Supporting Information for

Stereolithography 3D Printing Solid Polymer Electrolytes for All-Solid-State Lithium-Metal Batteries

Yingjie He, Shaojie Chen, Lu Nie, Zhetao Sun, Xinsheng Wu, Wei Liu*

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. *Correspondence to: liuwei1@shanghaitech.edu.cn

This PDF file includes:

Figure S1. Thermogravimetric analysis of the photopolymerized SPE.

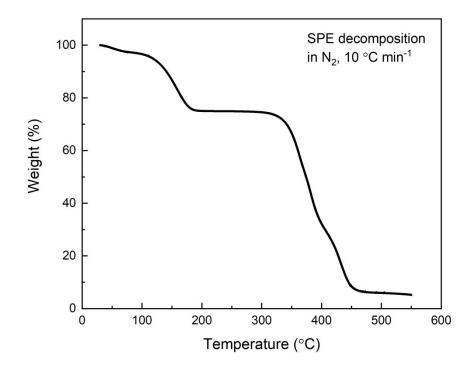

Figure S2. Tape test of 3D-SPE and structure-free SPE supported cathode.

Figure S3. Electrochemical performance of the photopolymerized SPE with different weight ratios at 25 °C.

Figure S4. Voltage profiles of the Li|3D-SPE|LFP cell at various C-rates at 50 °C.

Note S1. Calculation the increased specific area between the cathode and 3D-SPE.

Table S1. Summary of fitting values for Nyquist plots

Figure S1. Thermogravimetric analysis (TGA) showing the weight loss of SPE when heat up in the nitrogen to 550 °C with a scanning speed of 10 °C min⁻¹. The weight of SPE shows a platform below 350 °C, indicating its thermal stability.

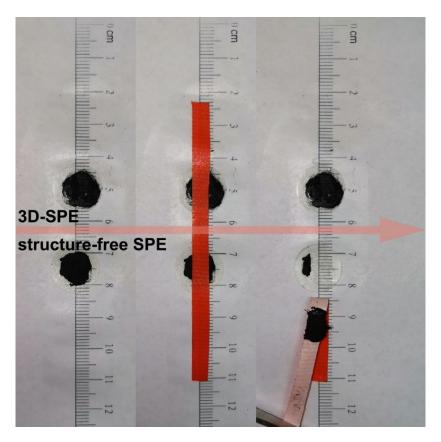


Figure S2. Tape test of 3D-SPE and structure-free SPE supported cathode.

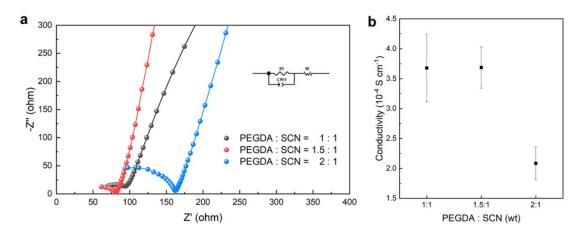


Figure S3. Electrochemical performance of the photopolymerized SPE with different weight

ratios at 25 °C. (a) Nyquist plots and (b) conductivity.

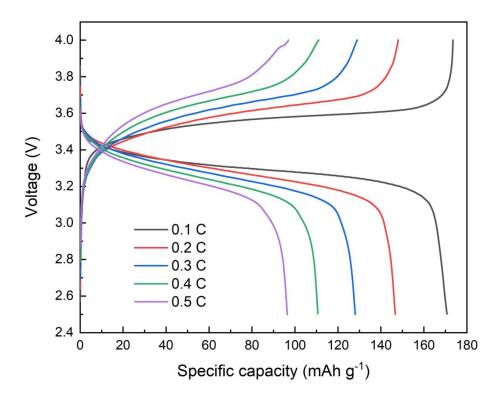


Figure S4. Voltage profiles of the Li|3D-SPE|LFP cell at various C-rates at 50 °C.

Note S1. Calculation the increased specific area between the cathode and 3D-SPE.

In this work, the Archimedes' Spiral is used as the 3D structure, and the polar equation is as follows:

$$\rho = a\theta \#(1)$$

the arc length is calculated by:

$$l = \frac{a}{2} \left[\theta \sqrt{1 + \theta^2} + \ln \left(\theta + \sqrt{1 + \theta^2} \right) \right] \#(2)$$

The increase in contact area is the ratio between the vertical contact area A_{cv} and the horizontal contact area A_{ch} :

$$\frac{A_{cv}}{A_{ch}} = \frac{2lh_s}{\pi r^2} = \frac{2lh_s}{\pi \rho^2} = \frac{h_s a \left[\theta \sqrt{1 + \theta^2} + \ln \left(\theta + \sqrt{1 + \theta^2}\right)\right]}{\pi (a\theta)^2} = \frac{h_s}{\pi a} \times \frac{\theta \sqrt{1 + \theta^2} + \ln \left(\theta + \sqrt{1 + \theta^2}\right)}{\theta^2} \#(3)$$
where h_s is the 3D structure height. When θ is infinity, $\frac{\theta \sqrt{1 + \theta^2} + \ln \left(\theta + \sqrt{1 + \theta^2}\right)}{\theta^2}$ approaches 1, which
indicated that there are two ways to increase the ratio. However, increasing the 3D structure
height(h_s) or reducing the spiral spacing (a) will weaken the 3D structure and trouble the filling of
cathode slurry. To balance these factors, they're set as ($a=0.05 \text{ mm}$, $\theta=45\pi$, and $h_s=0.15 \text{ mm}$), so
the increase in contact area is calculated as 95%.

		•		0		v 1	1						
Cell type	Temp.	$R[\Omega]$	CPE1-	CPE1-	$R_{\text{int}}[\Omega]$	CPE2-	CPE2-	$R_{ct}[\Omega]$	CPE3-	CPE3-	W1-	W1-T	W1-P
	[°C]		Т	Р		Т	Р		Т	Р	R		
Li structure- free SPE LFP	25	148	3.84E-	0.68	3409	6.46E-	0.90 51	510	3.04E-	0.77	308	0.25	0.20
			8			7		518	6				
	50	81.1	1.89E-	0.47	372	8.85E-	0.94	308	3.12E-	0.68	265	0.24	0.35
			6			7			6				
Li 3D-	25	128	2.07E-	0.59	1199	8.63E-	0.91	506	4.20E-	0.73	1399	9.85	0.34
			7			7			6				
SPE LFP	50	78.6	6.64E-	0.26	88.8	1.69E-	1.08	305	2.74E-	0.81	95.6	0.33	0.44
			5			6			6				

Table S1. Summary of fitting values for Nyquist plots