Supporting Information for:

An ensemble learning approach for estimating high spatiotemporal resolution of

ground-level ozone in the contiguous United States

Weeberb J. Requia* ^{a, b} Qian Di^{a, c} Rachel Silvern^d James T. Kelly^e Petros Koutrakis^a Loretta J. Mickley^d Melissa P. Sulprizio^d Heresh Amini^{a, f} Liuhua Shi^{a, g} Joel Schwartz^a

* Corresponding Author: SGAN 602, Asa Norte, Brasília, DF, 70830-051, Brazil

weeberb.requia@fgv.br

- a Harvard University, Department of Environmental Health, TH Chan School of Public Health
- Boston, Massachusetts, United States
- b School of Public Policy and Government, Fundação Getúlio Vargas

Brasília, Distrito Federal, Brazil

c - Research Center for Public Health, Tsinghua University, Beijing, China

d - Harvard University, John A. Paulson School of Engineering and Applied Sciences

Boston, Massachusetts, United States

e - U.S. Environmental Protection Agency, Office of Air Quality Planning & Standards

Research Triangle Park, NC, United States

f - Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen

Copenhagen, Denmark

g - Emory University, Gangarosa Department of Environmental Health, Rollins School of Public Health

Atlanta, Georgia, United States

This file includes:

Pages S1-S36

Figure S1

Data source

References

R script used in the machine learning analyses

Tables S1 to S6

Figures S4-S8

Figure S1

Figure S1 – Study design

SUPPLEMENTARY MATERIALS 2 (S2)

As we describe in the following sections, we accounted for multi spatial scale 100m, 1km, 10km strategy to capture the predictors. The 1km scale captures predictors on the same scale that we are predicting O_3 . We include the 10 km scale for some predictors because O_3 is a regional pollutant and predictors elsewhere than the grid cell being predicted may be relevant. For example, NO₂ and VOC emissions 10km may be relevant, and land use and meteorology predictors are surrogates for such things. Finally, we used a finer scale because some predictors are related to NO emissions which quench O_3 , and these vary on a fine spatial scale.

S2. Data source (first stage)

S2.1. O₃ ground measurements

We obtained daily maximum 8-hr O_3 data from the Environmental Protection Agency (EPA), including the sites from the Air Quality System (AQS) and the sites from the Clean Air Status and Trends Network (CASTNET). In addition to these EPA sites, we also collected data from other regional monitoring datasets. In total, we obtained 2,279 monitoring sites available within the study area during the study period. Note that some monitoring sites did not operate during the entire study period, especially during the winter season. The monitoring sites are not homogenous over the study area. Sites are more densely located in the eastern United States, the industrial Midwest, and the western coast. Figure S2.1 shows the location of the monitoring sites

Figure $S2.1 - O_3$ monitoring sites in the United States

S2.2. Meteorological data

Meteorological data were provided by the National Centers for Environmental Prediction (NCEP). The NCEP data is composed by reanalysis datasets from multiple sources, including landsurface monitors, ship, radiosonde, pibal, aircraft, satellite, and other sources. This reanalysis data from NCEP data has high spatio-temporal resolution, which includes daily data with a spatial resolution of 32 km \times 32 km over the U.S. The proportion of missing values is relatively low in the dataset ¹. We included 12 groups of meteorological variables, including surface air temperature, accumulated total precipitation, downward shortwave radiation flux at the surface, cloud area fractions, surface albedo, accumulated total evaporation at the surface, planetary boundary layer height, column precipitable water through the troposphere, pressure, specific humidity at 2 m, visibility, and wind speed, which was computed as the vector sum of u-wind (east-west component of the wind) at 10 m and v-wind (north-south component) at 10 m.

S2.3. Chemical transport model and remote sensing data

We used simulation results from two Chemical Transport Models (CTMs) to account for O_3 formation, dispersion, and deposition. We also considered CTM predictions for other pollutants in order to represent O_3 precursors. Previous studies have used such data to improve the performance of air pollution predictions. Chemical transport simulations represent emissions, transport, chemical reactions, and deposition of pollutants based on state-of-the-science understanding of each of these processes. These mechanistic treatments make CTMs uniquely suited to simulating future and policy scenarios under altered emission conditions in addition to informing statistical modeling studies ^{2,3}. We also used data based on Remote Sensing (RS) techniques that provide top-down observational constraints for the total column of O_3 and its precursors. Note that some chemical transport models also incorporate data from remote sensing to develop model inputs. We describe below the chemical transport and remote sensing data used in our analysis. First, we detail the data used for O_3 , and then the data used for the O_3 precursors.

S2.3.1. CTM and RS data for O_3

a) GEOS-Chem data:

We used daily simulations of O_3 from the GEOS-Chem chemical transport model. This is a global three-dimensional model of tropospheric chemistry based on integrated weather variables from the Goddard Earth Observing System (GEOS) developed by NASA. Full details of the methodology of this model is found in ⁴. We performed a nested grid simulation at $0.500^{\circ} \times 0.667^{\circ}$ for North America using boundary conditions from a global model simulation. GEOS-Chem simulates O_3 concentrations at different layers through the troposphere. Therefore, to calibrate the tropospheric column of O_3 to ground-level O_3 , we calculated scaling factors as the percentage of surface-level O_3 in the total tropospheric column. This approach is similar to that used in modeling $PM_{2.5}$, where aerosol optical depth (AOD) is a column measurement of aerosol and researchers used the vertical profile from a chemical transport model to calibrate AOD to ground-based $PM_{2.5}$ ^{5,6}.

The retrieval algorithm of satellite-based O₃ is affected by certain atmospheric factors, including aerosol abundance, surface reflectance, surface albedo, and cloud contamination ⁷. To correct possible errors in O₃ retrieval, we included in our model variables related to aerosol concentration/aerosol types, cloud coverage, and surface albedo/surface reflectance. We obtained GEOS-Chem variables related to aerosol concentration and aerosol types, which include simulated elemental carbon, organic carbon, sulfate, nitrate, and aerosol mass. The remaining variables used to correct errors in O₃ retrieval were obtained from other CTM and RS sources, as described in the next sections. Note that cloud coverage and surface albedo were obtained from the NCEP/NCAR reanalysis dataset, as described above.

b) GEMS data:

We obtained GEMS (Geostationary Environment Monitoring Spectrometer, a satellitebased instrument) O_3 data from European Centre for Medium-Range Weather Forecasts (ECMWF). This data is from Copernicus Atmosphere Monitoring Service (CAMS) products that derives GEMS total column O_3 at 0.125-degree resolution.

c) OMI data:

We also used tropospheric O_3 columns from the Ozone Monitoring Instrument (OMI), an instrument on board the Earth Observing System (EOS)-Aura satellite. The OMI O_3 data product is available every day at 13 km × 48 km grid cells. To relate OMI O_3 column retrievals to surface-level O_3 , we used the CTM scaling factors described above.

We also obtained OMI data related to absorbing aerosol index in the ultraviolet and visible ranges (OMAERUVd and OMAEROe). These data are added to the aerosol output from GEOS-Chem to correct possible aerosol-related errors in satellite-based O₃ retrieval.

d) CMAQ data:

Daily simulations of O₃ were also accessed from the Community Multiscale Air Quality Modeling System (CMAQ). This CTM is a numerical air quality model developed by EPA that simulates the emissions, chemistry and physics of the atmosphere on a 12 km grid. As with GEOS-Chem, we obtained model output from CMAQ related to aerosol concentration and aerosol type, including simulated elemental carbon, organic carbon, sulfate, and nitrate. Note that this was the same set of aerosol data obtained from GEOS-Chem, as described above.

e) MERRA-2 data:

We used total column O₃ estimates from Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). To supplement the aerosol data from GEOS-Chem, OMI, and CMAQ, we also accessed MERRA-2 surface concentrations of sulphate aerosol, hydrophilic black carbon, hydrophobic black carbon, hydrophilic organic carbon, and hydrophobic organic carbon. f) MODIS data:

We used surface reflectance estimates from MODIS - MOD09A1⁸, which provide estimates of the surface spectral reflectance of TERRA MODIS Bands 1-7 corrected for atmospheric conditions such as gases, aerosols, and Rayleigh scattering. As we described previously, surface reflectance is used to correct possible errors in the O₃ retrieval.

S2.3.2. CTM and RS data for O_3 precursors

As mentioned in the introduction section, O_3 formation is based on mechanisms involving photochemical reactions of O_3 precursors, including NO_x , VOCs, and CO. These precursors are incorporated into the chemical transport simulations through emission inventories. However, the temporal resolution of emissions is limited. To address this limitation, we first used AQS data from U.S. EPA ground monitors (same source used for the O_3 data at monitors) to represent daily measurements of SO₂, NO₂, NOx, and VOCs. Then, we used some chemical and remote sensing data to characterize ozone precursors. These data were accessed from the same sources as described above. We used NO_2 concentration from GEOS-Chem model, NO_2 column measurement from the OMI satellite instrument (with spatial resolution of 13 km × 24 km), NO_2 simulations from CMAQ, and NO_2 column concentration simulations from CAMS (Copernicus Atmosphere Monitoring Service), another reanalysis data set.

S2.4. Other predictor variables

The chemical simulation models and data from remote sensing may not capture the very fine spatio-temporal resolution of the atmospheric mechanisms related to O_3 formation or removal. Therefore, we considered a set of land use, temporal terms, and some extra variables to represent

proxies of the O_3 formation or removal. Previous studies have shown that these proxy variables improve the ability to capture the local variation of O_3 concentration $^{2,3,9-11}$. The description of these set of variables used in our model is provided below.

S2.4.1. Land use terms

We accessed land use variables at 30 m resolution from the National Land Cover Database – NLCD ¹². This database includes water bodies, developed areas, urban areas, barren land, forest, shrub land, herbaceous land, planted/cultivated land, and wetlands. We calculated the proportion of each land-use type in grid cells with 100 m, 1 km, and 10 km horizontal resolution. As a complement for vegetation areas, we also accounted for Normalized Difference Vegetation Index (NDVI). We accessed NDVI data from the MODIS data product MOD13A2 at 1 km × 1 km level (https://cmr.earthdata.nasa.gov/search/concepts/C194001238-LPDAAC_ECS.html). Finally, as an additional proxy variable for local air pollution emissions, we included restaurant density in the model. We obtained the location of restaurants from the U.S. historical business data ¹³, and then we calculated weighted restaurant density in each 1 km × 1 km grid cell. The weight was based on the amount of emissions, approximated by the number of seats.

S2.4.2. Elevation

We accounted for different metrics of elevation, including minimum elevation, maximum elevation, mean elevation, median elevation, standard deviation of elevation, and break line emphasis. We aggregated the data from its original 7.5-arc-second spatial resolution to three different spatial resolution – 100 m × 100 m, 1 km × 1 km, and 10 km × 10 km. These three spatial

resolutions were included in the model as separate predictor variables. This data was provided by the Global Multi-Resolution Terrain Elevation Dataset ¹⁴.

S2.4.3. Transportation

Traffic emissions are important sources of O_3 precursors ^{15,16}. We considered two variables as traffic emission proxies – road density and traffic count. Road density was obtained from the US Census Bureau. The data accessed includes shapefiles representing all roads in the USA. We calculated the spatial density (total length of road in each grid cell) for each 100 m × 100 m, 1 km × 1 km, and 10 km × 10 km grid cell (as for elevation, these three different spatial scales were included in the model as separate predictors). Annual average traffic count data for the contiguous U.S. was provided by ArcGIS Online. We interpolated the original data to 100 m, 1 km, and 10 km spatial resolution.

S2.4.4. Temporal terms

To improve the detection of the temporal variation of O₃, we accounted for 26 temporal predictor variables. We included in the model 16 dummy variables representing the years (2000-2016), 6 dummy variables for the weekdays, 1 variable representing the Julian days, and 2 variables for the season trends. The variables representing the seasonal patterns were estimated based on sine and cosine functions ¹⁷, in which: *sine season* = *sin*($2 \times \pi \times doy / 365.24$); and, *cosine season* = *cos*($2 \times \pi \times doy / 365.24$); where *doy* is the day of year (e.g., 1:365).

S2.4.5. Spatio-temporal lag of O_3 measurements

We assumed that O_3 concentration from nearby monitoring sites are more correlated than from faraway sites, and O_3 concentration from neighboring days are more correlated than long ago. These assumptions are based on the spatial and temporal autocorrelation of O_3 distributions. Therefore, we included spatially and temporally lagged O_3 measurements in the model. We estimated the spatially lagged terms as inverse distance weighted O_3 measurements at other locations, as well as their one-day, three-day and five-day lagged moving average values.

S2.4.6. Temporal lag of several O₃ predictors

We also accounted for temporal lag (1-day lagged moving values) of meteorological variables, including air temperature, total precipitation accumulation, pressure, humidity, and wind speed.

REFERENCES

- (1) Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Jenne, R.; Joseph, D. The NCEP NCAR 40-Year Reanalysis Project. *Bull. Am. Meteorol. Soc.* **1996**, 77 (3), 437–472.
- (2) Di, Q.; Rowland, S.; Koutrakis, P.; Schwartz, J. A Hybrid Model for Spatially and Temporally Resolved Ozone Exposures in the Continental United States. *J. Air Waste Manag. Assoc.* **2017**, *67* (1), 39–52. https://doi.org/10.1080/10962247.2016.1200159.
- (3) Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M. B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Mickley, L. J.; Schwartz, J. An Ensemble-Based Model of PM2.5 Concentration across the Contiguous United States with High Spatiotemporal Resolution. *Environ. Int.* 2019, *130* (July), 104909. https://doi.org/10.1016/j.envint.2019.104909.
- (4) Bey, I.; Jacob, D. J.; Yantosca, R. M.; Logan, J. A.; Field, B. D.; Fiore, A. M.; Li, Q.; Liu, H.; Mickley, L. J.; Schultz, M. G. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation. J. Geophys. Res. 2001, 106 (D19), 23073–23095. https://doi.org/10.1029/2001jd000807.
- Liu, Y.; Park, R. J.; Jacob, D. J.; Li, Q.; Kilaru, V.; Sarnat, J. A. Mapping Annual Mean Ground-Level PM2.5 Concentrations Using Multiangle Imaging Spectroradiometer Aerosol Optical Thickness over the Contiguous United States. *J. Geophys. Res. D Atmos.* 2004, *109* (22), 1–10. https://doi.org/10.1029/2004JD005025.

- (6) van Donkelaar, A.; Martin, R. V; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P. J. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. *Environ. Health Perspect.* 2010, *118* (6), 847–855. https://doi.org/10.1289/ehp.0901623.
- (7) Lin, J. T.; Martin, R. V.; Boersma, K. F.; Sneep, M.; Stammes, P.; Spurr, R.; Wang, P.; Van Roozendael, M.; Clémer, K.; Irie, H. Retrieving Tropospheric Nitrogen Dioxide from the Ozone Monitoring Instrument: Effects of Aerosols, Surface Reflectance Anisotropy, and Vertical Profile of Nitrogen Dioxide. *Atmos. Chem. Phys.* 2014, *14* (3), 1441–1461. https://doi.org/10.5194/acp-14-1441-2014.
- NASA. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. U.S. Government, LP DAAC 2018. https://doi.org/https://doi.org/10.5067/MODIS/MOD09A1.006.
- (9) Di, Q.; Koutrakis, P.; Schwartz, J. A Hybrid Prediction Model for PM2.5 Mass and Components Using a Chemical Transport Model and Land Use Regression. *Atmos. Environ.* 2016, 131, 390–399. https://doi.org/10.1016/j.atmosenv.2016.02.002.
- (10) Ramos, Y.; Requia, W. J.; St-Onge, B.; Blanchet, J.-P.; Kestens, Y.; Smargiassi, A. Spatial Modeling of Daily Concentrations of Ground-Level Ozone in Montreal, Canada: A Comparison of Geostatistical Approaches. *Environ. Res.* 2018, *166*, 487–496. https://doi.org/10.1016/j.envres.2018.06.036.
- Watson, G. L.; Telesca, D.; Reid, C. E.; Pfister, G. G.; Jerrett, M. Machine Learning Models Accurately Predict Ozone Exposure during Wildfire Events. *Environ. Pollut.* 2019, 254, 112792. https://doi.org/10.1016/j.envpol.2019.06.088.
- (12) Collin H. Homer, Joyce A. Fry, C. A. B. The National Land Cover Database; 2012.
- (13) Caracuzzo, A. H. B. S. Infogroup US Historical Business Data 1997-2016. In Harvard Dataverse: 2016. 2016.
- (14) Danielson, J. J.; Gesch, D. B. *Global Multi-Resolution Terrain Elevation Data 2010* (*GMTED2010*); 2011. https://doi.org/10.3133/ofr20111073.
- (15) Uherek, E.; Halenka, T.; Borken-Kleefeld, J.; Balkanski, Y.; Berntsen, T.; Borrego, C.; Gauss, M.; Hoor, P.; Juda-Rezler, K.; Lelieveld, J.; Melas, D.; Rypdal, K.; Schmid, S. Transport Impacts on Atmosphere and Climate: Land Transport. *Atmos. Environ.* 2010, 44 (37), 4772–4816. https://doi.org/10.1016/j.atmosenv.2009.04.044.
- (16) Alhajeri, N. S.; McDonald-Buller, E. C.; Allen, D. T. Comparisons of Air Quality Impacts of Fleet Electrification and Increased Use of Biofuels. *Environ. Res. Lett.* 2011, 6 (2), 024011. https://doi.org/10.1088/1748-9326/6/2/024011.
- (17) Stolwijk, A. M.; Straatman, H.; Zielhuis, G. A. Studying Seasonality by Using Sine and Cosine Functions in Regression Analysis. *J. Epidemiol. Community Health* 1999, 53 (4), 235–238. https://doi.org/10.1136/jech.53.4.235.

SUPPLEMENTARY MATERIALS 3 (S3)

R script used in the machine learning analyses

Open dataset: InputData <- readRDS("//media/InputData O3 model.rds")</pre>

```
##### Define the parameters:
X_Var = c(2:87,94:124,127:length(InputData2))
data1 = InputData2[!is.na(InputData2[,1]),]
set.seed(123)
train_ind <- sample(seq_len(nrow(data1)), size = round(nrow(data1)*0.9))
train_data= data1[train_ind,]
```

Starting H2O: h2o.init(min mem size = "120g",nthreads = 5)

Open the data using H2O: train_h2o<-as.h2o(train_data) test_data= data1[-train_ind,] test_h2o<-as.h2o(test_data)</pre>

```
##### Define the parameters
hyper_params=list(epochs=c(40,50,75),hidden=list(c(210,210),c(350,350),c(250,250)),l1=c(1e-
4,1e-5),activation = c("Rectifier"))
```

```
##### Run the model and save the results
modgrid<-h2o.grid("deeplearning",x=X_Var,y=1,epsilon = 1e-08,training_frame =
train_h2o,hyper_params = hyper_params)
saveRDS(modgrid,"grid_search_Neural_Network.rds")
###### Get a list of the highest R2 value:
model_ids <- modgrid@model_ids
models <- lapply(model_ids, function(id) { h2o.getModel(id)})
MaxR2 = 0
MaxID = 0
for(i in 1:18)
{
TempR = models[[i]]@model$training_metrics@metrics$r2
if(TempR>MaxR2)
{
MaxR2 = TempR
MaxID = i
}
```

#h2o.init(nthreads=-1,max mem size = "400G",port = (54321)) #### To start H2O on

#X Var 1 = c(2:87,94:124,127:128,130:137,139:length(InputData2))

mod nn $1 \le h20$.deeplearning(x = X Var 1, # column numbers for predictors

training frame = InputData h2o,nfolds=10,standardize = FALSE,

y = 1, # column number for label

cat(sprintf("%d %f\n",i,TempR))

Open the data using H2O: InputData h2o <- as.h2o(InputData)

Run the model and save the results:

h20.init(min mem size = "120g", nthreads = 5)

X Var 1 = c(2:112, 114:121, 123:length(InputData))

}

Start H2O:

Set "X" variables:

names(InputData)

Odyssey

```
S15
```

fold_assignment="Modulo",seed=271828,keep_cross_validation_predictions

= TRUE,

activation="Rectifier",hidden=c(250,250),epochs=50, epsilon = 1e-08,l1=1e-05,distribution="AUTO")

h2o.saveModel(mod_nn_1,force = TRUE, "2 Outcome/1 ModelTraining Neural Network/2 Model")

summary(mod_nn_1)

```
##### Open dataset:
InputData <- readRDS("//media/InputData O3 model.rds")</pre>
```

test_data= data1[-train_ind,]

test_h2o<-as.h2o(test_data)

```
##### Define the parameters
grid space <- list()
grid space space c(800,1000,1200)
grid spacemax depth <-c(7,9,11)
grid spaceshbins \leq c(15,20,24)
grid spaceshbins cats <-c(400,449,500)
grid space$sample rate <- c(0.4, 0.5)#0.415836
##### Run the model and save the results
modgrid rf <- h2o.grid("randomForest", grid id="drf grid cars test", x=X Var, y=1,
           training frame=train h2o, validation frame = test h2o, hyper params=grid space)
saveRDS(modgrid rf,"grid search Random Forest.rds")
###### Get a list of the highest R2 value:
model ids <- modgrid rf@model ids
models <- lapply(model ids, function(id) { h2o.getModel(id)})
MaxR2 = 0
MaxID = 0
for(i in 1:162)
TempR = models[[i]]@model$training metrics@metrics$r2
if(TempR>MaxR2)
 MaxR2 = TempR
 MaxID = i
 }
cat(sprintf("%d %f ntrees:%d max depth:%d nbins:%d nbins cats:%d
sample rate:%f\n",i,TempR,models[[i]]@parameters$ntrees,models[[i]]@parameters$max_dept
h,models[[i]]@parameters$nbins,models[[i]]@parameters$nbins cats,models[[i]]@parameters$s
ample rate))
}
##### Start H2O:
h20.init(min mem size = "120g", nthreads = 5)
\#h20.init(nthreads=-1,max mem size = "400G",port = (54321)) \#\#\#\# To start H2O on
Odyssey
```

Open the data using H2O: InputData h2o <- as.h2o(InputData) ### Set "X" variables: #X Var 1 = c(2:87,94:124,127:128,130:137,139:length(InputData2))X Var 1 = c(2:112, 114:121, 123:length(InputData))names(InputData) ## Run the model and save the results: mod rf $1 \le h20$.randomForest(x = X Var 1, y = 1, training frame = InputData h2o,nfolds=10, fold assignment="Modulo",seed=271828,keep cross validation predictions = TRUE, ntrees=800,max depth = 9,nbins = 15,nbins cats = 449,sample rate = 0.5) h2o.saveModel(mod rf 1,force = TRUE, "2 Outcome/2 ModelTraining Random Forest/2 Model") summary(mod rf 1) ### Model training - Gradient Boosting ### library(h2o) library(mgcv) library(parallel) ##### Set working directory: setwd("/media/gate/Weeberb/Ozone model") ##### Open dataset: InputData <- readRDS("//media/InputData O3 model.rds") ##### Define the parameters:

X_Var = c(2:87,94:124,127:length(InputData2)) data1 = InputData2[!is.na(InputData2[,1]),] set.seed(123) train_ind <- sample(seq_len(nrow(data1)), size = round(nrow(data1)*0.9)) train_data= data1[train_ind,] ##### Starting H2O: h20.init(min mem size = "120g", nthreads = 5)##### Open the data using H2O: train h2o<-as.h2o(train data) test data= data1[-train ind,] test h2o<-as.h2o(test data) ##### Define the parameters xgb params1 <- list(learn rate = c(0.01, 0.005, 0.007)), max depth = c(6,7,8), sample rate = c(1.0), col sample rate = c(0.4, 0.5, 0.6), ntrees = c(175,200,250))##### Run the model and save the results modgrid xgb \leq - h2o.grid("gbm", x = X Var, y = 1, grid id = "xgb params1", training frame = train h2o, validation frame = test h2o, seed = 1. hyper params = xgb params1) saveRDS(modgrid xgb,"grid search Gradient boosting.rds") ##### Get a list of the highest R2 value: model ids <- modgrid xgb@model ids models \leq lapply(model ids, function(id) { h2o.getModel(id)}) MaxR2 = 0MaxID = 0

TempR = models[[i]]@model\$training metrics@metrics\$r2

for(i in 1:81)

if(TempR>MaxR2)

MaxR2 = TempR

cat(sprintf("%d %f\n",i,TempR))

MaxID = i

ł

ł

}

Ş

S19

```
##### Start H2O:
h20.init(min mem size = "120g", nthreads = 5)
\#h20.init(nthreads=-1,max mem size = "400G",port = (54321)) \#\#\#\# To start H2O on
Odyssey
##### Open the data using H2O:
InputData h2o <- as.h2o(InputData2)
### Set "X" variables:
#X Var 1 = c(2:87,94:124,127:128,130:137,139:length(InputData2))
X Var 1 = c(2:112, 114:121, 123:length(InputData))
names(InputData)
## Run the model and save the results:
mod gbm 1=h20.gbm(x = X Var 1),
        y = 1,
        training frame = InputData h2o,nfolds=10,
        fold assignment="Modulo", seed=271828,keep cross validation predictions =
TRUE,
        ntrees=200, learn rate = 0.007, max depth = 7, sample rate = 1, col sample rate = 0.5)
h2o.saveModel(mod gbm 1, force = TRUE,
"2 Outcome/3 ModelTraining_Gradient_Boosting/2_Model")
```

```
summary(mod gbm 1)
```

library(h2o) library(caret) library(mgcv) library(parallel)

```
for(YEAR in 2015:2016)
```

path DirPath_Assembled = paste0(DirPath,"assembled_data",Sep) DirPath_Processed = paste0(DirPath,"processed_data",Sep) DirPath_Model = paste0(DirPath,"assembled_data",Sep,"training",Sep,NAME,"_",VariableID,"_CV",Sep) dir.create(DirPath_Model) ## read location SiteData_Train<-ReadLocation(paste0(DirPath_Processed,SiteName_Train,Sep,"Location",Sep,SiteName_Train," Site_",GCS)) N_Site_Train <- nrow(SiteData_Train) SiteData_Predict<-ReadLocation(paste0(DirPath_Processed,SiteName_Predict,Sep,"Location",Sep,SiteName_Predi ct,"Site_",GCS)) N_Site_Predict <- nrow(SiteData_Predict)</pre> ## time
N_Day = as.numeric(ENDDATE - STARTDATE + 1)

```
## read weight
Weight1 =
h5read robust(paste0(DirPath Processed,SiteName Predict,Sep,"Temp",Sep,"SpatialLaggedWe
ightPeak41_",SiteName_Train,"_",SiteName_Predict,".h5"),name = "Weight")
Weight2 =
h5read robust(paste0(DirPath Processed,SiteName Predict,Sep,"Temp",Sep,"SpatialLaggedWe
ightPeak42 ",SiteName Train," ",SiteName Predict,".h5"),name = "Weight")
Weight3 =
h5read robust(paste0(DirPath Processed,SiteName Predict,Sep,"Temp",Sep,"SpatialLaggedWe
ightPeak43_",SiteName_Train,"_",SiteName_Predict,".h5"),name = "Weight")
## start h2o vm
h2o.init(min mem size = "300g")
## read imputed data
if(file.exists(paste0(DirPath Model,"InputDataImputed.rds")))
{
 InputData = readRDS(paste0(DirPath Model, "InputDataImputed.rds"))
 InputData h2o <- as.h2o(InputData)
}else
{
 ## if not, read non-imputed data
 if(file.exists(paste0(DirPath Model,"InputData.rds")))
  InputData = readRDS(paste0(DirPath Model,"InputData.rds"))
 }else
  ## if not again, read data from scratch
  # ##read csv configuration file
  col = c(rep("character", 6))
  col[c(2,3)] = "logical"
  col[c(7,8)] = "numeric"
  VariableList =
read.csv(paste0(DirPath,"assembled data",Sep,"VariableList ",VariableID,".csv"),colClasses =
col)
  VariableList = VariableList[!is.na(VariableList$READ),]
  InputData =
ReadData(DirPath,Sep,VariableID,NAME,SiteName Train,STARTDATE,ENDDATE,OPTION
,SiteData Train,VariableList)
  saveRDS(InputData,paste0(DirPath Model,"InputData Original.rds"))
```

```
InputData <- StandardData(DirPath,InputData,VariableID)
InputData$MonitorData = log(InputData$MonitorData+EPLISON)
saveRDS(InputData,paste0(DirPath_Model,"InputData.rds"))
```

```
}
## imputation
InputData_h2o <- as.h2o(InputData)
InputData_h2o =
ImputeData(DirPath,Sep,InputData_h2o,InputData,OPTION,VariableID,SiteData_Train)
InputData = as.data.frame(InputData_h2o)
saveRDS(InputData,paste0(DirPath_Model,"InputDataImputed.rds"))
}</pre>
```

```
## for CV
set.seed(123)
flds <- createFolds(seq(1:nrow(SiteData_Predict)), k = 10, list = TRUE, returnTrain = FALSE)
saveRDS(flds,paste0(DirPath_Model,"CV.rds"))</pre>
```

```
sink(file=paste0(DirPath_Model,paste0("testH2o_train_output_CV_"),STARTDATE,"_",ENDD
ATE,".txt"),append=T,split=F)
```

```
# variables used in step 1
X_Var_1 = which(!names(InputData_h2o) %in% c("MonitorData","SiteCode",
"CalendarDay","PM25_Region","NO2_Region","Ozone_Region","Temporal_Lagged_1","Temp
oral_Lagged_2","Temporal_Lagged_3","Spatial_Lagged_1","Spatial_Lagged_2","Spatial_Lagg
ed_3"))
```

```
#step 1: neural network
TempDir = paste0(paste0(DirPath_Model,"NeuralNetwork_Step1","_round",m,Sep))
if(length(list.files(TempDir))>0)
{
    if(length(list.files(TempDir))>1)
    {
      stop("more than one model here exist!",TempDir)
    }
```

```
Model <- list.files(TempDir)
  mod nn 1 <- h2o.loadModel(paste0(TempDir,Model[1]))
 }else
 ł
  mod nn 1 \le h20.deeplearning(x = X Var 1, # column numbers for predictors
                   y = 1, # column number for label
                   training frame = InputData h2o[Index train,],nfolds=10,standardize =
FALSE,
fold assignment="Modulo",seed=271828,keep cross validation predictions = TRUE,
                   activation="Rectifier",hidden=c(210,210),epochs=50,
                   epsilon = 1e-08,11=1e-05,distribution="AUTO")
  h2o.saveModel(mod nn 1,force = TRUE,TempDir)
 }
 #step 1: random forest
 TempDir = paste0(paste0(DirPath Model, "RandomForest Step1"," round", m, Sep))
 if(length(list.files(TempDir))>0)
 ł
  if(length(list.files(TempDir))>1)
   stop("more than one model here exist!", TempDir)
  Model <- list.files(TempDir)
  mod rf 1 \le h20.loadModel(paste0(TempDir,Model[1]))
 }else
  mod rf 1=h20.randomForest(x = X Var 1),
                 v = 1.
                 training frame = InputData h2o[Index train,],nfolds=10,
                 fold assignment="Modulo",seed=271828,keep cross validation predictions
= TRUE,
                 ntrees=1000,max depth = 9,nbins = 20,nbins cats = 449,sample rate =
0.41536)
  h2o.saveModel(mod rf 1,force = TRUE,TempDir)
 ## Step 1: gradient boosting
 TempDir = paste0(paste0(DirPath Model, "GradientBoosting Step1"," round", m, Sep))
 if(length(list.files(TempDir))>0)
  if(length(list.files(TempDir))>1)
   stop("more than one model here exist!", TempDir)
  Model <- list.files(TempDir)
  mod gbm 1 <- h2o.loadModel(paste0(TempDir,Model[1]))
 }else
```

```
S25
```

```
{
  mod gbm 1=h20.gbm(x = X Var 1),
            y = 1,
            training frame = InputData h2o[Index train,],nfolds=10,
            fold assignment="Modulo", seed=271828,keep cross validation predictions =
TRUE,
            ntrees=200,learn rate = 0.007,max depth = 7,sample rate = 1,col sample rate =
0.5)
  h2o.saveModel(mod gbm 1,force = TRUE,TempDir)
 }
 ## ensemble
 InputData$pred nn 1<-as.vector(h2o.predict(mod nn 1,newdata=InputData h2o)$predict)
 InputData$pred gbm 1<-as.vector(h2o.predict(mod gbm 1,newdata=InputData h2o)$predict)
 InputData$pred rf 1<-as.vector(h2o.predict(mod rf 1,newdata=InputData h2o)$predict)
 if(file.exists(paste0(DirPath Model,"Ensemble Step1"," round",m,".rds")))
  mod ensemble 1 <- readRDS(paste0(DirPath Model, "Ensemble Step1", "round", m, ".rds"))
 }else
  cl <- makeCluster(N Core)
  mod ensemble 1<-bam(MonitorData ~ s(Other Lat, Other Lon,
by=pred nn 1)+s(Other Lat, Other Lon, by=pred gbm 1)+s(Other Lat, Other Lon,
by=pred rf 1),data=InputData[Index train,],cluster=cl)
  stopCluster(cl)
  saveRDS(mod ensemble 1,paste0(DirPath Model,"Ensemble Step1"," round",m,".rds"))
 }
 ## show results
 Pred<-predict(mod ensemble 1,newdata = InputData)
 InputDatapred ensemble 1 = Pred
 A = summary(lm(MonitorData~pred ensemble 1,data=InputData[Index test,]))
 print(sprintf("Step1: Ensemble:%f,%f\n",A$r.squared,sqrt(mean(A$residuals^2))))
 A = summary(lm(MonitorData~pred rf 1,data=InputData[Index test,]))
```

```
A = summary(im(MontorData~pred_11_1,data=inputData[index_test,j))
print(sprintf("Step1: Random Forest:%f,%f\n",A$r.squared,sqrt(mean(A$residuals^2))))
```

```
A = summary(lm(MonitorData~pred_gbm_1,data=InputData[Index_test,]))
```

```
print(sprintf("Step1: Gradient Boosting:%f,%f\n",A$r.squared,sqrt(mean(A$residuals^2))))
```

```
A = summary(lm(MonitorData~pred_nn_1,data=InputData[Index_test,]))
```

```
print(sprintf("Step1: Neural Network:%f,%f\n",A$r.squared,sqrt(mean(A$residuals^2))))
```


two step modeling...

```
dim(Pred)<-c(N_Day,N_Site_Train)
```

```
Pred_1 = apply(Pred, 2, function(x) as.numeric(filter(x, rep(1/7,7), sides = 2, circular = TRUE)))
```

```
Pred 2 = apply(Pred, 2, function(x) as.numeric(filter(x, x)))
c(1/16,2/16,3/16,4/16,3/16,2/16,1/16), sides = 2, circular = TRUE)))
 Pred 3 = apply(Pred,2,function(x) as.numeric(filter(x,
c(1/44, 4/44, 9/44, 16/44, 9/44, 4/44, 1/44), sides = 2, circular = TRUE)))
 Pred 4 = \text{Pred}\% \text{Weight}1
 Pred 5 = \text{Pred}\%*\%\text{Weight2}
 Pred 6 = \text{Pred}\% \text{Weight}3
 dim(Pred 1)<-c(N Day*N Site Train)
 dim(Pred 2)<-c(N Day*N Site Train)
 dim(Pred 3)<-c(N Day*N Site Train)
 dim(Pred 4)<-c(N Day*N Site Train)
 dim(Pred 5)<-c(N Day*N Site Train)
 dim(Pred 6)<-c(N Day*N Site Train)
 Temp h2o = as.h2o(as.data.frame(cbind(Pred 1,Pred 2,Pred 3,Pred 4,Pred 5,Pred 6)))
 colnames(Temp h2o)<-
c("Temporal Lagged 1","Temporal Lagged 2","Temporal Lagged 3","Spatial Lagged 1","Sp
atial Lagged 2", "Spatial Lagged 3")
 InputData h_{20} = as.h_{20}(InputData)
 InputData h_{20} = h_{20}.cbind(InputData h_{20}.Temp h_{20})
```

```
X_Var_2 = which(!names(InputData_h2o) %in% c("MonitorData","SiteCode",
"CalendarDay","PM25_Region","NO2_Region","Ozone_Region"))
```

```
## neural network, best choice
TempDir = paste0(paste0(DirPath_Model,"NeuralNetwork_Step2","_round",m,Sep))
if(length(list.files(TempDir))>0)
{
    if(length(list.files(TempDir))>1)
    {
      stop("more than one model here exist!",TempDir)
    }
    Model <- list.files(TempDir)
    mod_nn_2 <- h2o.loadModel(paste0(TempDir,Model[1]))
    }else
    {
      mod_nn_2 <- h2o.deeplearning(x = X_Var_2, # column numbers for predictors
            y = 1, # column number for label
            training_frame = InputData_h2o[Index_train,],nfolds=10,standardize =
FALSE,
```

```
fold_assignment="Modulo",seed=271828,keep_cross_validation_predictions = TRUE,
```

```
activation="Rectifier",hidden=c(210,210),epochs=50,
                   epsilon = 1e-08,11=1e-05,distribution="AUTO")
  h2o.saveModel(mod nn 2,force = TRUE,TempDir)
 }
 ## random forest --- the best model
 TempDir = paste0(paste0(DirPath Model, "RandomForest Step2", "round", m, Sep))
 if(length(list.files(TempDir))>0)
  if(length(list.files(TempDir))>1)
   stop("more than one model here exist!",TempDir)
  Model <- list.files(TempDir)
  mod rf 2 <- h2o.loadModel(paste0(TempDir,Model[1]))
 }else
 ł
  mod rf 2 = h20.randomForest(x = X Var 2,
                  y = 1,
                  training frame = InputData h2o[Index train,],nfolds=10,
                  fold assignment="Modulo",seed=271828,keep cross validation predictions
= TRUE.
                  ntrees=1000,max depth = 9,nbins = 20,nbins cats = 449,sample rate =
0.41536)
  h2o.saveModel(mod rf 2,force = TRUE,TempDir)
 }
 ## Step 2 gradient boosting
 TempDir = paste0(paste0(DirPath Model, "GradientBoosting Step2", "round", m, Sep))
 if(length(list.files(TempDir))>0)
 {
  if(length(list.files(TempDir))>1)
   stop("more than one model here exist!", TempDir)
  Model <- list.files(TempDir)
  mod gbm 2 <- h2o.loadModel(paste0(TempDir,Model[1]))</pre>
 }else
  mod gbm 2 = h20.gbm(x = X Var 2,
             y = 1,
             training frame = InputData h2o[Index train,],nfolds=10,
             fold assignment="Modulo", seed=271828,keep cross validation predictions =
TRUE.
             ntrees=200,learn rate = 0.007,max depth = 7,sample rate = 1,col sample rate =
0.5)
```

h2o.saveModel(mod_gbm_2,force = TRUE,TempDir)
}

ensemble

InputData\$pred_nn_2<-as.vector(h2o.predict(mod_nn_2,newdata=InputData_h2o)\$predict) InputData\$pred_gbm_2<-as.vector(h2o.predict(mod_gbm_2,newdata=InputData_h2o)\$predict) InputData\$pred_rf_2<-as.vector(h2o.predict(mod_rf_2,newdata=InputData_h2o)\$predict)

if(file.exists(paste0(DirPath_Model,"Ensemble_Step2","_round",m,".rds")))

{

mod_ensemble_2 <- readRDS(paste0(DirPath_Model,"Ensemble_Step2","_round",m,".rds"))
}else</pre>

{

cl <- makeCluster(N_Core)

mod_ensemble_2<-bam(MonitorData ~ s(Other_Lat, Other_Lon,

by=pred_nn_2)+s(Other_Lat, Other_Lon, by=pred_gbm_2)+s(Other_Lat, Other_Lon,

by=pred_rf_2),data=InputData[Index_train,],cluster=cl)

stopCluster(cl)

saveRDS(mod_ensemble_2,paste0(DirPath_Model,"Ensemble_Step2","_round",m,".rds"))
}

show results

Pred<-predict(mod_ensemble_2,newdata = InputData)</pre>

InputData\$pred_ensemble_2 = Pred

A = summary(lm(MonitorData~pred_ensemble_2,data=InputData[Index_test,]))

```
print(sprintf("Step2: Ensemble:%f,%f\n",A$r.squared,sqrt(mean(A$residuals^2))))
```

```
A = summary(lm(MonitorData~pred_rf_2,data=InputData[Index_test,]))
```

```
print(sprintf("Step2: Random Forest:%f,%f\n",A$r.squared,sqrt(mean(A$residuals^2))))
```

```
A = summary(lm(MonitorData~pred_gbm_2,data=InputData[Index_test,]))
```

```
print(sprintf("Step2: Gradient Boosting:%f,%f\n",A$r.squared,sqrt(mean(A$residuals^2))))
```

```
A = summary(lm(MonitorData~pred_nn_2,data=InputData[Index_test,]))
```

print(sprintf("Step2: Neural Network:%f,%f\n",A\$r.squared,sqrt(mean(A\$residuals^2))))

save input data and output data

OutputData =

```
InputData[,c("CalendarDay","pred_nn_1","pred_gbm_1","pred_rf_1","pred_ensemble_1","pred_
nn_2","pred_gbm_2","pred_rf_2","pred_ensemble_2")]
```

```
saveRDS(OutputData,paste0(DirPath_Model,"OutputData","_round",m,".rds"))
```

}

saveRDS(OutputData,paste0(DirPath_Model,"OutputData.rds"))
sink()

}

Table S

Table S1 – List of predictor variables
Meteorological variables
Accumulated total precipitation
Downward Shortwave Radiation on Flux
Downward Shortwave Radiation on Flux
Accumulated total Evaporation
High Cloud Area Fraction
Planetary Boundary Layer Height
Low Cloud Area Fraction
Medium Cloud Area Fraction
Precipitable Water for entire atmosphere
Visibility
Air temperature (surface)
Pressure (surface)
Specific Humidity at 2m
U-wind at 10 m
V-wind at 10 m
Precipitation rate
Latent Heat Flux
Sensible Heat Flux
Snow Cover
Soil Moisture Content
Forecast of Total Cloud Cover
Upward Longwave Radiation on Flux
Omega: A term used to describe vertical motion in the atmosphere
Accumulated Snow
Cloud coverage
Surface albedo
GEOS-Chem data
Surface-level O3, simulated by GEOS-Chem
Surface-level NO2, simulated by GEOS-Chem
Elemental carbon - GEOS-Chem variable related to aerosol concentration and aerosol type
Organic carbon - GEOS-Chem variable related to aerosol concentration and aerosol type
Sulfate - GEOS-Chem variable related to aerosol concentration and aerosol type
Nitrate - GEOS-Chem variable related to aerosol concentration and aerosol type
Aerosol mass - GEOS-Chem variable related to aerosol concentration and aerosol type
GEMS data
GEMS total column O3 at 0.125-degree resolution
OMI satellite data
OMAERUVd_UVA - absorbing aerosol index in the ultraviolet range
OMAEROe_UVA - absorbing aerosol index in the ultraviolet range
OMAEROe_VISA - absorbing aerosol index in the visible range
Satellite-measured column O3 concentration
Satellite-measured column SO2 concentration
Satellite-measured column NO2 concentration
Satellite-measured UV index

CMAQ data
Surface-level NO2, simulated by CMAQ
Percentage of surface-level NO2 at the total column NO2, simulated by CMAQ
Surface-level ozone, simulated by CMAQ
Percentage of surface-level ozone at the total column ozone, simulated by CMAQ
Surface-level PM2.5 nitrate, simulated by CMAQ
Surface-level PM2.5 sulfate, simulated by CMAQ
Surface-level PM2.5 elemental carbon, simulated by CMAQ
Surface-level PM2.5 organic carbon, simulated by CMAQ
MERRA
Hydrophilic Black Carbon
Hydrophobic Black Carbon
Hydrophilic Organic Carbon
Hydrophobic Organic Carbon
Sulphate aerosol
Total column O3
MODIS Satellite data
Surface temperature during the day, mean of nearby grid cells
Surface temperature at night, mean of nearby grid cells
MODIS-measured cloud coverage during the day, mean of nearby grid cells
MODIS-measured cloud coverage at night, mean of nearby grid cells
Surface temperature during the day, data from the nearest grid cell
Surface temperature at night, data from the nearest grid cell
MODIS-measured cloud coverage during the day, data from the nearest grid cell
MODIS-measured cloud coverage at night, data from the nearest grid cell
MAIAC aerosol (aerosol optical depth) data at 470 nm wavelength, from Aqua satellite, retrieved from the
nearest grid cell
MAIAC aerosol (aerosol optical depth) data at 550 nm wavelength, from Aqua satellite, retrieved from the
nearest grid cell
MAIAC aerosol (aerosol optical depth) data at 470 nm wavelength, from Terra satellite, retrieved from the
nearest grid cell
MAIAC aerosol (aerosol optical depth) data at 550 nm wavelength, from Terra satellite, retrieved from the
nearest grid cell
Viewing angle of the sensor at the Terra satellite
Viewing angle of the sensor at the Aqua satellite
NDVI value from MODIS MOD13A2, 1 km spatial resolution and 16-day temporal resolution
CAMS data
NO2 column concentration simulations from CAMS
Additional air quality data from EPA
Daily measurements of SO2
Daily measurements of NO2
Daily measurements of NOx
Daily measurements of VOCs
NLCD landuse database

Wetland coverage from NLCD data set, the original 30 meter data were aggregated to 10000 meter raster, then we interpolated the 10000-meter raster to locations of interests

Water coverage from NLCD data set, the original 30 meter data were aggregated to 10000 meter raster, then we interpolated the 10000-meter raster to locations of interests

Planted coverage from NLCD data set, the original 30 meter data were aggregated to 10000 meter raster, then we interpolated the 10000-meter raster to locations of interests

Herbaceous coverage from NLCD data set, the original 30 meter data were aggregated to 10000 meter raster, then we interpolated the 10000-meter raster to locations of interests

Shrubland coverage from NLCD data set, the original 30 meter data were aggregated to 10000 meter raster, then we interpolated the 10000-meter raster to locations of interests

Barren coverage from NLCD data set, the original 30 meter data were aggregated to 10000 meter raster, then we interpolated the 10000-meter raster to locations of interests

Developed area coverage from NLCD data set, the original 30 meter data were aggregated to 10000 meter raster, then we interpolated the 10000-meter raster to locations of interests

Wetland coverage from NLCD data set, the original 30 meter data were aggregated to 100 meter raster, then we interpolated the 100-meter raster to locations of interests

Water coverage from NLCD data set, the original 30 meter data were aggregated to 100 meter raster, then we interpolated the 100-meter raster to locations of interests

Planted coverage from NLCD data set, the original 30 meter data were aggregated to 100 meter raster, then we interpolated the 100-meter raster to locations of interests

Herbaceous coverage from NLCD data set, the original 30 meter data were aggregated to 100 meter raster, then we interpolated the 100-meter raster to locations of interests

Shrubland coverage from NLCD data set, the original 30 meter data were aggregated to 100 meter raster, then we interpolated the 100-meter raster to locations of interests

Barren coverage from NLCD data set, the original 30 meter data were aggregated to 100 meter raster, then we interpolated the 100-meter raster to locations of interests

Developed area coverage from NLCD data set, the original 30 meter data were aggregated to 100 meter raster, then we interpolated the 100-meter raster to locations of interests

Road density obtained from the US Census Bureau

Primary road density; we converted primary road (lines shapefile format) into raster with 100 meter pixel width; then we interpolated them to locations of interests

Primary road density; we converted primary road (lines shapefile format) into raster with 1000 meter pixel width; then we interpolated them to locations of interests

Primary road density; we converted primary road (lines shapefile format) into raster with 10000 meter pixel width; then we interpolated them to locations of interests

Primary and secondary road density; we converted primary and secondary road (lines shapefile format) into raster with 100 meter pixel width; then we interpolated them to locations of interests

Primary and secondary road density; we converted primary and secondary road (lines shapefile format) into raster with 1000 meter pixel width; then we interpolated them to locations of interests

Primary and secondary road density; we converted primary and secondary road (lines shapefile format) into raster with 10000 meter pixel width; then we interpolated them to locations of interests

All road (primary, secondary and terciary road) density; we converted all road (lines shapefile format) into raster with 100 meter pixel width; then we interpolated them to locations of interests

All road (primary, secondary and terciary road) density; we converted all road (lines shapefile format) into raster with 1000 meter pixel width; then we interpolated them to locations of interests

All road (primary, secondary and terciary road) density; we converted all road (lines shapefile format) into raster with 10000 meter pixel width; then we interpolated them to locations of interests

Global Multi-Resolution Terrain Elevation Dataset

Maximal elevation, original data was at 7.5 arc-seconds, then aggregated to 100 meter resolution

Minimal elevation, original data was at 7.5 arc-seconds, then aggregated to 100 meter resolution

Median elevation, original data was at 7.5 arc-seconds, then aggregated to 100 meter resolution

Mean elevation, original data was at 7.5 arc-seconds, then aggregated to 100 meter resolution

Systematic subsample, original data was at 7.5 arcseconds, then aggregated to 100 meter resolution

Breakline emphasis, original data was at 7.5 arc-seconds, then aggregated to 100 meter resolution

Standard deviation, original data was at 7.5 arc-seconds, then aggregated to 100 meter resolution Maximal elevation, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolution Minimal elevation, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolutionMedian elevation, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolutionMean elevation, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolutionSystematic subsample, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolutionBreakline emphasis, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolutionStandard deviation, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolutionMaximal elevation, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolutionMinimal elevation, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolutionMinimal elevation, original data was at 7.5 arc-seconds, then aggregated to 1000 meter resolutionMedian elevation, original data was at 7.5 arc-seconds, then aggregated to 10000 meter resolutionMedian elevation, original data was at 7.5 arc-seconds, then aggregated to 10000 meter resolutionMedian elevation, original data was at 7.5 arc-seconds, then aggregated to 10000 meter resolutionMedian elevation, original data was at 7.5 arc-seconds, then aggregated to 10000 meter resolutionSystematic subsample, original data was at 7.5 arc-seconds, then aggregated to 10000 meter resolutionSystematic subsample, original data was at 7.5 arc-seconds, then aggregated to 10000 meter resolutionSystematic subsample, original data was at 7.5 arc-seconds, then aggregated to 10000 meter resolutionSystematic subsample, original data was at 7.5 arc-seconds, then aggregated to 10000 meter resolutionStandard deviation, original data was at 7.5 arc-seconds,

MCD12Q1: a satellite-based landuse types

Miscellaneous

Restaurant density Annual average traffic count data for the contiguous U.S. interpolated 100 m

Annual average traffic count data for the contiguous U.S. interpolated 1000 m Annual average traffic count data for the contiguous U.S. interpolated 10000 m

Temporal terms
Dummy variable representing the year 2000
Dummy variable representing the year 2001
Dummy variable representing the year 2002
Dummy variable representing the year 2003
Dummy variable representing the year 2004
Dummy variable representing the year 2005
Dummy variable representing the year 2006
Dummy variable representing the year 2007
Dummy variable representing the year 2008
Dummy variable representing the year 2009
Dummy variable representing the year 2010
Dummy variable representing the year 2011

Dummy variable representing the year 2012
Dummy variable representing the year 2013
Dummy variable representing the year 2014
Dummy variable representing the year 2015
Dummy variable representing the year 2016
Dummy variable representing the weekday 1
Dummy variable representing the weekday 2
Dummy variable representing the weekday 3
Dummy variable representing the weekday 4
Dummy variable representing the weekday 5
Dummy variable representing the weekday 6
Dummy variable representing the Julian days
Variable representing the seasonal pattern – sine season
Variable representing the seasonal pattern – cosine season
Snatio temporal lag of O3 massurements

Spatio-temporal lag of O3 measurements

Spatially lagged terms as inverse distance weighted O3 measurements at other locations, as well as their 1-day Spatially lagged terms as inverse distance weighted O3 measurements at other locations, as well as their 3-day Spatially lagged terms as inverse distance weighted O3 measurements at other locations, as well as their 5-day

Temporal lag of O3 predictors

1-day lagged moving values of air temperature

1-day lagged moving values of total precipitation accumulation

1-day lagged moving values of pressure

1-day lagged moving values of humidity

1-day lagged moving values of wind speed

Table S2 - Parameters Tuned for Base Learners

Neura	al Network	Random Fore	Gradient Boosting			
Parameter Name	Final Value after Tuning	Parameter Name	Final Value after	Parameter Name	Final Value after	
i ulumeter i tume		i urumeter ryume	Tuning	i di di li ce i i vuille	Tuning	
Epochs	50	Number of trees	1200	Learning rate	0.007	
Hidden layer and the number of	2 hidden layers with 275 neurons in each	number of bins for numerical	20	Number of trees	200	
neurons	layer	columns	20		200	
L1 regularization	10-4	number of bins for categorical	449	Column sample	0.5	
		columns	,	rate		
Activation function	Rectifier	Maximum tree depth	9	Maximum tree	7	
				depth	· ·	
		Sample rate	0.42	Sample rate	1	

Note: We used grid search to find optimal value for above parameters and used the final values for model training and model prediction. Take neural network as an example, to do grid search, we tried a series of parameter combinations in a parameter space (i.e., grid), fit neural networks, calculated cross-validated R², and chose the parameter combination that yielded the best model performance. If the chosen parameter combination was on the edge of parameter space, we slightly expanded the parameter space and repeated the above process.

Tables S3-S5

Table S3 – Cross-validation results by region

Dogion				Enseml	ble mode	l	Neural Network	Random Forest	Gradient Boosting	
Region	R ²	RMSE (ppb)	Intercept	Slope	Spatial R ²	Temporal R ²	R ²	\mathbb{R}^2	\mathbb{R}^2	
	East North Central	0.928	4.030	0.946	0.989	0.846	0.934	0.927	0.924	0.927
	East South Central	0.912	4.161	0.383	0.986	0.779	0.924	0.909	0.909	0.911
	Middle Atlantic	0.908	4.601	3.865	0.943	0.847	0.931	0.911	0.913	0.915
	Mountain	0.862	4.642	1.594	0.969	0.789	0.891	0.855	0.855	0.857
	New England	0.867	4.811	1.961	0.979	0.773	0.908	0.859	0.863	0.867
	Pacific	0.891	5.467	1.295	0.970	0.879	0.896	0.881	0.884	0.886
	South Atlantic	0.912	4.283	0.667	0.991	0.881	0.915	0.910	0.906	0.908
	West North Central	0.920	3.699	1.089	1.028	0.843	0.929	0.917	0.917	0.919
	West South Central	0.920	4.136	0.332	1.001	0.809	0.933	0.920	0.917	0.920

Note: Region division was based on U.S. Census Bureau. New England: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Middle Atlantic: New Jersey, New York, Pennsylvania; East North Central: Indiana, Illinois, Michigan, Ohio, Wisconsin; West North Central: Iowa, Nebraska, Kansas, North Dakota, Minnesota, South Dakota, Missouri; South Atlantic: Delaware, District of Columbia, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, West Virginia; East South Central: Alabama, Kentucky, Mississippi, Tennessee; West South Central: Arkansas, Louisiana, Oklahoma, Texas; Mountain: Arizona, Colorado, Idaho, New Mexico, Montana, Utah, Nevada, Wyoming; Pacific: Alaska, California, Hawaii, Oregon, Washington. Although the Pacific Region includes Alaska and Hawaii, both states were not included in our modeling.

$Table \ S4-Cross-validation \ results \ by \ season$

Season			Ensem	ble model		Neural Network	Random Forest	Gradient Boosting	
	R ²	RMSE (ppb)	Intercept	Slope	Spatial R ²	Temporal R ²	R ²	R ²	R ²
Summer	0.885	5.320	0.168	1.004	0.891	0.903	0.884	0.877	0.880
Fall	0.863	4.375	0.814	0.976	0.848	0.894	0.863	0.853	0.857
Winter	0.853	4.313	0.539	0.991	0.688	0.885	0.853	0.844	0.848
Spring	0.879	4.682	0.526	0.989	0.819	0.904	0.878	0.871	0.874

Note: The seasons were defined as follows: summer (July - September), fall (October - December), winter (January - March), and spring (April - June).

Table S5 – Cross-validation results by population density

Season			Ensem	ble model		Neural Network	Random Forest	Gradient Boosting	
	\mathbb{R}^2	RMSE (ppb)	Intercept	Slope	Spatial R ²	Temporal R ²	R ²	R ²	R ²
Quartile 1	0.888	4.794	0.284	0.993	0.849	0.900	0.883	0.882	0.885
Quartile 2	0.911	4.388	0.018	1.002	0.875	0.924	0.908	0.903	0.907
Quartile 3	0.902	4.538	0.645	0.987	0.863	0.915	0.900	0.895	0.898
Quartile 4	0.911	4.643	0.249	1.005	0.864	0.925	0.900	0.899	0.903

Table S6 – Variables sorted by % of missing values.

	% of missing
Variables sorted by number of missings	values
MAIACUS_Optical_Depth_047_Terra_Nearest4	78.657
MAIACUS_Optical_Depth_055_Terra_Nearest4	78.657
MOD04L2_550	64.888
MOD11A1_LST_Day_1km_Nearest4	63.548
MOD11A1_Clear_day_cov_Nearest4	63.548
MOD11A1_LST_Night_1km_Nearest4	59.446
MOD11A1_Clear_night_cov_Nearest4	59.446
MAIACUS_cosVZA_Terra_Nearest	27.130
REANALYSIS_gflux_DailyMean	14.703
REANALYSIS_soilm_DailyMean	14.703
MOD13A2_Nearest4	3.334
CMAQ_NO2	3.108
CMAQ_NO2_Vertical	3.108
CMAQ_Ozone	3.108
CMAQ_Ozone_Vertical	3.108
CMAQ_PM25_TOT	3.108
CMAQ_PM25_Vertical	3.108
CMAQ_PM25_NO3	3.108
CMAQ_PM25_SO4	3.108
CMAQ_PM25_EC	3.108
CMAQ_PM25_OC	3.108
MERRA2aer SO4	3.061
MERRA2aer OCPHOBIC	3.061
MERRA2aer OCPHILIC	3.061
MERRA2aer BCPHOBIC	3.061
MERRA2aer BCPHILIC	3.061
MOD09A1	2.696
RoadDensity prisecroads1000	1.345
RoadDensity prisecroads10000	1.345
RoadDensity roads1000	1.252

USElevation min100	0.232
USElevation_mea100	0.186
USElevation_hln100	0.186
USElevation_med100	0.139
NLCD Barren100	0.139
NLCD Developed100	0.139
NLCD Herbaceous100	0.139
NLCD Planted100	0.139
NLCD Shrubland100	0.139
NLCD Water100	0.139
NLCD Wetlands100	0.139
USElevation dsc10000	0.093
USElevation max100	0.093
USElevation max10000	0.093
USElevation mea10000	0.093
USElevation med10000	0.093
USElevation min10000	0.093
USElevation std100	0.093
USElevation std10000	0.093
USElevation bln10000	0.093
REANALYSIS hpbl DailyMax	0.093
REANALYSIS shum 2m DailyMax	0.093
REANALYSIS_prate_DailyMax	0.093
REANALYSIS_vis_DailyMax	0.093
REANALYSIS_apcp_DailyMean	0.093
REANALYSIS_dlwrf_DailyMean	0.093
REANALYSIS_dswrf_DailyMean	0.093
REANALYSIS_evap_DailyMean	0.093
REANALYSIS_hpbl_DailyMean	0.093
REANALYSIS_lhtfl_DailyMean	0.093
REANALYSIS_shtfl_DailyMean	0.093
REANALYSIS_shum_2m_DailyMean	0.093
REANALYSIS_snowc_DailyMean	0.093
REANALYSIS_tcdc_DailyMean	0.093
REANALYSIS ulwrf DailyMean	0.093

REANALYSIS_omega_DailyMean	0.093
REANALYSIS_weasd_DailyMean	0.093
REANALYSIS_prate_DailyMean	0.093
REANALYSIS_vis_DailyMean	0.093
REANALYSIS hpbl DailyMin	0.093
REANALYSIS_shum_2m_DailyMin	0.093
REANALYSIS_prate_DailyMin	0.093
REANALYSIS_vis_DailyMin	0.093
REANALYSIS_hpbl_1Day	0.093
REANALYSIS_shum_2m_1Day	0.093
REANALYSIS_prate_1Day	0.093
REANALYSIS_vis_1Day	0.093
REANALYSIS_air_sfc_DailyMin	0.093
REANALYSIS_air_sfc_DailyMean	0.093
REANALYSIS_air_sfc_DailyMax	0.093
REANALYSIS_air_sfc_1Day	0.093
REANALYSIS_windspeed_10m_DailyMax	0.093
REANALYSIS_windspeed_10m_DailyMean	0.093
REANALYSIS_windspeed_10m_DailyMin	0.093
REANALYSIS_windspeed_10m_1Day	0.093
NLCD_Barren10000	0.046
NLCD_Developed10000	0.046
NLCD_Herbaceous10000	0.046
NLCD_Planted10000	0.046
NLCD_Shrubland10000	0.046
NLCD_Water10000	0.046
NLCD_Wetlands10000	0.046

Figures S4-S8

Figure $S4 - O_3$ levels predicted versus measured for the ensemble model and the three machine learning algorithms.

Note: We regressed daily predicted O_3 from each model (ensemble, neural network, random forest, and gradient boosting) against monitored O_3 using a GAM model with spline on the monitored O_3 . Blue color represents 95% confidence interval.

Error

Ensemble Model

Figure $S5 - O_3$ mapping error estimates (ppb) from cross validation for ensemble model and three machine learning algorithms, where error = predicted – observed values at each site.

Variable Importance: Deep Learning

global three-dimensional model of tropospheric chemistry of O3

Variable Importance: DRF

Variable Importance: GBM

Figure S6 – Relative contribution of predictor variables for the three machine models.

Note: neural network (deep learning), random forest (DRF), and gradient boosting (GBM).

Note 2: We used the H2O package in R to run the three machine learning models. The command "h2o.varimp" extracts the list of variable importance. Some H2O algorithm class has its own methodology for computing variable importance. For random forest and gradient boosting, variable importance is determined by looking at whether a variable was selected to split on during the building process, and how much the squared error (over all trees) improved (decreased) as а result. For neural network, H₂O uses the Gedeon method (Gedeon, 1997) http://users.cecs.anu.edu.au/~Tom.Gedeon/pdfs/ContribDataMinv2.pdf.

Figure $S7 - Temporal trends of O_3$.

Note: daily nationwide averages (orange line), smoothed conditional means function (blue line).

Figure S8 – Spatial distribution of the predicted levels of O₃ by the ensemble model for the major cities in the USA.

Note 1: We considered the top 4 cities in the US in terms of population - New York, Los Angeles, Chicago, Houston + Boston.

Note 2: in order to be possible the comparison of different levels of O₃ (represented by the legend with a color bar varying from blue [lowest concentration] to red [highest concentration]) over the cities and years, we standardized the symbolization (spatial distribution of the colors representing the ozone variation over space) based on the city and year with the lowest O3 concentration (New York, year 2000).