Supporting Information Appendix

Development of a Practical, Biocatalytic Synthesis of *Tert*-Butyl (*R*)-3-Hydroxyl-5-Hexenoate: a Key Intermediate to Statin Side Chain

Chen Hu,^[a, b] Minjie Liu,^[a, b] Xiaoping Yue,^[c] Zedu Huang,^{*[a, b]} and Fener Chen^{*[a, b]}

 [a] Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University
220 Handan Road, Shanghai, 200433, P. R. China E-mail: huangzedu@fudan.edu.cn, rfchen@fudan.edu.cn

[b] Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral drugs 220 Handan Road, Shanghai, 200433, P. R. China

[c] West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China

*Authors to whom correspondence should be addressed

Table of Contents	. S2
Amino acid sequence of ketoreductases used in this study	. S3
Figure S1. SDS-PAGE analysis of cell free lysate (crude enzyme extracts) of KREDs	. S5
Figure S2. SDS-PAGE analysis of cell free lysate (crude enzyme extracts) of KREDs a	and
LkADH	. S5
Figure S3. SDS-PAGE analysis of cell free lysate (crude enzyme extracts) of GDH	. S6
General procedure for the synthesis of ketone substrates	. S7
Optimization of biocatalytic process	S11
General procedure for KRED-06-catalyzed synthesis of chiral homoallylic alcohols 2	
	S13
¹ H NMR and ¹³ C NMR Spectra	S19
Chiral HPLC Spectra	S45

Amino acid sequence of ketoreductases used in this study

KRED-01

MSFHQQFFTLNNGNKIPAIAIIGTGTRWYKNEETDATFSNSLVEQIVYALKLPGIIHIDA AEIYRTYPEVGKALSLTEKPRNAIFLTDKYSPQIKMSDSPADGLDLALKKMGTDYVDL YLLHSPFVSKEVNGLSLEEAWKDMEQLYKSGKAKNIGVSNFAVEDLQRILKVAEVKP QVNQIEFSPFLQNQTPGIYKFCQEHDILVEAYSPLGPLQKKTAQDDSQPFFEYVKELSE KYIKSEAQIILRWVTKRGVLPVTTSSKPQRISDAQNLFSFDLTAEEVDKITELGLEHEPL RLYWNKLYGKYNYAAQKV

KRED-02

MSVFVSGANGFIAQHIVDLLLKEDYKVIGSARSQEKAENLTEAFGNNPKFSMEVVPDI SKLDAFDHVFQKHGKDIKIVLHTASPFCFDITDSERDLLIPAVNGVKGILHSIKKYAAD SVERVVLTSSYAAVFDMAKENDKSLTFNEESWNPATWESCQSDPVNAYCGSKKFAEK AAWEFLEENRDSVKFELTAVNPVYVFGPQMFDKDVKKHLNTSCELVNSLMHLSPEDK IPELFGGYIDVRDVAKAHLVAFQKRETIGQRLIVSEARFTMQDVLDILNEDFPVLKGNI PVGKPGSGATHNTLGATLDNKKSKKLLGFKFRNLKETIDDTASQILKFEGRI

KRED-03

MPATLKNSSATLKLNTGASIPVLGFGTWRSVDNNGYHSVIAALKAGYRHIDAAAIYL NEEEVGRAIKDSGVPREEIFITTKLWGTEQRDPEAALNKSLKRLGLDYVDLYLMHWP VPLKTDRVTDGNVLCIPTLEDGTVDIDTKEWNFIKTWELMQELPKTGKTKAVGVSNF SINNIKELLESPNNKVVPATNQIEIHPLLPQDELIAFCKEKGIVVEAYSPFGSANAPLLKE QAIIDMAKKHGVEPAQLIISWSIQRGYVVLAKSVNPERIVSNFKIFTLPEDDFKTISNLS KVHGTKRVVDMKWGSFPIFQ

KRED-04

MKYTVITGASSGIGYETAKLLAGKGKSLVLVARRTSELEKLRDEVKQISPDSDVILKSV DLADNQNVHDLYEGLKELDIETWINNAGFGDFDLVQDIELGKIEKMLRLNIEALTILSS LFVRDHHDIEGTTLVNISSAGGYRIVPNAVTYCATKFYVSAYTEGLAQELQKGGAKLR AKVLAPAATETEFADRSRGEAGFDYSKNVKKYHTAAEMAGFLHQLIESDAIVGIVDG ETYEFELRGPLFNYAG

KRED-05

MNFTDKNVIITGGSAGIGLATAKKFIAKEANVLVTGRNTESLDKASVTINSPKFKTLAS DISKLADIAALEKEVSESGKKVDVLVLNAGIAKQFSIEETTEEVFDDLFNINVKGLFFT LQKLIPHLAEGASIILISSGVSVSGYAQMGAYAATKSAVDAIARTAAIELADRKIRVNTV APGLTDTPMNQQTPEDIKNAIAAAVPLKRIGEAEEIANAIVFFASSEASYISGSYLSVDG GVTIRR

KRED-06

MTDRLKGKVAIVTGGTLGIGLAIADKFVEEGAKVVITGRRADVGERAAKSIGGTDVI RFIQHDASDEAGWTKLFDTTEEAFGPVTTVVNNAGIDVVKSVEDTTTEEWHKLLSVN LDGVFFGTRLGIQRMKNKGLGASIINMSSIFGMVGDPTVGAYNASKGAVRIMSKSAA

LDCALKDYDVRVNTVHPGPIKTPMLDDVEGAEEMWSQRTKTPMGHIGEPNDIAWVC VYLASGESKFATGAEFVIDGGWTAQ

KRED-07

MTYVVVTGASGYLAQHVIKQLLERNYKVIGTVRNQQKAEDIAKLFQNDNLTLELVP DLLQADVFDDLFLKYTGQIKHVIHTASPCRFDTTEYENEMLLPAINGTKRVLESIKKYA SETVETVVYTSSVSALANPAGILDSNLTLTEESWNPDSFEDGKKDVFSAYYVSKTFAE RTAWDFWKENKDQVKFQLTTICPSYIFGPQAFEENAKGTLNFSTEIVNKILHSKPGDEL DKNFAGAFVDVRDVARAHVLALEKPELKSKRLVLLNDVYALQDVADYINKHFPELR GKIATGVPGEGKEIVKHIAHYDNSKTKKLLGFEFISFGQAITDTVAQILKANN

KRED-08

MKEYKYTVITGASSGIGYEAAKAFAKRGKNLIIIARRREKLEELKKEILHYNRSLKVIV KSIDLSITSNVYSLYDELKNYNIETLVNNAGFGDYSKVNNQNLEKVESMLSLNIEALVI LSSLFVRDYEKIEGTQLINISSAGGYTIVPNAVIYCATKFFVSSFTEGLARELIEAKSNLK AKVLAPAATETEFGKVASDVKEYDYQEKFHKYHTSKQMAEFLIKLYDNDYIVGKVD RNSFKFTLQNPIFDYA

KRED-09

MTDLFKPLPEPPTELGRLRVLSKTAGIRVSPLILGGASIGDAWSGFMGSMNKEQAFELL DAFYEAGGNCIDTANSYQNEESEIWIGEWMASRKLRDQIVIATKFTGDYKKYEVGGG KSANYCGNHKRSLHVSVRDSLRKLQTDWIDILYIHWWDYMSSIEEVMDSLHILVQQG KVLYLGVSDTPAWVVSAANYYATSHGKTPFSVYQGKWNVLNRDFERDIIPMARHFG MALAPWDVMGGGRFQSKKAMEERKKNGEGLRTFVGGPEQTELEVKISEALTKIAEE HGTESVTAIAIAYVRSKAKNVFPLIGGRKIEHLKQNIEALSIKLTPEQIEYLESIVPFDVG FPKSLIGDDPAVTKKLSPLTSMSARIAFDN

KRED-10

MYRLLNKTAVITGGNSGIGLATAKRFVAEGAYVFIVGRRRKELEQAAAEIGRNVTAVK ADVTKLEDLDRLYAIVREQRGSIDVLFANSGAIEQKTLEEITPEHYDRTFDVNVRGLIF TVQKALPLLRDGGSVILTSSVAGVLGLQAHDTYSAAKAAVRSLARTWTTELKGRSIRV NAVSPGAIDTPIIENQVSTQEEADELRAKFAAATPLGRVGRPEELAAAVLFLASDDSSY VAGIELFVDGGLTQV

KRED-11

MTTLPTVLITGASSGIGATYAERFARRGHDLVLVARDKVRLDALAARLRDESGVAVEA LQADLTRPADLAAVEIRLREDARIGILINNAGMAQSGGFVQQTAEGIERLITLNTTALT RLAAAVAPRFVQSGTGAIVNIGSVVGFAPEFGMSIYGATKAFVLFLSQGLNLELSPSGI YVQAVLPAATRTEIWGRAGIDVNTLPEVMEVDELVDAALVGFDRRELVTIPPLHVAAR WDALDGARQGLMSDIRQAQAADRYRPEA

Figure S1. SDS-PAGE analysis of cell free lysate (crude enzyme extracts) of KREDs. Coomassie staining. M: RealBand 3-color Regular Range Protein Marker (Sangon Biotech, China). Lane 1: KRED-08. Lane 2: KRED-10. Lane 3: KRED-07. Lane 4: KRED-05. Lane 5: KRED-09. Lane 6: KRED-04. Lane 7: KRED-11. Lane 8: KRED-02.

Figure S2. SDS-PAGE analysis of cell free lysate (crude enzyme extracts) of KREDs and LkADH. Coomassie staining. M: RealBand 3-color Regular Range Protein Marker (Sangon Biotech, China). Lane 1: KRED-06. Lane 2: KRED-03. Lane 3: KRED-01. Lane 4: LkADH.

Figure S3. SDS-PAGE analysis of cell free lysate (crude enzyme extracts) of GDH. Coomassie staining. M: RealBand 3-color Regular Range Protein Marker (Sangon Biotech, China). Lane 1: GDH.

General procedure for the synthesis of ketone Substrates Method A

Scheme S1. General procedure for the synthesis of ketone substrates using method A.^[1]

To an ice-cooled stirred solution of zinc powder (4.87 g, 75 mmol) and allylic bromide (7.26 g, 60 mmol) in anhydrous THF (21 mL) was dropwise added *tert*-butyl cyanoacetate (7.00 g, 50 mmol). The resulting mixture was warmed to room temperature and then stirred vigorously at room temperature for 1 h. The resulting mixture was then cooled in an ice-water bath, and aqueous HCl (4 M, 30 mL) was added dropwise. After stirring at room temperature for 30 minutes, the solution was extracted with EtOAc (120 mL). The organic phase was washed with brine, dried over anhydrous Na₂SO₄, and concentrated to give a yellow oil which was purified by vacuum distillation to yield colorless oil **1a** (7.76 g).

Method B

Scheme S2. General procedure for the synthesis of ketone precursors using method B.^[2-3]

To a stirred solution of 1-*tert*-butoxy-2,3-epoxypropane (3.9 g, 30 mmol) and copper (I) iodide (0.57 g, 3 mmol) in Et₂O (100 mL) at -40 °C under N₂ was added vinyl magnesium bromide (45 mL of 1 M solution in THF, 45 mmol). After stirring at room temperature for 4 h, the reaction mixture was quenched with a solution of saturated aqueous ammonium chloride (100 ml). The resulting mixture was extracted with Et₂O (3×50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo* to give the corresponding homoallylic alcohol without further purification. To a DCM solution (20 mL) containing the above homoallylic alcohol (30 mmol) at 0 °C was added Dess-Martin periodinane (DMP, 13.99 g, 33 mmol). The resulting mixture was warmed to room temperature and then stirred at room temperature for 4 h. The mixture was concentrated *in vacuo* and purified via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 30/1) to give the product **11** (3.82 g) in 75% yield over 2 steps.

 $\begin{array}{c} \textbf{Tert-butyl 3-oxohex-5-enoate (1a): synthesized by method A.} \\ \textbf{CO}_2t\text{Bu} \\ \textbf{CO}_2t\text{Bu} \\ \textbf{CO}_2t\text{Bu} \\ \textbf{Colorless oil; actual mass 7.76 g, 85\%. ^1H NMR (400 MHz, CDCl_3): \delta} \\ \textbf{6.16 (m, 1H), 5.44 (m, 2H), 3.63 (s, 2H), 3.55 (d, J = 6.9 Hz, 2H), 1.71} \\ \textbf{(s, 9H). } ^{13}\text{C} \{^1\text{H}\} \text{ NMR (101 MHz, CDCl_3) } \delta 201.2, 166.3, 129.8, 119.5, \end{array}$

82.0, 50.0, 47.5, 27.96. HRMS(ESI) m/z $[M+Na]^+$ calcd for $\rm C_{10}H_{16}O_3Na$ 207.0992, found 207.0982.

Iso-butyl 3-oxohex-5-enoate (1b): synthesized by method A. Colorless oil; actual mass 7.50 g, 82%. ¹H NMR (400 MHz, CDCl₃): δ 5.90-5.77 (m, 1H), 5.17-5.06 (m, 2H), 3.84 (d, 2H), 3.42 (s, 2H), 3.29-3.19 (d, 2H), 1.92-1.82 (m, 1H), 0.85 (d, J=4.6 Hz, 6H). ${}^{13}C{}^{1}H{}$ NMR (101 MHz, CDCl₃) δ 200.6, 167.0, 129.6, 119.5, 71.3, 48.5, 47.6, 27.5, 18.9. HRMS(ESI)

m/z [M+Na]⁺ calcd for C₁₀H₁₆O₃Na 207.0992, found 207.0993.

Butyl 3-oxohex-5-enoate (1c): synthesized by method A. Colorless oil; actual mass 6.39 g, 70%. ¹H NMR (400 MHz, CDCl₃): δ 6.22-6.10 (m, 1H), 5.50-5.41 (m, 2H), 4.39 (t, *J* = 6.7 Hz, 2H), 3.74 (s, 2H), 3.57 (d, J = 6.9 Hz, 2H), 1.91-1.86 (m, 2H), 1.64 (dd, J = 14.9, 7.5 Hz, 2H),

1.19 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 200.6, 167.1, 129.6, 119.5, 48.5, 47.5, 30.6, 30.4, 18.9, 13.5. HRMS(ESI) m/z [M+Na]⁺ calcd for C₁₀H₁₆O₃Na 207.0992, found 207.0985.

Propyl 3-oxohex-5-enoate (1d): synthesized by method A. Colorless oil; actual mass 6.80 g, 80%. ¹H NMR (400 MHz, CDCl₃): δ 5.94-5.79 (m, 1H), 5.17 (dd, J = 19.9, 13.9 Hz, 2H), 4.06 (t, J = 6.7 Hz, 2H), 3.45 (s, 2H), 3.28 (d, *J* = 6.8 Hz, 2H), 1.64 (dd, *J* = 14.2, 7.1 Hz, 2H), 0.91 (t, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 201.2, 167.6, 130.1, 120.1, 67.4, 49.1, 48.1, 22.3,

10.7. HRMS(ESI) m/z [M+Na]⁺ calcd for C₉H₁₄O₃Na 193.0835, found 193.0834.

Methyl 3-oxohex-5-enoate (1e): synthesized by method A. Known compound.^[4] Colorless oil; actual mass 6.39 g, 90%.

CO₂Et Ethyl 3-oxohex-5-enoate (1f): synthesized by method A. Known compound.^[5] Colorless oil; actual mass 7.17 g, 92%.

Allyl 3-oxohex-5-enoate (1g): synthesized by method A. Colorless oil; actual mass 7.30 g, 87%. ¹H NMR (400 MHz, CDCl₃): δ 5.90 (m, 2H), 5.39-5.14 (m, 4H), 4.63 (d, J = 5.8 Hz, 2H), 3.51 (s, 2H), 3.31 (d, J = 6.9 Hz, 2H). ¹³C{¹H} NMR (101

MHz, CDCl₃) & 200.6, 166.7, 131.5, 129.5, 119.8, 118.9, 66.0, 48.5, 47.7. HRMS(ESI) m/z [M+Na]⁺ calcd for C₉H₁₂O₃Na 191.0679, found 191.0675.

1-Chloro-4-penten-2-one (1h): synthesized by method A. Known compound.^[6] Colorless oil; actual mass 2.12 g, 60%.

3-Oxo-hex-5-enenitrile (1i): synthesized by method B. Known compound.^[7] Colorless oil; actual mass 2.35 g, 72%.

1-(Benzyloxy)pent-4-en-2-one (1j): synthesized by method B. Known compound.^[8] Colorless oil; actual mass 4.73 g, 83%.

1-(*tert*-Butyldimethylsilyloxy)pent-4-en-2-one (1k): synthesized by method B. Colorless oil; actual mass 3.85 g, 60%. ¹H NMR (400 MHz, CDCl₃) δ 5.96 (dd, J = 9.2, 7.3 Hz, 1H), 5.19 (dd, J = 28.2, 8.9 Hz, 2H), 4.22 (s, 2H), 3.33 (d, 2H), 0.96 (s, 9H), 0.13 (s, 6H). ¹³C{¹H} NMR (101

MHz, CDCl₃) δ 209.0, 130.5, 119.3, 69.3, 43.8, 26.2, 18.7, -5.0. HRMS(ESI) m/z [M+Na]⁺ calcd for C₁₁H₂₂O₂SiNa 237.1281, found 237.1278.

1-*tert*-Butoxypent-4-en-2-one (11): synthesized by method B. Colorless oil; actual mass 3.82 g, 75%. ¹H NMR (400 MHz, CDCl₃) δ 5.87 (m, 1H), 5.09 (dd, J = 21.3, 5.5 Hz, 2H), 3.91 (s, 2H), 3.24 (d, J = 6.9 Hz, 2H), 1.16 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 208.5, 130.6, 119.3,

74.5, 68.4, 44.5, 27.7. HRMS(ESI) m/z $[M+Na]^+$ calcd for $C_9H_{16}O_2Na$ 179.1043, found 179.1042.

1-Phenylpent-4-en-2-one (1n): synthesized by method A. Known compound.^[10] Colorless oil; actual mass 6.48 g, 81%.

F 1-(4-Fluorophenyl)pent-4-en-2-one (10): synthesized by method A. Colorless oil; actual mass 8.1 g, 91%. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, J = 5.5 Hz, 2H), 7.04 (t, J = 7.8 Hz, 2H), 6.00-5.86 (m, 1H), 5.18 ¹⁰ (dd, J = 27.2, 13.7 Hz, 2H), 3.72 (s, 2H), 3.24 (d, J = 6.7 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 205.8, 162.0 (d, J = 245.4 Hz), 131.1 (d, J = 8.0 Hz), 130.3, 129.7 (d, J = 3.2 Hz), 119.2, 115.6 (d, J = 21.4 Hz), 48.4, 46.9. HRMS(ESI) m/z [M+Na]⁺ calcd for C₁₁H₁₁FONa 201.0686, found 201.0680.

3-p-Methoxy-phenyl-acetyl-thiopropen (1p): synthesized by method A. Known compound.^[11] Colorless oil; actual mass 8.83 g, 93%

1-Phenylbut-3-en-1-one (1q): synthesized by method A. Known compound.^[12] Colorless oil; actual mass 6.50 g, 89%.

O ∐ S 1r

1-Thiophen-2-yl-but-3-en-1-one (1r): synthesized by method A. Known compound.^[13] Colorless oil; actual mass 6.41 g, 85%.

Optimization of biocatalytic process

Screening of ketoreductases

A reaction solution (9 mL) of **1a** (10 g/L), glucose (19.6 g/L), NADP⁺ (0.0125 g/L), KRED (2.7 g/L), and GDH (1 g/L) in KP_i buffer (100 mM, pH 7.0) was shaking at 200 rpm and 25 °C for 90 min. The reaction mixture was extracted with EtOAc (5 mL), and an aliquot of the organic layer was taken for determining the reaction conversion by GC-MS analysis. The rest of the organic layer was concentrated *in vacuo*, and purified via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 10/1) to give the product. The product was benzoylated and its enantiomeric excess was determined by chiral HPLC analysis. The absolute configuration of the enzymatic product was assigned by comparing its optical rotation data to that of the literature data.

Effect of substrate concentration

A reaction solution (0.8 mL) of **1a** (25-200 g/L), IPA (2 equiv. relative to **1a**), NADP⁺ (0.0125 g/L), KRED-06 (5 g/L), and LkADH (2.5 g/L) in KP_i buffer (100 mM, pH 7.0) was shaking at 200 rpm and 25 °C for 12 h. The reaction mixture was extracted with EtOAc (1 mL), and an aliquot of the organic layer was taken for determining the reaction conversion by GC-MS analysis. Each concentration point was assayed three times.

Effect of IPA concentration

A reaction solution (0.8 mL) of **1a** (125 g/L), IPA (1.0-4.0 equiv. relative to **1a**), NADP⁺ (0.0125 g/L), KRED-06 (5 g/L), and LkADH (2.5 g/L) in KP_i buffer (100 mM, pH 7.0) was shaking at 200 rpm and 25 °C for 12 h. The reaction mixture was extracted with EtOAc (1 mL), and an aliquot of the organic layer was taken for determining the reaction conversion by GC-MS analysis. Each concentration point was assayed three times.

Effect of temperature

A reaction solution (0.8 mL) of **1a** (125 g/L), IPA (2.5 equiv. relative to **1a**), NADP⁺ (0.0125 g/L), KRED-06 (5 g/L), and LkADH (2.5 g/L) in KP_i buffer (100 mM, pH 7.0) was shaking at 200 rpm and different temperatures (25-50 °C) for 12 h. The reaction mixture was extracted with EtOAc (1 mL), and an aliquot of the organic layer was taken for determining the reaction conversion by GC-MS analysis. Each temperature point was assayed three times.

Effect of thermal treatment

The crude enzyme extracts of KRED-06 and LkADH were incubated at temperatures of 25, 30, 35, 40 °C for different periods. Then, a reaction solution (0.8 mL) of **1a** (125 g/L), IPA (2.5 equiv. relative to **1a**), NADP⁺ (0.0125 g/L), thermal treated KRED-06 (5 g/L), and thermal treated LkADH (2.5 g/L) in KP_i buffer (100 mM, pH 7.0) was shaking at 200 rpm and different temperatures 30 °C for 2 h. The reaction mixture was extracted with EtOAc (1 mL), and an aliquot of the organic layer was taken for determining the reaction conversion by GC-MS analysis. The initial enzymatic activity without thermal treatment was defined as 100%.

Effect of pH

A reaction solution (0.8 mL) of **1a** (125 g/L), IPA (2.5 equiv. relative to **1a**), NADP⁺ (0.0125 g/L), KRED-06 (5 g/L), and LkADH (2.5 g/L) in different buffer solutions was shaking at 200 rpm and 30 °C for 12 h. The tested buffer solutions include 100 mM sodium citrate buffer (pH 5.0 or 6.0), 100 mM KPi buffer (pH 7.0 or 8.0), and 100 mM glycine buffer (pH 9.0). The reaction mixture was extracted with EtOAc (1 mL), and an aliquot of the organic layer was taken for determining the reaction conversion by GC-MS analysis. Each pH point was assayed three times.

Effect of biocatalyst loading

A reaction solution (0.8 mL) of **1a** (125 g/L), IPA (2.5 equiv. relative to **1a**), NADP⁺ (0.0125 g/L), KRED-06 (1-6 g/L), and LkADH (50% w/w relative to KRED-06) in KP_i buffer (100 mM, pH 7.0) was shaking at 200 rpm and 30 °C for 12 h. The reaction mixture was extracted with EtOAc (1 mL), and an aliquot of the organic layer was taken for determining the reaction conversion by GC-MS analysis. Each concentration point was assayed three times.

Effect of NADP⁺ loading

A reaction solution (0.8 mL) of **1a** (125 g/L), IPA (2.5 equiv. relative to **1a**), NADP⁺ (0-0.0125 g/L), KRED-06 (4 g/L), and LkADH (2 g/L) in KP_i buffer (100 mM, pH 7.0) was shaking at 200 rpm and 30 °C for 1-17 h. The reaction mixture was extracted with EtOAc (1 mL), and an aliquot of the organic layer was taken for determining the reaction conversion by GC-MS analysis.

General procedure for KRED-06-catalyzed synthesis of chiral homoallylic alcohols 2

A reaction solution (3.2 mL) of 1 (125 g/L), IPA (2.5 equiv. relative to 1), NADP⁺ (0.0125 g/L), KRED-06 (5 g/L), and LkADH (2.5 g/L) in KPi buffer (100 mM, pH 7.0) was shaking at 200 rpm and 30 °C. After certain amounts of time, the reaction mixture was extracted with EtOAc (5 mL) and the organic layer was concentrated in vacuo and the desired product was purified via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 10/1).

> (R)-iso-Butyl 3-hydroxyhex-5-enoate (2b)^[14]: Colorless oil; actual CO₂*i*Bu mass 322 mg, 80%. ¹H NMR (400 MHz, CDCl₃) δ 5.95-5.69 (m, 1H), 5.12 (d, J = 6.1 Hz, 1H), 5.08 (s, 1H), 4.07 (d, J = 2.8 Hz, 1H), 3.87 (d, J = 6.6 Hz, 2H), 3.00 (s, 1H), 2.47 (dd, J = 19.6, 6.1 Hz, 2H), 2.26 (dd,

J = 11.9, 6.2 Hz, 2H, 1.91 (td, J = 13.3, 6.7 Hz, 1H), 0.91 (d, J = 6.7 Hz, 6H).¹³C{¹H} NMR (101 MHz, CDCl₃) & 172.8, 134.01, 118.1, 70.8, 67.3, 40.9, 40.6, 27.6, 19.0. HRMS(ESI) m/z $[M+Na]^+$ calcd for C₁₀H₁₈O₃Na 209.1148, found 209.1145. $[\alpha]^{20}_D$ -11.21 (c 0.96, CHCl₃). lit. $[\alpha]^{25}_{D}$ - 17.6 (c 0.70, CH₂Cl₂).^[14] HPLC (Chiracel[®] IC, Hexane : Isopropanol = 90 : 10, Flow rate = 1.0 mL/min, λ = 254 nm, 25 °C) : t₁ = 8.3 min (major enantiomer), t₂ = 12.0 min. (82.1%) ee)

(R)-Butyl 3-hydroxyhex-5-enoate (2c)^[1]: Colorless oil; actual mass .CO₂*n*Bu 351 mg, 87%. ¹H NMR (400 MHz, CDCl₃) δ 5.79 (dd, J = 9.0, 7.5 Hz, 1H), 5.12 (d, J = 5.3 Hz, 1H), 5.08 (s, 1H), 4.09 (m, 2H), 4.05 (dd, J (R)-2c = 6.0, 3.2 Hz, 1H), 3.03 (s, 1H), 2.45 (m, 2H), 2.26 (m, 2H), 1.65-1.55

(m, 2H), 1.40-1.32 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.9, 134.0, 118.1, 67.3, 64.6, 40.9, 40.6, 30.5, 19.1, 13.6. HRMS(ESI) m/z [M+Na]+ calcd for $C_{10}H_{18}O_3Na\ 209.1148$, found 209.1146. $[\alpha]^{20}D$ -13.41 (c 1.07, CHCl₃). lit. $[\alpha]^{20}D$ -10.4 (c 0.9, CHCl₃).^[1] HPLC (Chiracel[®] IC, Hexane : Isopropanol = 90 : 10, Flow rate = 1.0 mL/min, λ = 254 nm, 25 °C) : $t_1 = 6.2 \text{ min}$ (major enantiomer), $t_2 = 8.6 \text{ min}$. (98.1% ee)

Enantioenriched-2d

OН

(R)-2b

OH

Enantioenriched Propyl 3-hydroxyhex-5-enoate (2d): Colorless oil; actual mass 310 mg, 83%. ¹H NMR (400 MHz, CDCl₃) δ 5.87-5.75 (m, 1H), 5.13 (d, J = 5.4 Hz, 1H), 5.09 (s, 1H), 4.10-3.98 (m, 3H), 3.00 (s, 1H), 2.54-2.48 (m, 1H), 2.46-2.36 (m, 1H), 2.27 (m, 2H), 1.64 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.9, 134.0, 118.1, 67.3, 66.3,

40.9, 40.6, 21.9, 10.3. HRMS(ESI) m/z [M+Na]⁺ calcd for C₉H₁₆O₃Na 195.0992, found 195.0987. $[α]^{20}_D$ -13.34 (c 1.0, CHCl₃). HPLC (Chiracel[®] IC, Hexane : Isopropanol = 90 : 10, Flow rate = 1.0 mL/min, λ = 254 nm, 25 °C) : t₁ = 5.1 min (major enantiomer), t₂ = 6.9 min. (97.3% ee)

(*R*)-Methyl 3-hydroxyhex-5-enoate (2e)^[15]: Colorless oil; actual mass 230 mg, 74%. ¹H NMR (400 MHz, CDCl₃) δ 5.81 (m, 1H), 5.14 (d, *J* = 4.6 Hz, 1H), 5.10 (s, 1H), 4.16-4.03 (m, 1H), 3.70 (s, 3H), 2.90 (s, 1H), 2.48 (m, 2H), 2.31-2.24 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃)

δ 173.2, 133.9, 118.2, 67.3, 51.8, 40.9, 40.4. HRMS(ESI) m/z $[M+Na]^+$ calcd for C₇H₁₂O₃Na 167.0679, found 167.0676. $[α]^{20}_D$ -12.23 (c 1.13, CHCl₃). lit. $[α]^{r.t}_D$ -12.55 (c 1.3, CHCl₃). $[^{15}]$ HPLC (Chiracel[®] IC, Hexane : Isopropanol = 90 : 10, Flow rate = 1.0 mL/min, λ = 254 nm, 25 °C) : t₁ = 7.4 min (major enantiomer), t₂ = 10.3 min. (97.5% ee)

(*R*)-Ethyl 3-hydroxyhex-5-enoate (2f)^[16]: Colorless oil; actual mass 278 mg, 81%. ¹H NMR (400 MHz, CDCl₃) δ 5.89-5.73 (m, 1H), 5.13 (d, J = 6.0 Hz, 1H), 5.09 (s, 1H), 4.16 (q, J = 7.1 Hz, 2H), 4.12-4.03 (m,

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.8, 134.0, 118.2, 67.3, 60.7, 40.9, 40.6, 14.1. HRMS(ESI) m/z [M+Na]⁺ calcd for C₈H₁₄O₃Na 181.0835, found 181.0827. [α]²⁰_D-12.94 (c 1.08, CHCl₃). lit. [α]²⁴_D -14.8 (c 1.1, CHCl₃).^[16] HPLC (Chiracel[®] IC, Hexane : Isopropanol = 90 : 10, Flow rate = 1.0 mL/min, λ = 254 nm, 25 °C) : t₁ = 6.7 min (major enantiomer), t₂ = 9.7 min. (>99.9% ee)

Enantioenriched-2g

Enantioenriched Allyl 3-hydroxyhex-5-enoate (2g): Colorless oil; actual mass 284 mg, 77%. ¹H NMR (400 MHz, CDCl₃) δ 6.08-5.76 (m, 2H), 5.30 (ddd, *J* = 14.8, 11.4, 0.9 Hz, 2H), 5.15 (dd, *J* =

29.9, 6.3 Hz, 2H), 4.74-4.54 (m, 2H), 4.19-4.03 (m, 1H), 2.97 (s, 1H), 2.61-2.45 (m, 2H), 2.30 (d, J = 2.5 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.3, 133.9, 131.8, 118.5, 118.2, 67.3, 65.3, 40.9, 40.6. HRMS(ESI) m/z [M+Na]⁺ calcd for C₉H₁₄O₃Na 193.0835, found 193.0835. [α]²⁵_D -26.2 (c 1.13, CHCl₃). HPLC (Chiracel[®] IC, Hexane : Isopropanol = 90 : 10, Flow rate = 0.5 mL/min, $\lambda = 254$ nm, 25 °C) : t₁ = 8.6 min, t₂ = 12.9 min (major enantiomer). (99.7% ee)

(*R*)-1-Chloropent-4-en-2-ol (2h)^[17]: Colorless oil; actual mass 135 mg, 52%. ¹H NMR (400 MHz, CDCl₃) δ 5.95-5.71 (m, 1H), 5.27-5.04 (m, 2H), 3.90 (s, 1H), 3.57 (ddd, *J* = 11.0, 8.7, 4.5 Hz, 2H), 2.54-2.28 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 133.3, 118.6, 70.6, 49.4, 38.7. [α]²⁰_D -4.3 (c 1.05,

CHCl₃). lit. $[\alpha]^{23}_{D}$ -4.8 (c 1.0, CHCl₃).^[17] HPLC (Chiracel[®] AD, Hexane : Isopropanol = 98 : 2, Flow rate = 0.3 mL/min, λ = 254 nm, 25 °C) : t₁ = 18.6 min, t₂ = 19.6 min (major enantiomer). (95.3% ee)

(*R*)-3-Hydroxyhex-5-enenitrile (2i)^[18]: Colorless oil; actual mass 213 mg, 64%. ¹H NMR (400 MHz, CDCl₃) δ 5.75 (m, 1H), 5.24-5.08 (m, 2H), 3.96 (m, 1H), 3.42 (s, 1H), 2.56 (dd, *J* = 16.8, 4.8 Hz, 1H), 2.47 (dd, *J* = 16.7, 6.4 Hz, 1H), 2.32 (t, *J* = 6.6 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ

132.8, 119.2, 117.9, 66.6, 40.7, 25.1. HRMS(ESI) m/z [M+Na]⁺ calcd for C₆H₉NONa 134.0576, found 134.0579. [α]²⁰_D -7.0 (c 1.13, CHCl₃). lit. [α]²¹_D -6.8 (c 0.8, CHCl₃).^[18] HPLC (Chiracel[®] AD, Hexane : Isopropanol = 99 : 1, Flow rate = 1.0 mL/min, λ = 254 nm, 25 °C) : t₁ = 6.5 min,

 $t_2 = 7.2 \text{ min}$ (major enantiomer). (91.3% ee)

OH

(R)-2j

(R)-1-(Benzyloxy)pent-4-en-2-ol (2j)^[19]: Colorless oil; actual mass 259 mg, 62%. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.31 (m, 5H), 5.91-5.77 (m, OBn 1H), 5.11 (dd, J = 12.1, 10.8 Hz, 2H), 4.56 (s, 2H), 3.89 (s, 1H), 3.52 (dd, *J* = 9.5, 3.3 Hz, 1H), 3.38 (dd, *J* = 9.3, 7.6 Hz, 1H), 2.43 (d, *J* = 2.2 Hz,

1H), 2.27 (t, J = 6.7 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.9, 134.2, 128.5, 127.8, 127.7, 117.7, 73.9, 73.4, 69.7, 37.9. HRMS(ESI) m/z [M+Na]⁺ calcd for C₁₂H₁₆O₂Na 215.1043, found 215.1034. [α]²⁰_D -4.5 (c 1.0, CHCl₃). lit. [α]²⁵_D -3.8 (c 1.37, CHCl₃).^[19] HPLC (Chiracel[®] OJ, Hexane : Isopropanol = 96 : 4, Flow rate = 1.0 mL/min, λ = 230 nm, 25 °C) : t₁ = 12.9 min (major enantiomer), $t_2 = 15.0 \text{ min.}$ (>99.9 % ee)

(R)-1-((tert-Butyldimethylsilyl)oxy)pent-4-en-2-ol (2k)^[1]: Colorless OH OTBS (R)-2k

oil; actual mass 394 mg, 85%. ¹H NMR (400 MHz, CDCl₃) δ 5.91-5.76 (m, 1H), 5.08 (m, 2H), 3.69 (dt, J = 10.1, 4.9 Hz, 1H), 3.62 (dd, J = 9.9, 3.5 Hz, 1H), 3.45 (m, 1H), 2.44 (s, 1H), 2.23 (t, J = 6.3 Hz, 2H), 0.90 (s,

9H), 0.06 (s, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 134.4, 117.3, 71.1, 66.5, 37.6, 25.8, 18.2, -5.3, -5.4. HRMS(ESI) m/z [M+Na]⁺ calcd for C₁₁H₂₄O₂SiNa 239.1438, found 239.1432. [α]²⁰_D -3.5 (c 1.1, CHCl₃). lit. [α]²⁰_D -3.7 (c 1.0, CHCl₃).^[1] HPLC (Chiracel[®] AD, Hexane : Isopropanol = 99 : 1, Flow rate = 1.0 mL/min, λ = 254 nm, 25 °C) : t₁ = 5.7 min, t₂ = 6.7 min (major enantiomer). (97.9 % ee)

Enantioenriched 1-(tert-Butoxy)pent-4-en-2-ol (21): Colorless oil; OН OtBu actual mass 312 mg, 91%. ¹H NMR (400 MHz, CDCl₃) δ 5.87 (m, 1H), 5.18-5.08 (m, 2H), 3.78 (d, J = 2.7 Hz, 1H), 3.41 (dd, J = 8.9, 3.4 Hz, Enantioenriched-2I 1H), 3.23 (dd, *J* = 8.8, 7.7 Hz, 1H), 2.51 (s, 1H), 2.28 (t, *J* = 6.7 Hz, 2H), 1.22 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 134.6, 117.2, 73.1, 70.0, 65.3, 37.9, 27.5. HRMS(ESI) m/z [M+Na]⁺ calcd for C₉H₁₈O₂Na 181.1199, found 181.1199. [α]²⁰_D -5.3 (c 1.1, CHCl₃). HPLC (Chiracel[®] AD, Hexane : Isopropanol = 98 : 2, Flow rate = 1.0 mL/min, λ = 254 nm, 25 °C) : $t_1 = 4.6 \text{ min}$, $t_R = 5.0 \text{ min}$ (major enantiomer). (99.3 % ee)

OH OBn (*R*)-**2m**

(R)-1-(Benzyloxy)hex-5-en-3-ol (2m)^[20]: Colorless oil; actual mass 150 mg, 45%. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 5H), 5.86 (m, 1H), 5.27-5.06 (m, 2H), 4.55 (s, 2H), 4.01-3.85 (m, 1H), 3.78-3.63 (m, 2H), 3.07 (s, 1H), 2.28 (m, 2H), 1.84 -1.76 (m, 2H). ¹³C {¹H} NMR (101

MHz, CDCl₃) δ 137.9, 134.9, 128.5, 127.8, 127.7, 117.6, 73.3, 70.3, 68.9, 41.9, 35.9. HRMS(ESI) m/z [M+Na]⁺ calcd for C₁₃H₁₈O₂Na 229.1199, found 229.1197. [α]²⁵D-2.51 (c 0.53, CHCl₃). lit. $[\alpha]^{25}_{D}$ -3.33 (c 0.6, CHCl₃).^[20] HPLC (Chiracel[®] OD, Hexane : Isopropanol = 97 : 3, Flow rate = 0.5 mL/min, $\lambda = 254 \text{ nm}$, $25 \text{ }^{\circ}\text{C}$) : t_R = 22.7 min, t_R = 23.8 min (major enantiomer). (60.3% ee)

(R)-1-Phenylpent-4-en-2-ol (2n)^[21]: Colorless oil; actual mass 270 mg, 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (m, 5H), 5.90 (dq, J = 10.8, 7.3 Hz, 1H), 5.22 (d, J = 5.3 Hz, 1H), 5.18 (s, 1H), 3.92 (s, 1H), 2.86 (dd, J = 13.6, 4.9 Hz, 1H), 2.77 (dd, J = 13.6, 8.0 Hz, 1H), 2.43-2.33 (m, J = 13.6, 8.0 Hz), 2.43-2.33 (m, J = 13.6, 8.01H), 2.31-2.21 (m, 1H), 1.82 (s, 1H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 138.4, 134.7, 129.5,

128.6, 126.54 118.2, 71.7, 43.3, 41.2. $[\alpha]^{25}_{D}$ -17.3 (c 0.64, CHCl₃). lit. for (S)-enantiomer, $[\alpha]^{25}_{D}$ +13.6 (c 1.0, benzene).^[21] HPLC (Chiracel[®] OD-H, Hexane : Isopropanol = 97 : 3, Flow rate = $0.5 \text{ mL/min}, \lambda = 254 \text{ nm}, 25 \text{ °C})$: $t_1 = 16.8 \text{ min}, t_2 = 20.4 \text{ min}$ (major enantiomer). (99.0 % ee)

Enantioenriched-20

Enantioenriched 1-(4-Fluorophenyl)pent-4-en-2-ol $(20)^{[22]}$ Colorless oil; actual mass 181 mg, 62%. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (m, 2H), 6.99 (m, 2H), 5.94-5.75 (m, 1H), 5.22 -5.01 (m, 2H), 3.83 (s, 1H), 2.73 (m, 2H), 2.35-2.15 (m, 2H), 1.80 (d, J = 13.7 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.7 (d, J = 244.3 Hz),

134.6, 134.1 (d, *J* = 3.2 Hz), 130.9 (d, *J* = 7.8 Hz), 118.4, 115.3 (d, *J* = 21.1 Hz), 71.6, 42.4, 41.2. $\left[\alpha\right]^{25}$ -15.15 (c 0.62, CHCl₃). HPLC (Chiracel[®] OD, Hexane : Isopropanol = 98 : 2, Flow rate =0.5 mL/min, $\lambda = 254$ nm, 25 °C) : t₁ = 16.2 min, t₂ = 17.9 min (major enantiomer). (88 % ee)

Enantioenriched-2p

Enantioenriched 1-(4-Methoxyphenyl)pent-4-en-2-ol (2p): Colorless oil; actual mass 234 mg, 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 8.4 Hz, 2H), 6.87 (t, J = 8.3 Hz, 2H), 5.98-5.82 (m, 1H), 5.25-5.13 (m, 2H), 3.86 (s, 1H), 3.82 (s, 3H), 2.79 (dd, *J* = 13.7, 4.9 Hz, 1H), 2.69 (dd, *J* = 13.7, 7.9 Hz, 1H), 2.39-

2.31 (m, 1H), 2.28-2.19 (m, 1H), 1.80 (d, J = 10.6 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.3, 134.8, 130.4, 130.3, 118.0, 113.9, 71.8, 55.2, 42.3, 41.1. HRMS(ESI) *m/z* [M+Na]⁺ calcd for C₁₂H₁₆O₂Na 215.1043, found 215.1038. [α]²⁵_D -12.1 (c 1.03, CHCl₃). HPLC (Chiracel[®] OD, Hexane : Isopropanol = 98 : 2, Flow rate =0.5 mL/min, λ = 254 nm, 25 °C) : t₁ = 22.2 min, t_R = 23.9 min (major enantiomer). (>99.9 % ee)

1-Phenylbut-3-en-1-ol (2q): Colorless oil; actual mass 162 mg, 51%. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 4H), 7.31-7.24 (m, 1H), 5.81 (dq, J = 10.1, 7.4Hz, 1H), 5.20-5.10 (m, 2H), 4.76-4.68 (m, 1H), 2.56-2.46 (m, 2H), 2.10 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.2, 134.8, 128.7, 127.9, 126.1, 118.8,

73.6, 44.1. HRMS(ESI) *m/z* [M+Na]⁺ calcd for C₁₀H₁₂ONa 171.0780, found 171.0777. HPLC (Chiracel[®] OJ, Hexane : Isopropanol = 96 : 4, Flow rate = 1.0 mL/min, λ = 230 nm, 25 °C) : t₁ $= 13.1 \text{ min}, t_2 = 15.2 \text{ min}. (0\% \text{ ee})$

1-(Thiphen-3-yl)but-3-en-1-ol (2r): Colorless oil; actual mass 100 mg, 30%. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (dd, J = 4.2, 1.6 Hz, 1H), 6.98 (d, J = 4.1 Hz, 2H), 5.92-5.77 (m, 1H), 5.19 (dd, J = 20.6, 4.9 Hz, 2H), 4.98 (t, J = 6.4 Hz, 1H), 3.73 (s, 1H), 2.63 (t, J = 6.6 Hz, 2H). ¹³C{¹H} NMR (101) MHz, CDCl₃) δ 148.2, 134.2, 126.9, 124.8, 124.0, 119.0, 69.7, 44.1.

HRMS(ESI) *m/z* [M+Na]⁺ calcd for C₈H₁₀OS 177.0345, found 177.0337. HPLC (Chiracel[®] OJ,

Hexane : Isopropanol = 96 : 4, Flow rate = 1.0 mL/min, λ = 230 nm, 25 °C) : t₁ = 12.7 min, t₂ = 14.7 min. (0% ee)

References

(1) Huang, G.; Liu, M.; Xiong, F.; Meng, G.; Tao, Y.; Wu, Y.; Peng, H.; Chen, F. Chiral *Syn*-1,3-diol Derivatives *via* a One-Pot Diastereoselective Carboxylation/Bromocyclization of Homoallylic Alcohols. *iScience* **2018**, *9*, 513-520.

(2) Beattie, R. J.; Hornsby, T. W.; Craig, G.; Galan, M. C.; Willis, C. L. Stereoselective Synthesis of Protected *L*- and *D*-Dideoxysugars and Analogues *via* Prins cyclisations. *Chem. Sci.* **2016**, *7*, 2743-2747.

(3) Posevins, D.; Qiu, Y.; Backvall, J. E. Highly Diastereoselective Palladium-Catalyzed Oxidative Carbocyclization of Enallenes Assisted by a Weakly Coordinating Hydroxyl Group. *J. Am. Chem. Soc.* **2018**, *140*, 3210-3214.

(4) Theodore, T. E.; Vasileios, G.; Ioulia. S. An Efficient Chemoenzymatic Approach towards the Synthesis of Rugulactone. *Molecules* **2018**, *23*, 640-641.

(5) Almuth, S.; Juergen, M. First Synthesis of α,β -Unsaturated Lactones with High Diversity through the Passerini Reaction and Ring-Closing Metathesis. *Eur. J. Org. Chem.* **2011**, 4335-4344.

(6) Griesbaum, K.; Quinkert, R. O.; McCullough, K. J. C-C Bond Formation at Ozonide Rings by Substitution of Chlorinated Ozonides. *Eur. J. Org. Chem.* **2004**, 3657-3662.

(7) Adachi, I.; Yamamori, T.; Hiramatsu, Y.; Sakai, K.; Sato, H.; Kawakami, M.; Uno, O.; Ueda, M. Studies on Dihydropyridines. II. Synthesis of 4,7-Dihydropyrazolo [3,4-b]-pyridines with Vasodilating and Antihypertensive Activities. *Chem. Pharm. Bull.* **1987**, *35*, 3235-3252.

(8) Viktor, I.; Hans, S.; Ryan C. C. Synthesis of a Hominal Bis(difluoromethyl) Fragment. *ACS Omega* **2019**, *4*, 14140-14150.

(9) Ian, P.; Mark, J. C.; David, Y. K. C.; Renata, M. O.; Debra, J. W.; Roger, D. N. The Stereocontrolled Total Synthesis of Altohyrtin A/Spongistatin 1: the AB-Spiroacetal Segment. *Org. Biomol. Chem.* **2005**, *3*, 2399-2409.

(10) Lee, A. S. Y.; Lin, M. C.; Wang, S. H.; Lin, L. S. A Mild Isomerization Reaction for β , γ -Unsaturated Ketone to α , β -Unsaturated Ketone. *J. Chin. Chem. Soc.* **2004**, *51*, 371-376.

(11) Makoto, Y.; Makihiro, T.; Akio, B. A New Type of Allylation: Synthesis of β , γ -Unsaturated Ketones from α -Halogenated Aryl Ketones using an Allyltributyltin(IV)-tin(II) Dichloride-Acetonitrile System. *Chem. Commun.* **1998**, *5*, 563-564.

(12) Nikitas, N. F.; Tzaras, D. I.; Triandafillidi, I.; Kokotos, C. G. Photochemical Oxidation of Benzylic Primary and Secondary Alcohols Utilizing Air as the Oxidant. *Green Chem.* **2020**, *22*, 471-477.

(13) Katritzky, A. R.; Le, K. N. B.; Khelashvili, L.; Mohapatra, P. P. Alkyl, Unsaturated, (Hetero)aryl, and *N*-Protected α -Amino Ketones by Acylation of Organometallic Reagents. *J. Org. Chem.* **2006**, *71*, 9861-9864.

(14) Michael, T. C.; Elizabeth, A. O. B. Enantioselective Total Synthesis of Spirofungins A and B. *Org. Lett.* **2010**, *12*, 4416-4419.

(15) Mohr, P.; Roesslein, L.; Tamm, C. 3-Hydroxyglutarate and β , γ -Epoxy Esters as Substrates for Pig Liver Esterase (PLE) and α -Chymotrypsin. *Helv. Chim. Acta* **1987**, *70*, 142-152.

(16) Ema, T.; Moriya, H.; Kofukuda, T.; Ishida, T.; Maehara, K.; Utaka, M.; Sakai, T. High Enantioselectivity and Broad Substrate Specificity of a Carbonyl Reductase: Toward a Versatile Biocatalyst. *J. Org. Chem.* **2001**, *66*, 8682-8684.

(17) Spangenberg, T.; Aubry, S.; Kishi, Y. Synthesis and Structure Assignment of the Minor Metabolite Arising from the Frog Pathogen *Mycobacterium liflandii*. *Tetrahedron Letters* **2010**, *51*, 1782-1785.

(18) Saneyoshi, H.; Deschamps, J. R.; Marquez, V. Synthesis of Conformationally Locked l-Deoxythreosyl Phosphonate Nucleosides Built on a Bicyclo[3.1.0]hexane Template. *J. Org. Chem.* **2010**, 7659-7669.

(19) Jamieson, M. L.; Hume, P. A.; Furkert, D. P.; Brimble, M. A. Divergent Reactivity *via* Cobalt Catalysis: An Epoxide Olefination. *Org. Lett.* **2016**, *18*, 468-471.

(20) Rauniyar, V.; Zhai, H.; G. Hall, D. Catalytic Enantioselective Allyl- and Crotylboration of Aldehydes Using Chiral Diol•SnCl₄ Complexes. Optimization, Substrate Scope and Mechanistic Investigations. *J. Am. Chem. Soc.* **2008**, *130*, 8481-8490.

(21) Blaisdell, T. P.; Caya, T. C.; Zhang, L.; Sanz-Marco, A.; Morken, J. P. Hydroxyl-Directed Stereoselective Diboration of Alkenes. *J. Am. Chem. Soc.* **2014**, *136*, 9264-9267.

(22) Jiang, N.; Hu, Q.-Y.; Reid, C. S.; Lu, Y.-F; Li, C.-J. A Novel Palladium-Catalyzed Coupling of Epoxides with Allyl Bromide Mediated by Indium(I) Chloride: a Cascade Epoxide Rearrangement–Carbonyl Allylation. *Chem. Commun.* **2003**, *18*, 2318-2319.

0 0 1g

¹³C NMR (101 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

OH

Enantioenriched-2d

¹³C NMR (101 MHz, CDCl₃)

(11)-21

¹³C NMR (101 MHz, CDCl₃)

 $\begin{array}{c} 5.94\\ 5.52\\$

¹H NMR (400 MHz, $CDCl_3$)

0 ŌН

Enantioenriched-2g

133.96
133.96
131.84
118.58
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21
118.21

¹³C NMR (101 MHz, CDCl₃)

-172.39

0 OH

Enantioenriched-2g

5.89 5.87 5.85 5.85 5.82 5.82 5.82 5.19 5.19 5.19 5.164 5.164 5.164 5.19 5.132 5.232 5.2355.2

¹H NMR (400 MHz, CDCl₃)

OH ↓__CI

(*R*)-2h

¹³C NMR (101 MHz, CDCl₃)

(*R*)-2h

(*R*)-2i

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) \int \int \int \int \int

(*R*)-2j

(*R*)-**2**m

¹³C NMR (101 MHz, CDCl₃)

S40

¹³C NMR (101 MHz, CDCl₃)

Enantioenriched-20

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

peal	cretention tim	e type	peak width	peak area	peak height	peak area
峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	4.935	BV	0.1030	2862.27783	422.55313	50.0276
2	6.509	BV	0.1499	2859.11572	292.84491	49.9724

peak	retention time	type	peak width	peak area	peak height	peak area	
峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %	
	4.897	 vv	0.1015	1660.32776	250.07681	100.0000	

The top spectrum is the chiral HPLC analysis of the racemic synthetic standard. The bottom spectrum is the chiral HPLC analysis of KRED-06-catalyzed biotransformation. ***Peak labeled with asterisk is impurity generated in the bioreduction or derivatization.**

Ę
14
86
1

peak re	etention time	e type	peak width	peak area	peak height	peak area
峰 倍 #	R留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 8
1	6.208	BB	0.1321	1369.81409	159.67963	99.0622
2	8.690	BV	0.1554	12.96755	1.22554	0.9378

The top spectrum is the chiral HPLC analysis of the racemic synthetic standard. The bottom spectrum is the chiral HPLC analysis of KRED-06-catalyzed biotransformation.

					1		
峰	保留时间	类型	峰宽	峰面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]	[mAU]	8	
	·						Ľ
1	6.743	VB	0.1462	3699.15234	384.66833	100.0000	

peak	retention time	type	peak width	peak area	peak height	peak area
峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
	-					
1	8.621	BV	0.1741	9318.39453	804.79492	46.7306
2	2 13.304	VB	0.2739	1.06223e4	584.74506	53.2694

0.4607 8.09956e4 2702.04907

99.8598

1

2

8.598 BB

12.896 VV

0.2541

					1	
峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 8
1	12.987	BB	0.2187	2670.86475	189.18336	50.0267
2	2 15.033	BB	0.2540	2668.01636	163.78847	49.9733

peak	retention time	type	peak width	peak area	peak height	peak area
峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 8
1	5.540	VV	0.1460	2286.08569	238.18317	48.2315
2	6.923	VV	0.2076	2453.73682	179.35674	51.7685

peak	retention time	e type	peak width	peak area	peak height	peak area
峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 8
1	5.759	BV	0.1239	111.26965	13.67590	1.0904
2	6.716	BV	0.3175	1.00928e4	481.66348	98.9096

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	4.435	VV	0.1605	1.23769e4	1150.37976	50.1653
2	4.962	VB	0.1580	1.22954e4	1157.21497	49.8347

peak height

peak area

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 8
1	21.839	BV	0.5896	1.15243e4	285.12384	47.9219
2	23.253	VV	0.8606	1.25239e4	230.98405	52.0781

peak area

peak width

peak retention time type

peak r	retention time	type	peak width	peak area	peak height	peak area
峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	22.707	BV	0.6396	1.08934e4	255.42453	19.8481
2	23.986	VB	1.1705	4.39902e4	541.64801	80.1519

peak	retention time	type	peak width	peak area	peak height	peak area	
峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %	
1	16.613	BB	0.4281	1.51938e4	512.17120	49.6099	
2	2 21.283	VB	0.8044	1.54327e4	282.93237	50.3901	

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	&
1	16.876 2 20.428	BV VB	0.3354	186.82227 3.86070e4	8.43376 500.56708	0.4816

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 *
1	15.244	VV	0.5520	6.98829e4	1969.10046	47.4358
2	17.290	VB	0.7763	7.74382e4	1480.43481	52.5642

30.67464

336.84494

5.9849

94.0151

685.54712

0.4810 1.07690e4

1

2

16.292 VB

17.911 BB

0.3387

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 *
1	22.215	BV	0.5355	8216.09277	226.32632	47.4643
2	24.009	VB	0.6253	9093.96875	208.71684	52.5357

peak retention time ty		type	peak width	peak area	peak height	peak area
峰保 #	留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
-						
1	13.091	BV	0.3395	1.55261e4	692.75970	50.0463
2	15.141	VB	0.3762	1.54974e4	623.07031	49.9537

