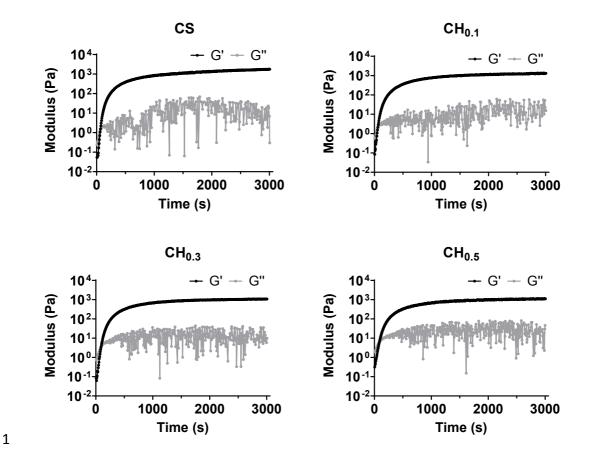

1 2	Supporting Information		
3	Semi-Interpenetrating Polymer Network of Hyaluronan and		
4	Chitosan Self-Healing Hydrogels for Central Nervous System Repair		
5	Yi Liu ¹ , Yi-Hua Hsu ² , Abel Po-Hao Huang ^{1,2} , and Shan-hui Hsu ^{1,3,*}		
6			
7	¹ Institute of Polymer Science and Engineering, National Taiwan University, Taipei,		
8	Taiwan		
9	² Department of Surgery, National Taiwan University Hospital and College of		
10	Medicine, Taipei, Taiwan		
11	³ Institute of Cellular and System Medicine, National Health Research Institutes,		
12	Miaoli, Taiwan		
13			
14	Supplemental data: total 17		
15	Tables: 2 (Table S1 – S2)		
16	Figures: 8 (Figure S1 – S8)		
17	Movies: 7 (Movie S1 – S7)		
18			
19			
20	* Shan-hui Hsu (Corresponding author)		
21	Institute of Polymer Science and Engineering, National Taiwan University, No. 1,		
22	Sec. 4 Roosevelt Road, Taipei 10617, Taiwan, R.O.C.; E-mail: shhsu@ntu.edu.tw		

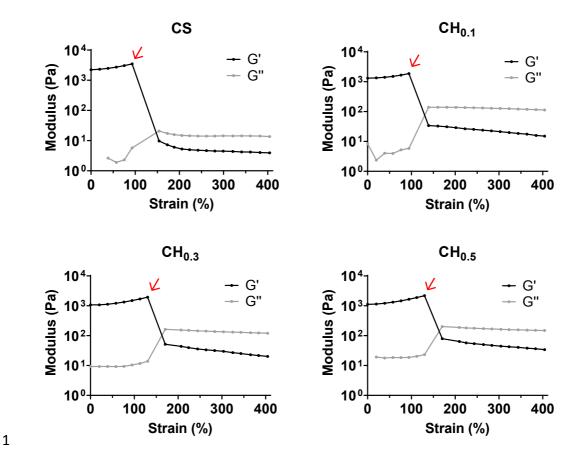
- 1 Table S1. The primer sequences used for real-time RT-PCR analysis in the in vitro
- 2 experiment.


Cana	Primer		
Gene -	Forward	Reverse	
GAPDH	GGCTACAGCAACAGGGTGGT	CGAGTTGGGATAGGGCCTCT	
Nestin	ACTGTGGAATCACCAGGAGG	ATTCCACCTCTCCCAGAGAC	
Tubb3	CAGGGCCAAGACAAGCAGCA	GGAGCCCTAATGAGCTGGTGA	
MAP2	TTCTCCACTGTGGCTGTTTG	GAGCCTGTTTGTAGACTGGAAGA	
GFAP	CTGAACCCTCTGAGCAAATG	GAATCAAACACAGAGCCTGC	
CNPase	ACCCTGAGCTGGCAAGAGTA	GGTAGGAGCATACATCCCAG	

- 1 Table S2. The primer sequences used for real-time RT-PCR analysis in the in vivo
- 2 experiment.

Gene	Primer		
Gene	Forward	Reverse	
CCL2	GGTCTCTGTCACGCTTCTG	TTCTCCAGCCGACTCATTG	
TLR2	GGATCTTGATGGCTGTGATAGG	CTTTGTGTTTGCTGTGAGTCC	
IL-1β	CCTCAAGGGGAAGAATCTAT	GAGGTGCTGATGTACCAGTT	
Arg1	ATATCTGCCAAGGACATCGTG	AGGTCTCTTCCATCACTTTGC	
Caspase3	AATTCAAGGGACGGGTCATG	GCTTGTGCGCGTACAGTTTC	

2 **Figure S1.** FTIR spectra of the hydrogels.



2 Figure S2. Time-sweep experiments for a longer duration of 3000 s showing the time-

3 dependent change of storage moduli (G') and loss moduli (G'') of the hydrogels at 1

4 Hz frequency and 1% dynamic strain. G' was quite stable after 1000 s, while G'' kept

5 oscillating.

2 Figure S3. The strain-sweep experiments for the hydrogels in the range of 0.1% to 400%

3 dynamic strain amplitudes at 1 Hz frequency. Strain hardening (G' increase with the

4 increased strain, indicated by arrows) was observed before the structural damage (gel-

5 to-sol transition) occurred.

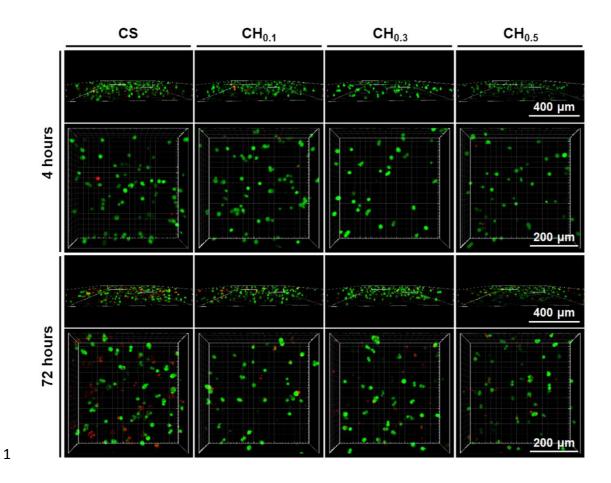
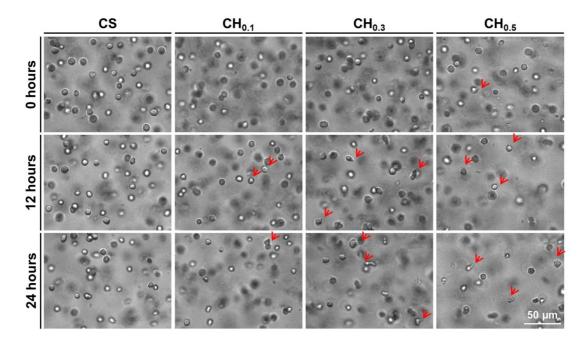
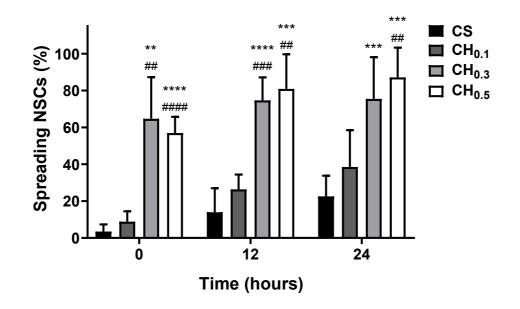



Figure S4. The side views and the enlarged top views of 3D confocal microscopic
images for the live/dead staining of NSCs encapsulated in CS or CH hydrogel. The
apoptosis bodies of NSCs were clearly observed after 72 hours of culture in CS
hydrogel. Live cells: green, dead cells: red.



2 Figure S5. Morphology of NSCs encapsulated in CS or CH hydrogels. Bright-field

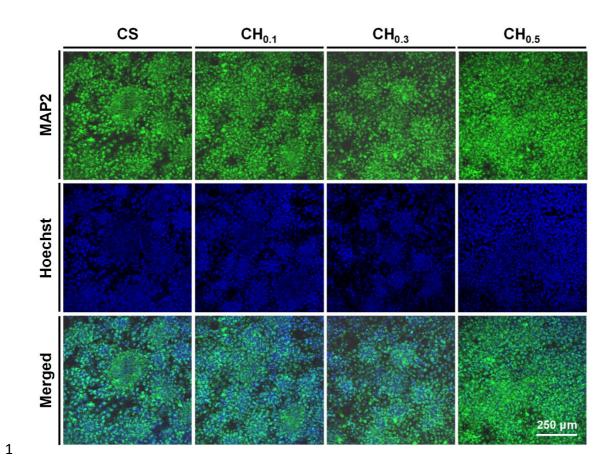
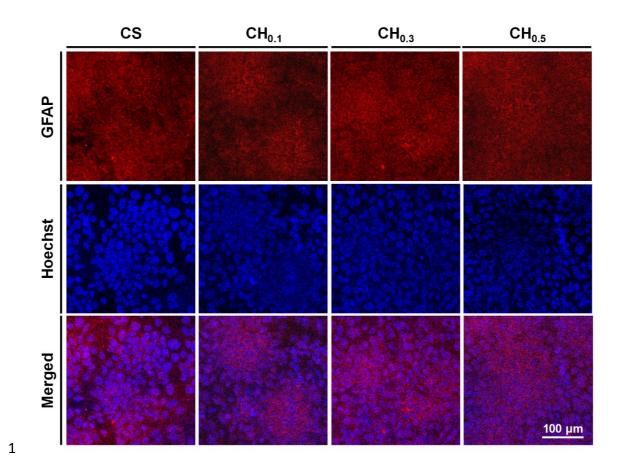
3 microphotographs of NSCs obtained from live-cell time-lapse imaging videos after 0,

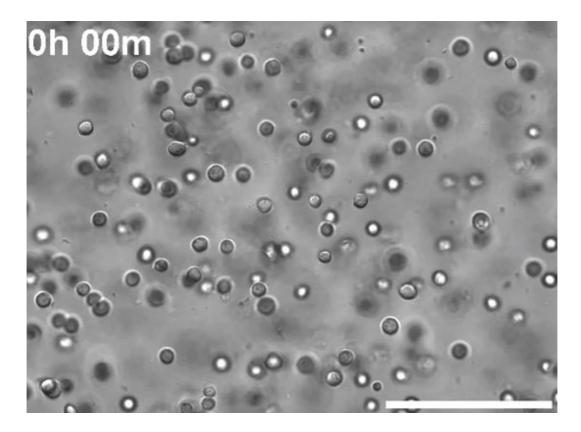
4 12, and 24 hours of encapsulation in the hydrogels. Filopodia or lamellipodia are

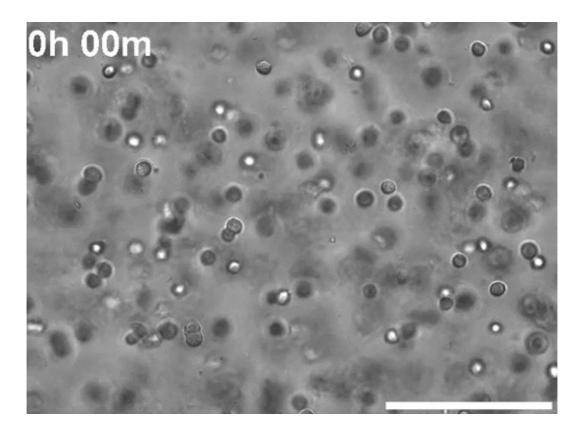
⁵ indicated by arrows (\uparrow) .

1

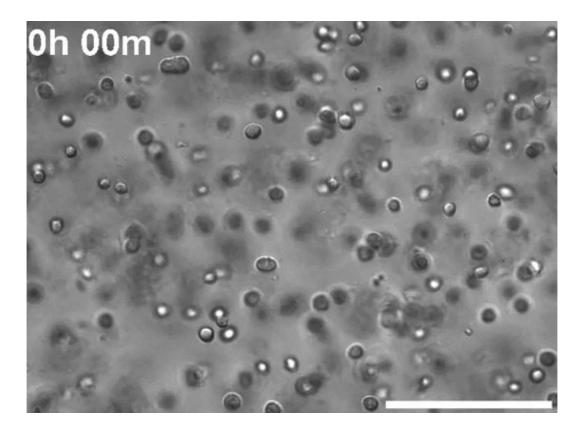
Figure S6. The percentage of spreading NSCs (non-circular cells) in the total
population of NSCs encapsulated in CS and CH hydrogels. These data were quantified
from the live-cell images at the specified time points. Two-way ANOVA was applied
for comparison. **, ***, and **** represent p < 0.01, p < 0.001, and p < 0.0001
compared to the CS hydrogel group, and ##, ###, and #### represent p < 0.01, p <
0.001, and p < 0.0001 compared to the CH_{0.1} hydrogel group (n = 6).

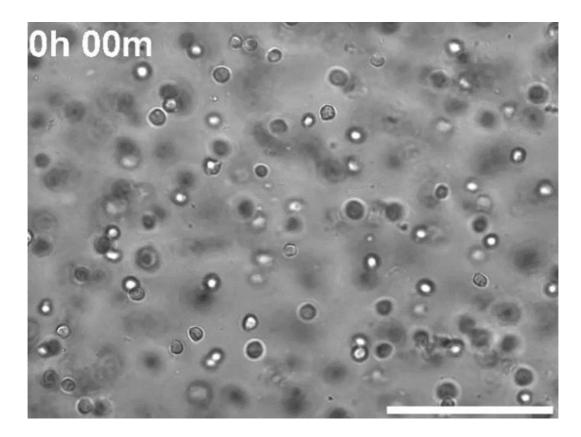




Figure S7. The expression of MAP2 in NSCs analyzed by immunofluorescence
staining after 7 days of encapsulation in CS and CH hydrogels. The expression of
MAP2 was upregulated slightly as the HA content of the hydrogels increased. MAP2:
green, Hoechst: blue.


2 Figure S8. The expression of GFAP in NSCs analyzed by immunofluorescence

3 staining after 7 days of encapsulation in CS and CH hydrogels. The expression of GFAP


4 revealed no significant difference among the hydrogels. GFAP: red, Hoechst: blue.


- 2 Movie S1. The live-cell time-lapse video of NSCs encapsulated in CS hydrogel during
- 3 24 hours of culture. Scale bar: 100 μ m.

- 1
- 2 Movie S2. The live-cell time-lapse video of NSCs encapsulated in $CH_{0.1}$ hydrogel
- 3 during 24 hours of culture. Scale bar: 100 μ m.

- 1
- 2 Movie S3. The live-cell time-lapse video of NSCs encapsulated in $CH_{0.3}$ hydrogel
- 3 during 24 hours of culture. Scale bar: $100 \ \mu m$.

2 Movie S4. The live-cell time-lapse video of NSCs encapsulated in $CH_{0.5}$ hydrogel

3 during 24 hours of culture. Scale bar: $100 \ \mu m$.

- 2 Moive S5. The swimming behavior of adult zebrafish with traumatic brain injury (TBI)
- 3 after the treatment of PBS.

- 2 Movie S6. The swimming behavior of adult zebrafish with traumatic brain injury (TBI)
- 3 after the treatment of CS hydrogel.

- 2 Movie S7. The swimming behavior of adult zebrafish with traumatic brain injury (TBI)
- 3 after the treatment of CH hydrogel.