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Figure S1: Thermal profile of the multistrain probiotic vikoxx VSMOO3NM by TGA-DSC:
TGA curve (red), DSC curve (black), and DTG curb&i¢) obtained by 5°C/min temperature
scan
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Theor etical aspect of the dynamic capillary rise phenomenon

Capillary rise in a tube is governed by a coupléaaious laws. This liquid is itself characterized
by a surface tension, and a densitp. Due to the capillary pressure, a liquid penesradube
of radius R up to some height H according to threnJulaw

pgnR?*H = ycosl, X 2nR = mg

Where ntheviscosity andé. the contact angle, whiakescribes how the liquid/air interface
behaves in contact with the tube surface at equuht Often, liquid penetration rates are used to
obtain information on effective pore dimensions.eCapproach is to measure the rate of
penetration of a liquid, which is then modeled dmiadle of uniform capillarie§ The driving
force is the difference in pressure between thédignd the vapor phase due to the curvature of
the meniscus within the pore. This is balanced liscous dissipation and changes in
gravitational potential and momentum as the ligmdibes. Simple expressions may be written
to describe each of these terms, yielding an eguathich relates the rate of penetration dh/dt to
the wetting properties of the tube or the effectivee
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(Eq.1)
By neglecting inertia, then this equation can gas# written in the form
1=a.h+b.} dh
=an+o. I.E (Eq2)
Where
Pgh
=3
7 Ve- cos(6,)
and
b= 2L
7 yp-cos(8,)
If we assume that the capillary rise h=0 at zar®tiwe get:
b b
t= _Eh — ﬂ—zlog(l —ah) (Eq.3)
Leading by Taylor's expansion to
E} 2
L=k (Eq.4)

Or equivalently
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b (Eq.5)

which is the well-known approximation for the Luéd&shburn equation. Now, it is also known
that when the liquid will penetrate into the tuliee liquid/air interface will move at a certain
speed which will affect the value of the contaaglanThe contact angle modification due to this
displacement can be described °by:
_ _§ dn
cos(8,) = cos(8,) T (Eq.6)

where ( refers to the friction between the moving integfaand the solid surface. If we now
insert this correction into Eq. 1, we get

2 8.y pah 8 A dh 2 _dh
ﬁ]-COS( ) =09 +ﬁ’i’ E+§€E (qu)
which can be written as

dh

1=ah bhdh
=a.n+o. .E-I—C'E (Eq8)

Where

2
R ¢
cos(8,) V- cos(6,)

C = 3
R

With the same initial boundary conditions as befare then get the general solution

b b+ac
t= -H'h_ 7 log(1 —a. h) (Eq.9)
leading to the expansion
fc b+a.c B2
=c.h+ (Eq.10)

Let us here stress that this modification will aff¢he behavior of the penetration height h
mostly for small time values since it is speed dejgat. It will now behave ak~t . Other
dissipation channels have also been consideredsribe this additional tefhbut again it only
affects the small time behavior of the function h.

For the case of powders or porous media, we usuaélyDarcy’s equation given by
h(dh/dt) = k/n(y/Ref) (Eqg. 11)

where Ryis now an effective radius of imbibition and ketso-called permeability. Integration
of this equation is easy using the previous argusieading to
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Der (Eq.12)

where

1

b - TRerr _ Rogs® 47

eff .y RZ y.cos(6,) ]‘.Rgl-f.COS{BS)
ff

a

(Eq.13)

from which the permeability k can be seen propaglato R’ From the kinematics of the
imbibition in a porous media, we can thus extrdw effective radius characterizing its
permeability or equivalently its porosity. When h@rous media is not homogeneous, different
scaling behaviors may be observed such as desdsibkim et al’
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Figure S2: Experimental data (+) and Lucas-Washburn equdttest fit () of the ethanol

capillary rise data into vivomixx VSMOO3NM packedd
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Figure S3: The patrticle size distribution of vivomixx VSMOR® particles determined by the
laser diffraction expressed in number % (A) andalume % (B)
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