Supporting Information

Bacterial Cellulose-Polyaniline Composite derived Hierarchical Nitrogen-Doped Porous Carbon Nanofibers as Anode for High Rate Lithium-Ion Batteries

Mani Pujitha Illa^{1,2}, Anil D Pathak², Chandra S. Sharma², Mudrika Khandelwal^{1,*}

¹Department of Materials Science and Metallurgical Engineering,

Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India

²Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory,

Department of Chemical Engineering,

Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India.

*Corresponding author email: mudrika@msme.iith.ac.in

Figure S1. a) SEM micrograph of BC b) SEM micrograph of carbonized BC-PANI

Table S1 Textural properties of BC-PANI composite and its derived carbon

	Type of	Specific surface	Micro pore	Average Pore
Sample	isotherm	area [m ² g ⁻¹]	area [m ² g ⁻¹]	volume [ccg ⁻¹]
BC-PANI	II	25	-	0.12
Carbonized BC-PANI	II	159	109	0.25
BC-PANI_AC	IV	2037	1004	0.75

Figure S2. Charge-discharge curves of BC-PANI_AC and pure graphite at 0.2C

Figure S3. Cyclic stability performed at 0.2C

Table S2. Calculation of % interaction of nitrogen structures with lithium

Structure	Calculated	Normalised B.E	Atomic	Relative
	binding		Contribution	contribution
	energy		(%) based on	(From binding
	(KJ/mol)		area under	energy and
			curve from	atomic%)
			XPS	
	(A)	$(B_i=A_i/\sum A\times 100)$	(C_i)	(D=100×
				$(B_i x C_i) / \sum BC)$
Pyrrolic N	-578	30	66	63
Pyridine N	-735	38	10	12
Oxidized N	-604	32	24	25
Total	-1917	100	100	100

Calculation example for Pyrrolic N:

The calculated binding energy (B.E) of Li for Pyrrolic N from DFT = -578 KJ/mol.

Therefore, Normalised B. E =
$$\frac{B.E \ of \ Pyrrolic \ N}{B.E.of \ pyrrolic \ N+B.E.of \ pyridine \ N+B.E.of \ oxidized \ N}$$

$$=\frac{-578}{-1917}$$

The atomic contribution (%) of Pyrrolic N based on area under curve from XPS = 66%

Relative contributuion of pyrrolic N(From B. E and XPS atomic %) =
$$\frac{30\times66}{30\times66+38\times10+32\times24}$$