Supporting Information

Impact of mutations on the conformational transition from α-helix to β-sheet structures in Arctic-type Aβ₄₀: Insights from molecular dynamics simulations

Rajneet Kaur Saini[¶], Suniba Shuaib^{¶‡}, Deepti Goyal^{¶*} and Bhupesh Goyal^{§*}

[¶]Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib–140406, Punjab, India [§]School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala–147004, Punjab, India

*Corresponding authors

Email: deeptig@iitbombay.org; bhupesh@thapar.edu

Current address: [‡]Biotech Analyst, Biopharmaceutical Services SGS Canada Inc. 6490 Vipond Drive, Mississauga, ON, L5T 1W8

Table of contents

Figure S1. The correlation between simulated and experimental ¹H NMR chemical S3 shifts for H α atoms, and amide protons of [G22]A β_{40} residues are shown in panel a, and b, respectively. The unit of chemical shift is ppm and R represent the correlation coefficient.

Figure S2. Comparison of simulated ${}^{3}J_{HN-H\alpha}$ coupling constants of [G22]A β_{40} residues S4 (red) with experimental measurements published in 2008 (black).

Figure S3. The evolution of clusters for [G22]A β_{40} (black) and [A17/A19/G22]A β_{40} S5 (red) is shown during simulation. Y–axis represents number of microstates and X–axis represents molecular dynamics simulation time in ns.

Figure S4. The root-mean-square deviation (RMSD) and radius-of-gyration (R_g) S6 distribution of [G22]A β_{40} for simulations with different initial velocities are shown in panel a, and b, respectively. The root-mean-square fluctuation (RMSF) of each residue in [G22]A β_{40} for simulations with different initial velocities is shown in panel c. The RMSD, R_g and RMSF data for simulation 1 and 2 of [G22]A β_{40} are represented by black and blue, respectively.

Figure S5. The RMSD and R_g distribution of [A17/A19/G22]A β_{40} for simulations with S7 different initial velocities are shown in panel a, and b, respectively. The RMSF of each residue in [A17/A19/G22]A β_{40} for simulations with different initial velocities is shown in panel c. The RMSD, R_g and RMSF data for simulation 1 and 2 of [A17/A19/G22]A β_{40} are represented by black and blue, respectively.

Figure S6. The solvent accessible surface area (SASA) of each residue in $[G22]A\beta_{40}$ S8 and $[A17/A19/G22]A\beta_{40}$.

Table S1. The secondary structure component statistics of $[G22]A\beta_{40}$ and S9 $[A17/A19/G22]A\beta_{40}$ for simulations with different initial velocities. The standard error was evaluated by dividing the simulation data into three non-overlapping blocks.

Figure S1. The correlation between simulated and experimental ¹H NMR chemical shifts for H α atoms, and amide protons of [G22]A β_{40} residues are shown in panel a, and b, respectively. The unit of chemical shift is ppm and R represent the correlation coefficient.

Figure S2. Comparison of simulated ${}^{3}J_{HN-H\alpha}$ coupling constants of [G22]A β_{40} residues (red) with experimental measurements published in 2008 (black).

Figure S3. The evolution of clusters for $[G22]A\beta_{40}$ (black) and $[A17/A19/G22]A\beta_{40}$ (red) is shown during simulation. Y–axis represents number of microstates and X–axis represents molecular dynamics simulation time in ns.

Figure S4. The root-mean-square deviation (RMSD) and radius-of-gyration (R_g) distribution of [G22]A β_{40} for simulations with different initial velocities are shown in panel a, and b, respectively. The root-mean-square fluctuation (RMSF) of each residue in [G22]A β_{40} for simulations with different initial velocities is shown in panel c. The RMSD, R_g and RMSF data for simulation 1 and 2 of [G22]A β_{40} are represented by black and blue, respectively.

Figure S5. The RMSD and R_g distribution of [A17/A19/G22]A β_{40} for simulations with different initial velocities are shown in panel a, and b, respectively. The RMSF of each residue in [A17/A19/G22]A β_{40} for simulations with different initial velocities is shown in panel c. The RMSD, R_g and RMSF data for simulation 1 and 2 of [A17/A19/G22]A β_{40} are represented by black and blue, respectively.

Figure S6. The solvent accessible surface area (SASA) of each residue in [G22]A β_{40} and [A17/A19/G22]A β_{40} .

Table S1. The secondary structure component statistics of $[G22]A\beta_{40}$ and $[A17/A19/G22]A\beta_{40}$ for simulations with different initial velocities. The standard error was evaluated by dividing the simulation data into three non-overlapping blocks.

Model system	helix ^a	β -sheet ^b	turn	coil	bend
$[G22]A\beta_{40} \text{ (simulation 1)} \\ [G22]A\beta_{40} \text{ (simulation 2)} \\ [G22]A\beta_{40} \text{ (simulation 2)} \\ [G22]A\beta_{40} \text{ (simulation 1)} \\ [G22]A\beta_{40} \text{ (simulation 2)} \\ [G22$	7 ± 2.25 5 ± 2.87	14 ± 0.88 15 ± 1.86	21 ± 2.60 23 ± 2.94	31 ± 1.15 30 ± 1.06	17 ± 3.00 19 ± 2.94
$[A17/A19/G22]A\beta_{40} \text{ (simulation 1)} \\ [A17/A19/G22]A\beta_{40} \text{ (simulation 2)}$	13 ± 1.34 14 ± 2.77	7 ± 1.85 9 ± 2.54	17 ± 2.73 16 ± 1.17	$\begin{array}{c} 27\pm0.57\\ 28\pm0.95\end{array}$	26 ± 1.88 25 ± 2.35

*^a*helix comprises 3_{10} , α -, and π -helix; *^b* β -sheet comprises β -strand and β -bridge