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In SrFeOx (111) device structure, both the Au/BM-SrFeO2.5 and the BM‑SrFeO2.5/SrRuO3 

interfaces are Schottky-like contacts because of the high work functions of Au (~5.1 eV) and 

SrRuO3 (~5.2 eV) metal contacts. Therefore, initial electroforming process can be achieved in both 

positive and negative bias at the Au TE. For positive electroforming require larger voltage as 

compare to negative bias electroforming process. This can be understandable considering that the 

Au TE is the exposed atmosphere; therefore, it can possess an infinite amount of oxygen source in 

the negative bias. In contrast, epitaxially grown SrRuO3 thin films are underneath of continuous 

BM-SrFeO2.5 switching layer and it is known to be a very stable oxide based metal electrode. As 

a result, the SrRuO3 BE is less efficient for oxygen supply. Therefore, the devices require large 

voltages (~ -8 V) for establishing the electroforming process in positive bias (i.e., negative bias at 

BE), as shown in the above Figure S1. 
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Figure S1. Positive bias electroforming process in SrFeOx (111) device. 
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Figure S2a shows the endurance test of the SrFeOx (111) device in low-bipolar resistive 

switching mode up to 100 cycles. Here, the resistance values were measured at 0.25 V. The 

resistance values of high resistance state and low resistance state were gradually increased with a 

number of switching cycles. However, the ON/OFF ratio of the device was still maintained more 

than one order of magnitude up to 100 switching cycles. The initial switching cycle showed 

asymmetric curves with apparent resistance splitting in forward and reverse voltage sweeping 

directions for both positive and negative voltage regions, as shown in Figure S2b. At a higher 

number of cycles, the shape of the hysteresis changed drastically. For example, the resistance 

splitting of the 50th cycle is almost zero in the negative voltage regain, as shown in Figure S2c. 

The observed increase of overall device resistance with the number of switching cycles might be 

related to the variation of Schottky barrier height and width at the top interface (Au/BM-SrFeO2.5) 

during the switching cycles. This Schottky barrier height and width variation can be explained as 

follows. As prepared BM-SrFeO2.5 (111) films were exposed to air before top electrode deposition. 

Subsequently, surface-oriented OVCs in the BM-SrFeO2.5 (111) film were also exposed to air. As 

a result, oxygen from the air is more likely to be incorporated into the films or at the surface. When 

a negative bias was applied to the top electrode during the endurance test, those incorporated 

Figure S2. (a) Endurance of the SrFeOx (111) device in low-bipolar resistive switching mode, where the 

resistance readout voltage is 0.25 V. Representative IV curves of (b)1st and (b) 50th cycle. 
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oxygen ions might gradually drift towards the bottom interface (BM-SrFeO2.5/SrRuO3), while 

increasing the Schottky barrier height and width at the top interface (Au/BM-SrFeO2.5). This might 

be the reason for the increase of overall device resistance with the number of switching cycles in   

low-bipolar resistive switching mode.  

 

The I-V curves with compliance current limit ranging from 0.1 mA to ~5 mA showed no 

complemnatray resistive switching (CRS) behavior in most of the devices, as shown in Figure S3a. 

Conversely, CRS behavior was observed when the compliance current limit ranging from 5 mA to 

10 mA. An exemplary CRS I-V curves with 8 mA compliance current limit is shown in below 

Figure S3b.  

  

Figure S3. (a) I-V characteristics of the SrFeOx (111) device with different compliance current with a 

negitive bias. (b) An exemplary complemnatray resistive switching I-V curves with 8 mA compliance 

current limit. 
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Figure S4. Complementary resistive switching characteristics of a SrFeOx (111) memory device 

with a 20 nm thick BM-SrFeO2.5 switching layer. 
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In SrFeOx (111) device structure, both the Au/BM-SrFeO2.5 and the BM‑SrFeO2.5/SrRuO3 

interfaces are Schottky-like contacts because of the high work functions of Au (~5.1 eV) and 

SrRuO3 (~5.2 eV) metal electrodes. Thus, the SrFeOx (111) device was assumed to consist of two 

resistor regions in a series connection: one at the Au/BM-SrFeO2.5 top interface (RTopIF) and the 

other at the BM-SrFeO2.5/SrRuO3-bottom interface (RBottIF), as shown Figure S5a. During the 

electroforming process in the negative bias region with an Icc of 10 mA, oxygen species from the 

atmosphere (e.g., O2 or H2O) can be incorporated into the BM-SrFeO2.5 (111) switching layer and 

then drift towards the BE interface (BM-SrFeO2.5/SrRuO3) through the OVCs. Consequently, the 

conducting oxygen-rich phase (PV-SrFeO3-δ) accumulated at the BE interface (see Figure S5b), 

which led to a reduction in the Schottky barrier height at the BE interface. Therefore, the RBottIF 

was decreased. In contrast, the RTopIF was remained at the high value because of the lack of oxygen 

ions in the vicinity of the Au/BM-SrFeO2.5 top interface due to a strong negative electrical field. 

Moreover, an application of the Icc (10 mA) limit during the negative bias further limits the amount 

of oxygen from the air through Au TE. Thus, the low resistance at BE interface ((RBottIF) and the 

high resistance at the TE interface (RTopIF) induces the overall device resistance to be intermediate. 

This intermediate resistant state act as an HRS for the CRS process.  

Figure S5. Schematic represenation of electroforming process in SrFeOx (111) device. (a) Pristine 

state, and (b) after electroforming with 10 mA of Icc limit. 
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The pulse amplitude varied from -2 V to -6 V at a fixed width of 1 ms for the potentiation and 

from 3 V to 7 V at a fixed width of 1 ms for the depression. Potentiation with a pulse amplitude of 

-6 V showed high nonlinearity in the conductance change compared to -2 to -4 V, as shown Figure 

S6a. In contrast, the depression showed a gradual conductance change even at high amplitude (see 

Figure S6b). 

 

 

 

 

 

 

Figure S6. (a) and (b) Pulse amplitude-dependent conductance with 200 set and reset pulses, with a  pulse 

width fixed at 1 ms and pulse amplitude varying from -2 V to -6 V for the potentiation and 3 V to 7 V 

for the depression, respectively. 
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Memristive artificial neural network simulation 

       

Figure S7. (b) Flowchart of the training algorithm in this work. 

Figure S7. (a) Structure of memristive artificial neural network featuring FC single layer and 

Cross Entropy Loss 
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Mapping between the device and the simulation framework: 

For the simulation in this work, the virtual memristive crossbar array (CBA) is assumed because 

it has the capability of forwarding operation in parallel by selecting multiple word-lines (WL) and 

bit-lines (BL) simultaneously. This can be accomplished according to Kirchhoff’s current law 

(KCL), which allows the efficient vector-matrix multiplication by the physical mean in the 

memristive CBA-based Artificial Neural Network (ANN). Each component of the memristive 

CBA should be effectively correlated to the software-based ANN to simulate the memristive CBA 

as ANN. The weight of the ANN can be expressed using the conductance of the memristor. To 

express a negative weight value using the nonnegative conductance of a memristor, a paired-cell 

scheme is used by combining two memristor cells, where a weight value is represented by the 

conductance difference, as shown in Equation S1: 

W = G+ − G−…(S1) 

The input of the ANN can be expressed using the (read) voltage that fed into the WLs of the CBA. 

In this simulation, the conductance of a memristor is assumed to be independent of the read voltage. 

No bias of the ANN is considered in this simulation for simplicity, but several kinds of research 

treat the bias as a weight with constant input.1,2 Activation of the ANN is assumed to be 

accomplished in the virtual host computing system, which also deals with the entire training 

process and controls read and write operations of the memristive CBA. On-chip supervised 

learning is assumed during the whole training process. That is, current read for the forward pass 

and memristor write for weight update are performed in the memristive CBA at each epoch, with 

the label for the input provided in the host computer. Other tasks, such as loss and gradient 
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calculation, were also performed at the host computer. The detailed training process is explained 

in the Training and Optimization section. 

 

MNIST dataset:  

The MNIST dataset features 28  28 sized grayscaled handwritten numeric digits. It contains 

60,000 images for the training and 10,000 images for the test. Each image in the train set and test 

set were reshaped into a 784  1 single column to fit with the one-dimensional WL of the 

memristive CBA. These vectorized train and test sets are denoted as Xi
train and Xi

test, respectively. 

The i represents the data index in each data set. Labels for the train and test sets were prepared 

using one-hot encoding. For example, the label ‘3’, which corresponds to the handwritten digit ‘3’, 

is encoded into vectorized value [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]. In this vector, only the nth element is 

1, while the others are 0 to express ‘n-1’ is the correct label for the corresponding input. These 

one-hot encoded train and test sets are denoted as Yi
train and Yi

test, respectively. This vectorization 

is performed to fit with the one-dimensional BL of the memristive CBA. 

 

Neural Network Structure: 

During the simulation, a fully connected (FC) network with a single layer was used. The layer 

consists of 784 input neurons and 10 output neurons, which corresponds to the dimensions of 

Xi
train(Xi

test) and Yi
train(Yi

test), respectively. After the output neuron, cross-entropy loss is applied, 

which is a combination of softmax activation (Equation 2) and negative-log likelihood loss 
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(Equation 3). That is, negative-log likelihood loss is applied after the softmax activation is applied 

to the output from the FC single layer: 

ai =
exp(zi)

∑ exp(zi)i
…(2) 

Li = −log⁡(ai)… (3) 

In Equation 2, zi  represents the sum-product of weight and input from the FC layer, which 

corresponds to the output current from the memristive CBA. In the simulation, a partial loss is 

generated from the 10 output neurons and averaged into the single loss value L. A detailed outline 

of the structure is in Figure S7a. 

 

Training and Optimization: 

In this work, a batch size of 32 was used during training. That is, each gradient update is performed 

after 32 times of forward-pass. An adequate number of mini-batch size is important to achieve 

both robustness for the variation and the minimized number of the read/write access to reach the 

target test accuracy.3 

All parameters, including reading currents, previous weights, and inputs, were cached into the 

virtual host computer to calculate the gradients precisely. Calculated gradients are used in the 

backpropagation process, which determines the extent of updates for weights to increase the ANN 

performance.4 
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Gradients are applied using the optimization function named Adam, which is a well-known 

optimizer that features adaptive learning speed and direction momentum to maximize the 

efficiency of the gradient update. 

Several features were implemented into the simulation that consider the mechanics of the real 

memristors, which usually contain nonideal factors, such as linearity and asymmetry of the 

conductance change and endurance problems. First, the conductance change profile by potentiation 

and depression is used for conductance pathfinding as a form of conductance diamond.5 This 

enables the host computer to update to the target conductance with the minimized number of 

updates and maximum accuracy. Second, the conductance update threshold and adaptive learning 

rate based on the number of the available states are used to confine the number of updatable cells 

per iteration. The threshold minimizes the amount of write access to the memristors due to the 

conductance variation. It also enhances the simulation speed that may benefit the realistic host 

systems. The adaptive learning rate is introduced to sustain the conductance update with the update 

threshold. For example, software-based ANN requires a learning rate of 0.002 to maximize the 

accuracy and reliability of the ANN. In the case of the 5-bit memristive ANN, none of the 

memristors is updated with the same learning rate due to the update threshold. In this work, 0.02 

and 0.012 were used for the 5-bit and 6-bit memristive ANN, respectively. A detailed flowchart of 

the whole training algorithm is provided in Figure S7b. 

References 

(1)  Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B. D.; Adam, G. C.; Likharev, K. K.; Strukov, D. B. 

Training and Operation of an Integrated Neuromorphic Network Based on Metal-Oxide Memristors. 

Nature 2015, 521, 61–64. 



S13 
 

(2)  Kim, G. S.; Song, H.; Lee, Y. K.; Kim, J. H.; Kim, W.; Park, T. H.; Kim, H. J.; Min Kim, K.; Hwang, 

C. S. Defect-Engineered Electroforming-Free Analog HfOx Memristor and Its Application to the 

Neural Network. ACS Appl. Mater. Interfaces 2019, 11, 47063–47072. 

(3)  LeCun, Y. A.; Bottou, L.; Orr, G. B.; Müller, K.-R. Efficient BackProp; Springer, Berlin, Heidelberg, 

2012; pp 9–48. 

(4)  Kingma, D. P.; Lei Ba, J. ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION. 

(5)  Burr, G. W.; Shelby, R. M.; Sidler, S.; Di Nolfo, C.; Jang, J.; Boybat, I.; Shenoy, R. S.; Narayanan, 

P.; Virwani, K.; Giacometti, E. U.; Kurdi, B. N.; Hwang, H. Experimental Demonstration and 

Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as 

the Synaptic Weight Element. IEEE Trans. Electron Devices 2015, 62, 3498–3507. 

 


