C, respectively.

Figure S3. Arrhenius curves for activation energy of $Li_{6+x}P_{1-x}Si_xS_5I$ ($0 \le x \le 0.6$) samples.

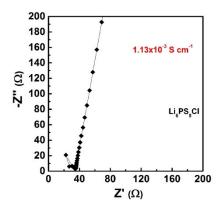


Figure S4. Nyquist plots of Li₆PS₅Cl sample measured at 30 °C.

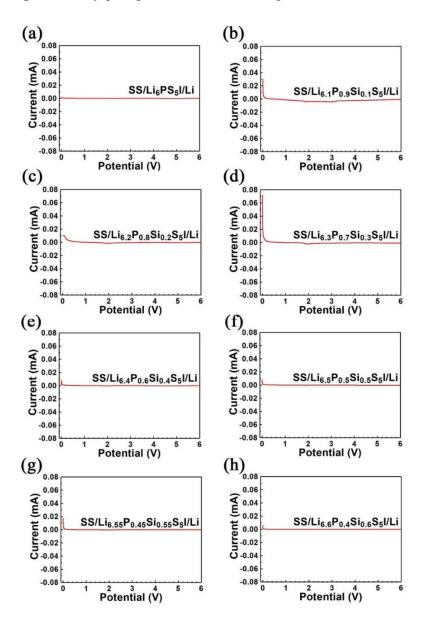


Figure S5. Linear sweep voltammogram (LSV) profile of (a) Li₆PS₅I, (b-h) Li_{6+x}P_{1-x}Si_xS₅I ($0.1 \le x \le 0.6$) samples at a scan rate of 0.1mV s⁻¹, respectively.

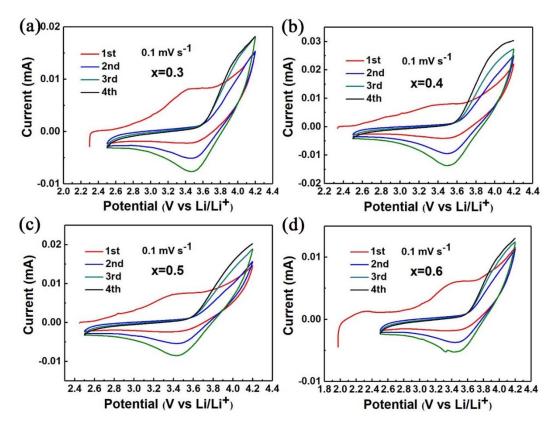


Figure S6. CV curves of the (a-d) $\text{Li}_{6+x}P_{1-x}\text{Si}_x\text{S}_5\text{I}$ (0.3 $\leq x \leq$ 0.6) of NCM-Li₆PS₅Cl/ Li_{6+x}P_{1-x}Si_xS₅I/ Li ASSLBs at a scan rate of 0.1 mV s⁻¹.

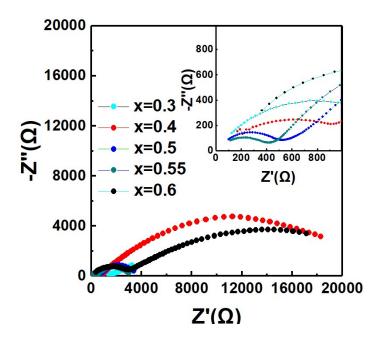
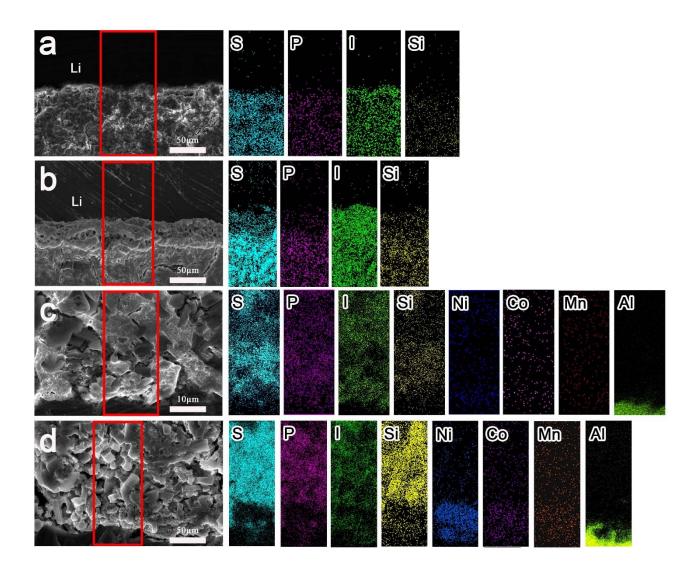
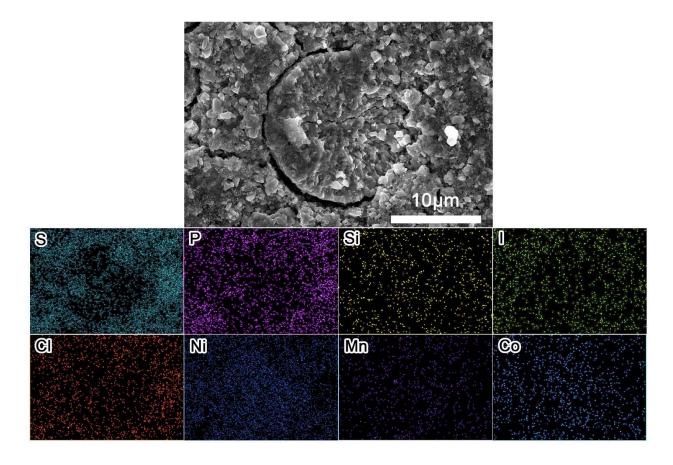




Figure S7. Impedance spectra of NCM-Li₆PS₅Cl/ Li_{6+x} $P_{1-x}Si_xS_5I$ (x = 0.3, 0.4, 0.5 and 0.6)/ Li ASSLBs after 300 cycles.

Figure S8. The cross-sectional SEM images and the corresponding elemental mappings of the interface of Li_{6.55}P_{0.45}Si_{0.55}S₅I SE/Li before (a) and after cycling (b); Li_{6.55}P_{0.45}Si_{0.55}S₅I SE/NCM before (c) and after cycling (d).

Figure S9. The SEM image and the corresponding elemental mappings of the cathode at the interface of Li6.55P0.45Si0.55S5I SE/NCM.

x in Li _{6+x} P _{1-x} Si _x S ₅ I	Ionic conductivity (mS cm ⁻¹)	Activation energy (eV)
0	0.00023	0.73 / 0.76
0.1	0.0028	0.62 / 0.63
0.2	0.021	0.38 / 0.46
0.3	0.12	0.32
0.4	0.53	0.24
0.5	0.66	0.26
0.55	1.1	0.19
0.6	0.48	0.27

Table S1. The extracted values of ionic conductivity and activation energy from Figure 3d	l.