Furostanol Saponins from Trillium tschonoskii Promote the Expansion of Human

Cord Blood Hematopoietic Stem and Progenitor Cells

Bei Wang, ${ }^{\#, \dagger, \#}{ }^{\dagger}$ Jing Zhang,,${ }^{\#, \stackrel{\perp}{\perp}}$ Xu Pang, ${ }^{\dagger}$ Junyong Yuan, ${ }^{\perp}$ Jie Yang, ${ }^{\dagger}$ Yinjun Yang, ${ }^{\dagger}$ Lin Gao, ${ }^{\dagger}$ Jie Zhang, ${ }^{\dagger}$ Zeng Fan, ${ }^{\S, \perp}$ Lijuan He, ${ }^{\S, \perp}$ Wen Yue, ${ }^{\S, \perp}$ Yanhua Li, ${ }^{*}{ }^{\dagger, \perp}$ Xuetao Pei, ${ }^{*, \S, \perp}$ Baiping Ma ${ }^{*, \uparrow,}{ }^{\dagger}$
${ }^{\dagger}$ Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
${ }^{\ddagger}$ Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China
${ }^{\text {§}}$ Institute of Health Service and Transfusion Medicine, Beijing 100850, People's Republic of China
${ }^{\perp}$ South China Research Center for Stem Cell \& Regenerative Medicine, SCIB, Guangzhou 510005, People's Republic of China
*Corresponding Author Email: mabaiping@sina.com (B.-P. Ma); peixt@bmi.ac.cn (X.-T. Pei); shirlylyh@126.com (Y.-H. Li).
\#These authors contributed equally to this work

The details of extraction and isolation.

5.0 kg of T. tschonoskii rhizomes were crushed and extracted with 50% aq. EtOH at reflux. (Three times, each for 2 hrs .). The filtered solution was concentrated and centrifuged to get the supernatants and sediments. The supernatants were subjected to a SP825 macroporous resin column, eluted with EtOH- $\mathrm{H}_{2} \mathrm{O}$ (5:95 $\rightarrow 30: 70 \rightarrow 50: 50 \rightarrow 75: 25 \rightarrow 95: 5$) to yield five factions (Fr.A~Fr.E). Fr.C (120.0 g) was subjected to silica-gel CC with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(5: 1: 0.1 \rightarrow 2: 1: 0.1)$ as the eluent, and five fractions (Fr.C1~Fr.C5) were obtained. Fr.C3 (35.0 g) was further subjected to MCICC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(10: 90 \rightarrow 50: 50)$ as the eluent. As a result, a total of thirty fractions were collected (Fr.C3/1~Fr.C3/30). Fr.C3/6 was separated by preparative HPLC (pHPLC) with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(20: 80)$ to give seven subfractions (Fr.C3/6-1~Fr.C3/6-7). Fr.C3/7~9 was separated by preparative HPLC (pHPLC) with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (20:80) to yield three fractions (Fr.C3/7~9/1~Fr.C3/7~9/3). Fr.C3/10~11 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (22:78) to yield five fractions (Fr.C/3/10~11/1~Fr.C3/10~11/5). Fr.C3/12 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (22:78) to give five subfractions (Fr.C3/12/1~Fr.C/3/12/5). Fr.C3/13~14 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (22:78) to yield five fractions (Fr.C/3/13~14/1~Fr.C/3/13~14/5). Fr.C3/6/3, Fr.C3/7~9/3, Fr.C3/10~11/3, Fr.C3/12/3 and $\mathrm{Fr} . \mathrm{C} 3 / 13 \sim 14 / 3$ were separated by pHPLC with $(\mathrm{CH} 3)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(22: 78)$ to give $\mathbf{1 1}$ (47.0 mg). Fr.C3/6~4/6, Fr.C3/10~11/4, Fr.C3/12/2, and Fr.C3/13~14/2 were separated by pHPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(22: 78)$ to give $\mathbf{1 6}(303.0 \mathrm{mg})$ and $\mathbf{1 7}$ (327.0 mg). Fr.C3/12/4 and Fr.C3/13~14/4 were separated by pHPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(24: 76)$ to give $12(57.0 \mathrm{mg})$. Fr.C3/10~11/5, Fr.C3/12/5 and Fr.C3/13~14/5 were separated by pHPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(24: 76)$ to give $\mathbf{1 0}$ $(42.0 \mathrm{mg})$. Fr.C4 (35.0 g) was subjected to a MCI gel column eluted with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O} \quad(10: 90 \rightarrow 15: 85 \rightarrow 20: 80 \rightarrow 30: 70 \rightarrow 50: 50)$ to afford nine fractions (Fr.C4/1~Fr.C4/9). Fr.C4/1 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (20:80) to give six fractions (Fr.C4/1/1~Fr.C4/1/6). Fr.C4/2 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ ($v / v, 20: 80$) to give six fractions (Fr.C4/2/1~Fr.C4/2/6). Fr.C4/3 was
separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}^{-\mathrm{H}_{2} \mathrm{O}}$ (21:79) to give three fractions (Fr.C4/3/1~Fr.C4/3/1), Fr.C4/4 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (22:78) to give four fractions (Fr.C4/4/1~Fr.C4/4/4). Fr.C4/5 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ ($v / v, 22: 78$) to give five fractions (Fr.C4/5/1~Fr.C4/5/5). Fr.C4/6 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (23:77) to give five fractions (Fr.C/4/6/1~Fr.C/4/6/5). Fr.C4/1/6, Fr.C4/2/6 and Fr.C4/3/2 were separated by pHPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(25: 75)$ to give $2(10.0 \mathrm{mg})$. Fr.C4/3/3, Fr.C4/4/4, Fr.C/4/5/4 and $\mathrm{Fr} . \mathrm{C} / 4 / 6 / 5$ were separated by preparative HPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(26: 74)$ to give $18(25.0 \mathrm{mg})$. Fr.C5 (35.0 g) was subjected to C_{18} column with $(\mathrm{CH} 3)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$ (24:76) to afford six fractions (Fr.C5/1~Fr.C5/6). Fr.C5/1 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (16:84) to give five fractions (Fr.C5/1/1~Fr.C5/1/5). $\mathrm{Fr} . \mathrm{C} 5 / 2$ was separated by pHPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$ (22:78) to give four fractions (Fr.C5/2/1~Fr.C5/2/4). Fr.C5/3 was separated by pHPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(22: 78)$ to give five fractions ($\mathrm{Fr} . \mathrm{C} / 5 / 3 / 1 \sim \mathrm{Fr} . \mathrm{C} / 5 / 3 / 5$). Fr.C5/4 was separated by pHPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$ (22:78) to give five fractions (Fr.C5/4/1~Fr.C5/4/5). Fr.C5/5 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(20: 80)$ to give six fractions (Fr.C5/5/1~Fr.C/5/5/6). Fr.C5/6 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (22:78) to give seven fractions (Fr.C5/6/1~Fr.C5/6/7). Fr.C5/2/3, Fr.C5/3/3, Fr.C5/4/2 and Fr.C5/4/3 were separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (18:82) to give $\mathbf{1}(9.2 \mathrm{mg}), 4$ $(14.6 \mathrm{mg})$ and $\mathbf{1 3}(141.0 \mathrm{mg})$. Fr.C5/2/4, Fr.C5/3/5 and Fr.C5/4/5 were separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (20:80) to give $7(11.9 \mathrm{mg}), \mathbf{8}(4.8 \mathrm{mg}), \mathbf{9}(11.9 \mathrm{mg}), \mathbf{1 9}$ (12.0 mg). Fr.C5/5/2, Fr.C5/5/3 and Fr.C/5/6/2 were separated by preparative HPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(24: 76)$ to give $3(6.0 \mathrm{mg})$. The sediments (133.0 g) and Fr.D (95.0 g) were subjected to ODS column with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (45:55) to afford a mix fraction (Fr.F). Fr.F was subjected to ODS column with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(v / v, 40: 60)$ to afford a five fractions (Fr.F/1~Fr.F/5). Fr.F/2 was separated by preparative HPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (22:78) to give five fractions (Fr.F/2/1~Fr.F/2/5). Fr.F/3 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (24:76) to give six fractions (Fr.F/3/1~Fr.F/3/6). Fr.F/4 was separated by pHPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (26:74) to give six fractions (Fr.F/4/1~Fr.F/4/6). Fr.F/2/2, Fr.F/2/3 and Fr.F/3/1 were separated by preparative

HPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(25: 75)$ to give $\mathbf{1 4}(40.0 \mathrm{mg})$ and $20(34.0 \mathrm{mg})$. $\mathrm{Fr} . \mathrm{F} / 2 / 5$, $\mathrm{Fr} . \mathrm{F} / 3 / 2$, $\mathrm{Fr} . \mathrm{F} / 3 / 4$ and $\mathrm{Fr} . \mathrm{F} / 4 / 1$ were separated by pHPLC with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}(29: 71)$ to give $\mathbf{5}(122.0 \mathrm{mg}), \mathbf{6}(141.0 \mathrm{mg}), \mathbf{1 5}(14.5 \mathrm{mg})$.

$10 R=S 3$
$11 R=S 2$
$12 \mathrm{R}=\mathrm{S} 1$

$13 \mathrm{R}=\mathrm{S} 2$
$14 R=S 3$

$15 \mathrm{R}=\mathrm{S} 1$

$16 \mathrm{R}=\mathrm{S} 3$
$17 \mathrm{R}=\mathrm{S} 2$
$18 \mathrm{R}=\mathrm{S} 1$

$19 \mathrm{R}=\mathrm{S} 1$
$20 \mathrm{R}=\mathrm{S} 2$

S2

S3

Structures of the known compounds 10-20.
${ }^{13} \mathrm{C}$ NMR data of known compounds $\mathbf{1 0 - 2 0}$ (recorded in pyridine- $\mathrm{d}_{5} ; \delta$ in ppm).

Position	10	11	12	13	14	15	16	17	18	19	20
1	37.2	37.2	37.2	37.2	37.2	37.4	37.6	37.6	37.6	37.6	37.6
2	30.2	30.1	30.1	30.1	30.2	30.2	30.2	30.2	30.2	30.2	30.2
3	78.7	78.5	78.7	78.1	77.8	78.0	78.3	78.3	78.7	78.0	78.1
4	38.8	38.9	38.7	38.9	38.9	39.0	39.0	39.0	39.0	39.0	39.0
5	141.0	140.9	140.9	141.0	141.0	141.2	140.9	140.9	140.8	140.9	140.9
6	121.3	121.4	121.4	121.5	121.4	121.6	121.8	121.6	121.9	121.6	121.6
7	31.7	31.7	31.7	32.0	32.0	32.0	32.5	32.5	32.5	31.9	31.8
8	30.8	30.8	30.8	31.0	31.0	30.5	32.3	32.3	32.3	32.0	31.9
9	49.9	49.9	49.9	50.1	50.1	51.1	50.3	50.3	50.3	50.5	50.5
10	37.1	37.1	37.1	37.1	37.1	37.3	37.2	37.2	37.2	37.2	37.6
11	20.9	20.9	20.9	20.8	20.8	20.7	21.0	21.0	21.0	20.6	20.6
12	39.0	38.8	38.9	39.0	39.0	35.7	32.0	32.0	32.0	35.7	35.7
13	43.4	43.4	43.4	44.0	42.4	41.2	45.1	45.1	45.1	44.0	44.0
14	50.5	50.5	50.5	50.3	50.3	60.8	53.1	53.1	53.1	53.8	53.8
15	36.1	36.1	36.1	39.1	39.1	26.9	32.2	32.2	32.2	38.4	38.4
16	210.4	210.4	210.4	216.8	216.9	155.3	90.8	90.8	90.8	82.9	82.9
17	142.6	142.6	142.6	63.9	63.9	137.2	90.5	90.5	90.5	182.0	182.1
18	15.8	15.8	15.8	14.1	14.1	18.2	17.3	17.3	17.3	15.7	15.7
19	19.4	19.3	19.3	19.4	19.4	19.3	19.5	19.5	19.5	19.4	19.4
20	145.6	145.6	145.6	42.4	44.0	111.9	43.6	43.6	43.6	128.2	128.2
21	16.8	16.8	16.8	16.2	16.2	9.0	10.5	10.5	10.5	8.5	8.6
22	205.7	205.6	205.6	212.5	212.5	153.7	111.4	111.4	111.4	212.2	212.2
23	38.0	38.0	38.0	38.3	38.3	33.2	36.9	36.9	36.9	57.5	57.5
24	28.0	28.0	28.0	28.1	28.1	24.4	28.1	28.1	28.1	29.3	29.3
25	33.4	33.4	33.4	33.5	33.5	33.5	34.3	34.3	34.3	31.8	32.0
26	75.1	75.1	75.1	75.0	75.0	74.9	75.2	75.2	75.3	76.6	76.6
27	17.5	17.5	17.5	17.4	17.4	17.2	17.5	17.5	17.5	17.2	17.2
3-O-Glc-1'	100.4	100.3	100.4	100.4	100.4	100.4	100.4	100.3	100.4	100.4	100.4
2^{\prime}	79.7	78.0	80.4	78.0	79.7	77.8	79.7	78.6	80.4	77.8	78.0
$3 '$	77.9	78.7	77.1	78.7	77.9	77.0	77.9	78.0	77.0	77.1	78.6
4^{\prime}	71.9	77.8	78.0	77.8	71.9	78.1	71.7	78.1	78.1	77.8	77.8
$5 '$	78.3	77.0	78.0	77.0	78.3	77.8	77.8	76.9	77.9	77.9	77.0
$6{ }^{\prime}$	62.7	61.4	61.3	61.3	62.7	61.3	62.9	61.3	61.2	61.3	61.3
2'-O-Rha-1"	102.1	102.0	102.2	102.0	102.1	102.3	102.1	102.0	102.2	102.2	102.1
2 "	72.9	72.6	72.9	72.9	72.9	72.9	72.9	72.5	72.9	72.9	72.6
3'	72.6	72.8	72.7	72.8	72.6	72.7	72.6	72.8	72.7	72.7	72.8
4"	74.2	73.9	74.0	73.9	74.2	74.0	74.2	74.2	74.1	74.0	74.0
$5 "$	69.5	70.4	70.4	70.4	69.5	70.4	69.5	69.5	70.4	70.4	69.6
$6{ }^{\prime \prime}$	18.7	18.5	18.9	18.7	18.7	18.9	18.7	18.7	18.9	18.9	18.5
4'-O-Rha-1"'		102.9	103.3	102.9		103.3		102.9	103.3	103.3	103.0
$2{ }^{\prime \prime}$		72.5	73.3	72.5		73.3		72.6	73.3	73.3	72.6

$3{ }^{\prime \prime}$		72.9	72.9	72.6		72.9		72.8	72.9	72.9	72.9
$4 "$		74.2	77.8	74.2		80.4		73.9	77.8	80.4	74.2
5"'		69.5	68.4	69.5		68.4		70.4	68.4	68.4	70.5
$6{ }^{\prime \prime}$		18.7	18.7	18.5		18.7		18.5	18.7	18.7	18.7
4"'-O-Rha-1"'			102.3			102.3			102.3	102.3	
2""			72.9			72.9			72.9	72.9	
3""			72.5			72.5			72.5	72.5	
4"'			74.2			74.2			74.2	74.2	
5""			69.5			69.6			69.6	69.6	
6"'			18.5			18.5			18.5	18.5	
26-O-Glc-1" ${ }^{\prime \prime}$	104.9	104.9	104.9	104.9	104.9	104.9	105.0	105.1	105.0	105.3	105.3
2""'	75.3	75.2	75.2	75.2	75.2	75.2	75.2	75.2	75.2	75.3	75.3
3""'	78.5	78.7	78.5	78.6	78.6	78.7	78.5	78.7	78.6	78.5	78.5
4""	71.8	71.7	71.7	71.8	71.8	71.8	71.8	71.7	71.8	71.7	71.7
5""'	78.5	78.0	78.7	78.7	78.7	78.5	78.6	78.5	78.5	78.6	78.6
6""'	62.9	62.9	62.9	62.9	62.9	62.9	62.7	62.9	62.9	62.8	62.8

NMR spectra of compounds 1-20

Figure S1. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 1.

Figure S2. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$.

Figure S3. The HSQC spectrum of compound 1.

Figure S4. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 1.

sad inberetory, xas
Figure S5. The HMBC spectrum of compound 1.

Figure S6. The NOESY of compound 1.

Figure $\mathbf{S 7}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2.

```
ce-5%
*NLer mepontm, obut
T=3 22.00/300:1:
```



```
Mien 40050, ifm
```



```
Moser 4, (b)
|ff furitg coltal:>
sur suritg aolv!
Mxs moczatiw
\
*s. Latenutory
maliakestary
Mi=enesi Nowlyu
#) Talywas howd
*Na|s
Tol 0s-2t-6esm+43
```


Figure S8. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2.

Figure S9. The HSQC spectrum of compound 2.

Figure S10. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 2 .

Figure S11. The HMBC spectrum of compound 2.

Figure S12. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$.

Figure S13. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 .

Figure S14. The HSQC spectrum of compound $\mathbf{3}$.

Figure S15. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 3 .

Figure S16. The HMBC spectrum of compound 3.

Figure S17. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4 .

Figure S18. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4 .

Figure S19. The HSQC spectrum of compound 4.

Figure S20. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 4 .

Figure S21. The HMBC spectrum of compound 4.

Figure S22. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$.

Figure S23. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 .

Figure $\mathbf{S 2 4}$. The HSQC spectrum of compound 5.

Figure S25. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-COSY of compound 5 .

Figure S26. The HMBC spetrum of compound 5.

Figure S27. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6 .

Figure S28. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6}$.

Figure S29. The HSQC spectrum of compound $\mathbf{6}$.

Figure S30. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 6 .

Figure S31. The HMBC spectrum of compound 6 .

Figure S32. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7.

Figure S33. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7.

Figure S34. The HSQC spectrum of compound 7.

Figure S35. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 7.

Figure S36. The HMBC spectrum of compound 7.

Figure S37. The NOESY of compound 7.

Figure S38. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}$.

Figure S39. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}$.

Figure S40. The HSQC spectrum of compound $\mathbf{8}$.

Figure S41. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 8 .

Figure $\mathbf{S 4 2}$. The HMBC spectrum of compound $\mathbf{8}$.

Figure S43. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9 .

Figure S44. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 9 .

Figure S45. The HSQC spectrum of compound 9.

Figure S46. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 9 .

Figure S47. The HMBC spectrum of compound 9.

Figure S48. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10.
hiles leprocer stral
Tem. ariac i mom I:

hiae 19 y sazrow
viat $40000, d$ \&
звses revelisi=.

*imovis al
= mins vinuatua
atr mavel mity
arin mocrasicis

- Lusuatuey
satimel cortar of
of rimaty hase.
Misiog tisks

Figure $\mathbf{S 4 9}$. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}$.

Figure S50. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11.

Soise Beve o.ats ase
thise 2v.D degsese
Nog tive 2.58 sin
Fith 49351.5 Fe

Tome $4<$
tet tring merntaition
ntit Arimg dater
task reconims
sise 262144 c

Bisponaioul Aasigul
a7 Fapion ane
3 taijuty hose
Toi $46-30-403246$

Figure S51. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 11.

Figure S52. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12.

seq. tiss a. Ite sec

рорами
coun wi
ott taske miar

nucianis teecter se
simplicel avel pet
sei jisg zipaso

Figure S53. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 12.

Figure S54. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 13.

Figure S55. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 13.

Figure S56. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14.

Figure S57. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 14.

Figure S58. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 15.

Figure S59. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 15.

Figure S60. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 16.

Figure S61. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 16.

Figure S62. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17.

Figure S63. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 17.

Figure S64. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 18.

Figure S65. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 18.

Figure S66. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 19.

Figure S67. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 19.

Figure S68. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 20.

Figure S69. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 20.

