SUPPLEMENTARY INFORMATION

The naked bacterium: emerging properties of a surfome-streamlined *Pseudomonas putida* strain

by

Esteban Martínez-García¹, Sofía Fraile¹, David Rodríguez Espeso¹, Davide Vecchietti²², Giovanni Bertoni² and Víctor de Lorenzo^{1*}

¹Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain, ²Department of Biosciences, Università degli Studi di Milano, 20133, Milan, Italy

A Present address: Shimadzu Corporation, Kyoto 604-8511, Japan

SUPPLEMENTARY FIGURES

Supplementary Figure S1. Genomic regions deleted in *P. putida* KT2440 to construct the EM371 surface-naked strain.

(A) Agarose gel electrophoresis of the diagnostic PCR to identify the deletion step at which the spontaneous excision of prophage 4 occurred ¹. PCR products from different intermediate deletion steps and KT2440 Δ P4 and Δ all- Φ strains as negative controls indicated on top. To confirm the absence of P4 we used the oligos 1565F and 1565R (Table S2) that produced a ~500 bp in strains harboring the prophage. The symbol Ø refers to a blank sample without template. (B) Qualitative UV resistance test. For this experiment, cells were spread onto an LB agar plate and irradiated with UV light for the time indicated. (C) electrophoresis of the diagnostic PCRs to verify the different genomic regions eliminated. Analytical PCR amplifications using either *P. putida* KT2440 or EM371 as DNA template. Oligos, shown in red in the gel, were designed to hybridize within an internal deleted gene (Table S2). Therefore, amplifying only in the wild type a ~500 bp DNA fragment. The oligos endA1-F/endA1-R were used as a *P. putida* control since amplify a fragment of a non-deleted gene in EM371. M corresponds to the 500-bp Molecular Ruler *EZ* loadTM (Bio-Rad, Berkeley, CA, USA).

Supplementary Figure S2. Growth profiles of *P. putida* KT2440 and the EM371 naked surface-strain under different metabolic regimes.

(A) growth curves on rich media (LB), M9 minimal medium with either 0.2 % (w/v) succinate (gluconeogenic condition) or glucose (glycolytic) as sole carbon source. The experiment was performed in Spectramax M² using a 96-well plates in which the OD₆₀₀ was monitored every 15 minutes through 24h. The parental strain is depicted in pink while the EM371 in green. The specific growth rates (μ) of both strains are located within each plot. (B) end-point cell density (OD₆₀₀) values of the parental (KT2440 in pink) and EM371 (green) strains taken after 24 h of growth in shaken flasks at 30 °C in LB and M9 with either succinate of glucose as sole carbon source. The average and standard deviation of three independent experiments are shown.

Supplementary Figure S3. Permeabilization and trypsin treatment of *P. putida* EM371 with the control Trx-G⁶V_{HH} plasmid.

(A) induced cells were permeabilized (+) or not (-) with lysozyme. Following that, samples were incubated (+) or not (-) with trypsin. Then, digestion of the cytoplasmic protein was monitored by western blot using the anti-E-tag antibody and the anti-mouse IgG conjugated with peroxidase. This experiment allows to confirm that the recombinant control protein (Trx-G⁶V_{HH}) is effectively degraded by trypsin only when cells are permeabilized with lysozyme. (B) Immunofluorescence experiment to visualize the effect of membrane permeabilization. Induced EM371-GFP tagged cells expressing the cytoplasmic control protein (Trx-G⁶V_{HH}) were treated with a primary anti-E-tag antibody and then with the anti-mouse IgG Alexa fluor 594. Only in permeabilized cells (+ lysozyme) the cytoplasmic control protein is detected (red) while in non-permeabilized bacteria the antibodies do not enter and only the GFP fluorescence is observed.

Supplementary Figure S4. Expression and localization of the Fos and Jun chimeric proteins in *P. putida* KT2440.

Western blot of induced whole cell extracts containing either pSEVA238-AT-Fos or the pSEVA238-AT-Jun plasmids. Also, induced cells were treated (+) or not (-) with 10 μ g ml⁻¹ trypsin. The western blot was revealed with anti-E-tag as the primary antibody and reveled with anti-mouse IgG conjugated with peroxidase. (B) permeabilization and trypsin treatment of KT2440 harboring the Trx-G⁶V_{HH} plasmid. Western blot of induced cells permeabilized (+) or not (-) with lysozyme. Then, samples were incubated (+) or not (-) with trypsin. **Supplementary Figure S5.** Fluorescent microscopy images of the induced aggregation experiments using EM371 as the bacterial chassis.

The first image corresponds to EM371-GFP induced cells harboring the hybrid autotransporter with Fos as passenger. The second is induced EM371-mCherry with Jun as passenger. The third one corresponds to a 1:1 aggregation experiment mixing induced cells with the Fos (GFP) and Jun (mCherry) domains and let them stand at room temperature for 20 minutes. Pictures are obtained after merging phase contrast with the fluorescent images of GFP and Red channels.

Supplementary Figure S6. Normalized frequency distribution of cells per aggregate.

Microscopy images analyzed as described before and the number of cells per aggregate plotted as a normalized histogram. The x-axis was truncated in 10 cells per aggregate for visualization purposes, although the distribution in the case of EM371 (F-J) extends beyond this value (up to 172) in very low frequencies, as can be observed in Fig. 9B.

REFERENCES

 Martinez-Garcia, E., Jatsenko, T., Kivisaar, M., de Lorenzo, V. (2015) Freeing *Pseudomonas* putida KT2440 of its proviral load strengthens endurance to environmental stresses. *Environ. Microbiol.* 17, 76-90.

SUPPLEMENTARY	TABLES S1,	S2, S4
---------------	------------	--------

Deletion	Cono or none eluctor	Number	Coordinates deleted (bp)		Extension of the	
Deletionª	Gene or gene cluster	targeted	Start	End	deletion (bp)	
1	PP_1887 - PP_1891	5	2,124,630	2,133,604	8,975	
2	PP_2357 - PP_2363	7	2,690,661	2,697,071	6,411	
3	PP_4986 - PP_4992	7	5,680,665	5,690,342	9,678	
4	PP_5080 - PP_5083	4	5,801,595	5,805,208	3,614	
5	PP_0607 - PP_0611	5	715,011	717,278	2,268	
6	PP_0803 - PP_0806	4	921,843	945,621	23,779	
7	PP_3472 - PP_3484	13	3,938,978	3,948,639	9,662	
8	PP_3396 - PP_3399	4	3,846,911	3,852,454	5,544	
9	PP_1449 - PP_1450	2	1,652,242	1,658,493	6,252	
10	PP_2629 - PP_2638	9	3,009,136	3,022,981	13,846	
11	PP_1277 - PP_1288	12	1,458,140	1,474,220	16,081	
12	PP_1427 - PP_1430	4	1,627,273	1,631,066	3,794	
13	PP_1993	1	2,259,413	2,262,148	2,736	
14	PP_5093	1	5,816,943	5,817,953	1,011	
15	PP_0164 - PP_0168	7	187,240	220,543	33,304	
16	PP_5404 - PP_5407	4	6,161,924	6,168,519	6,596	
17	PP_2891 - PP_2893	3	3,288,248	3,294,391	6,144	
18	PP_1131	1	1,294,520	1,294,984	465	
19	PP_4329 - PP_4397	68	4,919,155	4,988,330	69,176	
20 ^b	PP_1532 - PP_1584	57	1,737,987	1,777,401	39,415	
21	PP_3132 - PP_3142	12	3,547,056	3,559,123	12,068	
22	PP_1804	1	2,027,211	2,028,215	1005	
23	PP 1879-PP 1882	4	2.103.369	2.114.285	10.917	

Supplementary Table S1. Genomic coordinates of the 23 deletions introduced in *Pseudomonas putida* KT2440 to construct the naked strain EM371.

^a The deletion number identifies the order in which the specific gene or gene cluster was deleted. The information regarding genomic coordinates of each locus was derived from the reported sequence of *P*. *putida* KT2440 (GenBank #: AE015451¹ and its updated sequence AE015451.2²).

^b Spontaneous excision of prophage 4 (*PP_1532-PP_1584*), that occurred sometime after deletion #18³, during the construction process.

Supplementary Table S2. Oligonucleotides used in this study.

Name	Sequence $(5' \rightarrow 3')^a$	Usage / Ref
TS1(1887)EcoRI-F	CG GAATTC CGGTCTTTTGGCAATTGTCAAT	Deletion of PP_1887 - PP_1891
TS1(1887)-R	TTGGCTCCATCAAAGAATCGAG	Deletion of <i>PP_1887 -</i> <i>PP_1891</i>
TS2(1891)-F	CTCGATTCTTTGATGGAGCCAAGACATAACCTG ATTGGGTAAATGGG	Deletion of PP_1887 - PP_1891
TS2(1891)Xmal-R	TCCC CCCGGG GGCCAGCGGCTGCACGAGGCC GAAC	Deletion of PP_1887 - PP_1891
TS1(2357)-Sacl	ATCC GAGCTC CTGCGTAGCTGGGGTAGCCGG	Deletion of PP_2357 - PP_2363
TS1(RR1)-R	<i>TTCGGGGGTATTGACCGCCGT</i> AAAGCCATTTTT TTTGTATTAGCG	Deletion of PP_2357 - PP_2363 ⁹
TS2(RR1)-F	ACGGCGGTCAATACCCCCGAA	Deletion of PP_2357 - PP_2363 ⁹
TS2(RR1)BamHI-R	CG GGATCC CAGCGGCCGCAGTGTCCAG	Deletion of <i>PP_2357</i> - <i>PP_2363</i> ⁹
TS1(4985)-EcoRI-F	CG GAATTC ATTCACCGCTGCATGTGCA	Deletion of <i>PP_4986 -</i> <i>PP_4992</i>
TS1(4985)-R	CAATCCTACTGGTAGGCGTCTTTAAAAGTCGCC CCACAACTG	Deletion of <i>PP_4986 -</i> <i>PP_4992</i>
TS2(4993)-F	AGACGCCTACCAGTAGGATTG	Deletion of PP_4986 - PP_4992
TS2(4993)BamHI-R	CG GGATCC TGCGCATCAGGATCACGTCCAG	Deletion of <i>PP_4986 -</i> <i>PP_4992</i>
TS1(5080)Xmal-F	TCCC CCCGGG AGCGCTCGAGAATATCGATCAC C	Deletion of <i>PP_5080 -</i> <i>PP_5083</i>
TS1(5080)-R	<i>GTAACAGACAGCAAAGGAGTCGCG</i> TTCTGTGC GAAATTTGATACTTG	Deletion of PP_5080 - PP_5083
TS2(5083)-F	CGCGACTCCTTTGCTGTCTGTTAC	Deletion of PP_5080 -

		PP_5083
TS2(5083)BamHI-R	CG GGATCC GGGGTCGACGCCGTAGTGGTTGAG	Deletion of <i>PP_5080 -</i> <i>PP_5083</i>
TS1(0607)EcoRI-F	CG GAATTC CAGCCGCGTCATCGATGCGCTG	Deletion of <i>PP_0607 -</i> <i>PP_0611</i>
TS1(0607)-R	<i>TGCACCGGGCATCATTGAACCT</i> CGCGGTCATTG CAGGAGCGGTC	Deletion of <i>PP_0607 -</i> <i>PP_0611</i>
TS2(0611)-F	AGGTTCAATGATGCCCGGTGCA	Deletion of <i>PP_0607 -</i> <i>PP_0611</i>
TS2(0611)BamHI-R	CG GGATCC GGGTTGCGCACATTGGCCACACC	Deletion of <i>PP_0607 -</i> <i>PP_0611</i>
TS1(0803)EcoRI-F	CG GAATTC CCAGCACCTGCACCAGGGTGTTG	Deletion of <i>PP_0803</i> - <i>PP_0806</i>
TS1(0803)-R	CGGATATCAGCAGGGAGCATCCTCCAGGCATT CCTGGGTTCTGTG	Deletion of <i>PP_0803 -</i> <i>PP_0806</i>
TS2(0806)-F	GGATGCTCCCTGCTGATATCCG	Deletion of <i>PP_0803 -</i> <i>PP_0806</i>
TS2(0806)Xbal-R	GC TCTAGA GATCGGCCGCTCGGCACTCAAGGC	Deletion of <i>PP_0803 -</i> <i>PP_0806</i>
TS1(3472)EcoRI-F	CG GAATTC TTCATTTCGGCTAGAAGCAAAGATT	Deletion of <i>PP_3472 -</i> <i>PP_3484</i>
TS1(3472)-R	GGCAGTATTTGGGAGTCGACCTTGTTGACTGTT AGGGAAGCTCTGATC	Deletion of <i>PP_3472 -</i> <i>PP_3484</i>
TS2(3484)-F	CAAGGTCGACTCCCAAATACTGCC	Deletion of <i>PP_3472 -</i> <i>PP_3484</i>
TS2(3484)-BamHI-R	CG GGATCC CTTCGACAGGGCGCAGTACACTGA A	Deletion of <i>PP_3472 -</i> <i>PP_3484</i>
TS1(3396)EcoRI-F	CG GAATTC GTATTCGCTCAGCTCGCTGTCCAG	Deletion of <i>PP_</i> 3396 - <i>PP_</i> 3399
TS1(3396)-R	CACCGCGGTTCAAGGGGGGGGGGGGGGGGGGGGGGGGGG	Deletion of PP_3396 -

	TCCTCCTGCAAACGGGC	PP_3399
TS2(3399)-F	ACCGCTCCCCCTTGAACCGCGGTG	Deletion of <i>PP_3396 -</i> <i>PP_3399</i>
TS2(3399)-BamHI-R	CG GGATCC GTTGACCAGGCAGGCATCCGGCAC G	Deletion of <i>PP_3396 -</i> <i>PP_3399</i>
TS1(1449)EcoRI-F	CG GAATTC GGCTACTTCACCGTGCTGACCAATA C	Deletion of <i>PP_1449 -</i> <i>PP_1450</i>
TS1(1449)-R	CGAGTACGAAAACCGTACATCATGACGCCATCG CGGCCCTGGCCATTTG	Deletion of <i>PP_1449 -</i> <i>PP_1450</i>
TS2(1450)-F	ATGATGTACGGTTTTCGTACTCG	Deletion of <i>PP_1449 -</i> <i>PP_1450</i>
TS2(1450)BamHI-R	CG GGATCC GCTGAAAACCTACCGCATCTCGCT	Deletion of <i>PP_1449 -</i> <i>PP_1450</i>
TS1(2629)EcoRI-F	CG GAATTC TCACCTTGGTAGTGACCCGGCCAG A	Deletion of <i>PP_2629 -</i> <i>PP_2638</i>
TS1(2629)-R	CCCTTGCAACGCAGCGATTGCCGTTATACAGCA TCAAGGCAGAATGAAATC	Deletion of <i>PP_2629 -</i> <i>PP_2638</i>
TS2(2638)-F	CGGCAATCGCTGCGTTGCAAGGG	Deletion of <i>PP_2629 -</i> <i>PP_2638</i>
TS2(2638)BamHI-R	CG GGATCC AAGGCCAGCAACTCACGCAGGTTG	Deletion of <i>PP_2629 -</i> <i>PP_2638</i>
TS1(1277)EcoRI-F	CG GAATTC GTCACCGGTGAGTCACTGTGCCAG A	Deletion of <i>PP_</i> 1277 - <i>PP_</i> 1288
TS1(1277)-R	CGTGATAAACACATGAGGTGATAGCGATGCTGA CTCGCCCCTGGGCTGAC	Deletion of <i>PP_</i> 1277 - <i>PP_</i> 1288
TS2(1288)-F	CGCTATCACCTCATGTGTTTATCACG	Deletion of <i>PP_</i> 1277 - <i>PP_</i> 1288
TS2(1288)Xmal-R	TCCC CCCGGG ATATCTCGCAACAGTTACGTCCT TTA	Deletion of <i>PP_</i> 1277 - <i>PP_</i> 1288
TS1(1427)EcoRI-F	CG GAATTC TGTTGTCCAGCACTGCAGCGACGC	Deletion of PP_1427 -

		PP_1430
TS1(1427)-R	CCCTTTCGCCTTGCGAAACTGCGAACACTCCTC AGTGAACTCGAAGG	Deletion of <i>PP_1427 -</i> <i>PP_1430</i>
TS2(1430)-F	GCAGTTTCGCAAGGCGAAAGGG	Deletion of <i>PP_1427 -</i> <i>PP_1430</i>
TS2(1430)BamHI-R	CG GGATCC TGGGGCAGGTCCATCTTGTTCAGG	Deletion of <i>PP_1427 -</i> <i>PP_1430</i>
TS1(1993)EcoRI-F	CG GAATTC GCGCAAGGCCGTGAAGCGGTCAGC	Deletion of PP_1993
TS1(1993)-R	CCAAGAGGCCTGACCTGCTTGCAGACCTCTTCC CTTGTATGAATCGTC	Deletion of <i>PP_1993</i>
TS2(1993)-F	TGCAAGCAGGTCAGGCCTCTTGG	Deletion of PP_1993
TS2(1993)BamHI-R	CG GGATCC CGAATCGGGTCGTTGTAGATGAC	Deletion of PP_1993
TS1(5093)EcoRI-F	CG GAATTC AGGCAATGCCGCCAGCAGCCGCGG T	Deletion of <i>PP_5093</i>
TS1(5093)-R	<i>GGCATTCTACCTGCTTGAAGGCCT</i> TACCTGCAA AGGCCCTTTCGCG	Deletion of <i>PP_5093</i>
TS2(5093)-F	AGGCCTTCAAGCAGGTAGAATGCC	Deletion of PP_5093
TS2(5093)BamHI-R	CG GGATCC CAACTTGCGCAGGCTGGCGAAGGC	Deletion of PP_5093
TS1(0164)EcoRI-F	CG GAATTC GGATATACCCGCGGGCGCTGGCGA T	Deletion of <i>PP_0164 -</i> <i>PP_0168</i>
TS1(0164)R	CGCTGTGCGGCCCCGGTGGTCTGGGCAAAGCC GACATAGCGCACTACGG	Deletion of <i>PP_0164 -</i> <i>PP_0168</i>
TS2(0168)-F	CAGACCACCGGGGCCGCACAGCG	Deletion of <i>PP_0164 -</i> <i>PP_0168</i>
TS2(0168)Xmal-R	TCCC CCCGGG CAAGGCGGCTGACATTTTTCACT C	Deletion of <i>PP_0164 -</i> <i>PP_0168</i>
TS1(2891)EcoRI-F	CG GAATTC ACTGGCTTTCCAGCAGTGCCTG	Deletion of <i>PP_2891 -</i> <i>PP_2893</i>

TS1(2891)R	<i>TTGATGGCCGCCACGCTGCGGGC</i> TCAGTGCCT TGGAGGTGCCCCAG	Deletion of <i>PP_2891 -</i> <i>PP_2893</i>
TS2(2893)F	GCCCGCAGCGTGGCGGCCATCAA	Deletion of <i>PP_2891 -</i> <i>PP_2893</i>
TS2(2893)BamHI-R	CG GGATCC ATTGACCTGCGTGAAATTACC	Deletion of <i>PP_2891 -</i> <i>PP_2893</i>
TS1(1131)EcoRI-F	CG GAATTC ACTGCCCTGAGCATTGGGG	Deletion of PP_1131
TS1(1131)R	<i>GGGTTTTTTATTACTGCACTACGG</i> GGGTAAAGT CTCCATAAGTCAGG	Deletion of <i>PP_1131</i>
TS2(1131)F	CCGTAGTGCAGTAATAAAAAACCC	Deletion of PP_1131
TS2(1131)BamHI-R	CG GGATCC TGCTGGTGCTGGTGGCGATGAA	Deletion of PP_1131
TS1(3132)EcoRI-F	CG GAATTC GGTACAGCGCCTGGCGCAGCGT	Deletion of <i>PP_3132 -</i> <i>PP_3142</i>
TS1(3132)R	<i>GCTTGAAGCAGGAGCGCTTCGC</i> GACTTCAATCT CTGACTGATTGG	Deletion of <i>PP_3132 -</i> <i>PP_3142</i>
TS2(3142)F	GCGAAGCGCTCCTGCTTCAAGC	Deletion of <i>PP_3132 -</i> <i>PP_3142</i>
TS2(3142)BamHI-R	CG GGATCC CGAGTTGCGCCTGGTGGCTGAG	Deletion of <i>PP_3132 -</i> <i>PP_3142</i>
TS1(1804)EcoRI-F	CG GAATTC CAAGCACGAAGCGGAGCAGGGG	Deletion of PP_1804
TS1(1804)R	GATGCCTTGCGTGCTTGGCCATCGGGCGGCGT GCACCCAGAAAAG	Deletion of <i>PP_1804</i>
TS2(1804)F	GATGGCCAAGCACGCAAGGCATC	Deletion of PP_1804
TS2(1804)BamHI-R	CG GGATCC GAAATACTGGCGCATGATCAGGCG	Deletion of PP_1804
TS1(1879)EcoRI-F	CG GAATTC AACCCAGGCTGAATCGTGAGGTT	Deletion of <i>PP_</i> 1879 - <i>PP_</i> 1882
TS1(1879)R	ACAAGCAGAGTGAGAACGTTCATTCCCGATGCA	Deletion of PP_1879 -

	AAAAAAAACGCCACC	PP_1882
TS2(1882)F	AATGAACGTTCTCACTCTGCTTGT	Deletion of <i>PP_1879 -</i> <i>PP_1882</i>
TS2(1882)Xmal-R	TCCC CCGGG AACGAAGAAGAAACGACGCTTG GAC	Deletion of <i>PP_1879 -</i> <i>PP_1882</i>
1889F	GGTAGTTGTCGGCTTCGGTA	Diagnose deletion of <i>PP_1887 – PP_1891</i>
1889R	TATCGCTATTCGACCCAAGG	Diagnose deletion of <i>PP_1887 – PP_1891</i>
PP2362F	GGACATGCAACTGAGCAAAA	Diagnose deletion of <i>PP_2357 – PP_2363</i>
PP2362R	TCCACACCAGAGAACCACTG	Diagnose deletion of <i>PP_2357 – PP_2363</i>
4989F	GGCAACATCTTCAGCCTTTC	Diagnose deletion of <i>PP_4986 – PP_4992</i>
4989R	GATCGACTCGACCATGTCAC	Diagnose deletion of <i>PP_4986 – PP_4992</i>
5081F	TTAGTGGTGATTGCCGAACA	Diagnose deletion of <i>PP_5080 – PP_5083</i>
5081R	GCTTGGTGAGGGTGATGAAC	Diagnose deletion of <i>PP_5080 – PP_5083</i>
0609F	CCAACTTGGTTTTGGTTTGG	Diagnose deletion of <i>PP_0607 – PP_0611</i>
0609R	ATCGTCCTGGAGCTGGTAGA	Diagnose deletion of <i>PP_0607 – PP_0611</i>
0805F	GACACAGCCTATGCCTGGAT	Diagnose deletion of <i>PP_0803 - PP_0806</i>
0805R	CCCCTTGGTAGATGGGAACT	Diagnose deletion of <i>PP_0803 - PP_0806</i>
3478F	ATGAAAGAGGGCCAGTACGA	Diagnose deletion of

		PP_3472 - PP_3484
3478R	AGATGGTGGCTTTCATGTCC	Diagnose deletion of <i>PP_3472 – PP_3484</i>
3397F	TCCGATGTGGTACAAGGACA	Diagnose deletion of <i>PP_</i> 3396 - <i>PP_</i> 3399
3397R	GTGACCGCTTCGGTGATATT	Diagnose deletion of <i>PP_</i> 3396 - <i>PP_</i> 3399
1450F	GTCGAAGGCTTTGTCGAAAC	Diagnose deletion of PP_1449 – PP_1450
1450R	ACAATACCCGCTCGACACTC	Diagnose deletion of <i>PP_1449 – PP_1450</i>
2632F	GTTGCTGGTGGGTTACCTGT	Diagnose deletion of <i>PP_2629 – PP_2638</i>
2632R	GGTAATGTCGCCGATGAAGT	Diagnose deletion of <i>PP_2629 – PP_2638</i>
1281F	AAGTACGAAGGCTCGGACAA	Diagnose deletion of <i>PP_1277 – PP_1288</i>
1281R	GCCGACCTTGTATTCCTTCA	Diagnose deletion of <i>PP_1277 – PP_1288</i>
1429F	GCTGAAACTGATGGGTTGGT	Diagnose deletion of <i>PP_1427 – PP_1430</i>
1429R	CACTTTGCCCTTGGGTGTAT	Diagnose deletion of <i>PP_1427 – PP_1430</i>
1993F	TGAAGTCGGCACAGAATCAG	Diagnose deletion of PP_1993
1993R	CCAACCTTCAGCTGGTTGAT	Diagnose deletion of PP_1993
0166F	GATATGGGGCAGTTCAAGGA	Diagnose deletion of <i>PP_0164 – PP_0168</i>
0166R	AATTTCGTCCTGCAGTTGCT	Diagnose deletion of

		PP_0164 – PP_0168
5406F	CATCTCCTTTCCAACCCAGA	Diagnose deletion of Tn7 ¹²
5406R	CGTGCATACCAAACAACAGG	Diagnose deletion of Tn7 ¹²
2891F	GCAGGCACTCGGCTACTATC	Diagnose deletion of <i>PP_2891 – PP_2893</i>
2891R	GTGGTTTACGGGTTTCCAGA	Diagnose deletion of <i>PP_2891 – PP_2893</i>
1131F	GTAAATCCGCTTTGCTGGTG	Diagnose deletion of PP_1131
1131R	CGGAAGATTTCGTTCTCCTG	Diagnose deletion of PP_1131
4335F	TACCGAGGAACACGAAAACC	Diagnose deletion of the flagellum ¹³
4335R	TTGGCAGGTTGTCAGTGAAG	Diagnose deletion of the flagellum ¹³
1565F	CTGACCGAGGATCAGATGGT	Diagnose deletion of the prophage 4 ³
1565R	CCGGGTTGAACTTCACGTAG	Diagnose deletion of the prophage 4 ³
3135F	CTCAATACCGATGCCTTCGT	Diagnose deletion of <i>PP_3132 – PP_3142</i>
3135R	TGATGCTTGCGGAAGTACAG	Diagnose deletion of <i>PP_3132 – PP_3142</i>
1880F	GAGCCCACAATCACCAGTTT	Diagnose deletion of <i>PP_1879 – PP_1882</i>
1880R	CACCCAGTTCAGTGTCATGG	Diagnose deletion of <i>PP_1879 – PP_1882</i>
1804F	CGGCAGTGCTGACCAGTGTGTTG	Diagnose deletion of PP_1804

1804R	CACCCGAAAGTATTAACCACC	Diagnose deletion of PP_1804
5093F	GATCAACCCTCGCTCCCTCAGC	Diagnose deletion of PP_5093
5093R	CCTGGCAACGCTGCTCGACCAG	Diagnose deletion of PP_5093
endA1-F	CGCTTTTCGCAGCAGCCTGCCTG	Diagnose presence of endA-1 ¹²
endA1-R	GAAGTAGGTGCGGGCGATCATGCC	Diagnose presence of endA-1 ¹²
2357-2363-junction-F	GATACGCTACGCAGCGCAGCAA	Sequence boundaries of PP_2353 - PP_2363 deletion
2357-2363-junction-R	CAGCAGCGCTGGTTCCGTGTG	Sequence boundaries of PP_2353 - PP_2363 deletion
Tn7-junction-F	CCGACCTGGGAAGGTCGACTTT	Sequence boundaries of Tn7 deletion ¹²
Tn7-junction-R	GATGACTTCCTAGGCCATTACTTA	Sequence boundaries of Tn7 deletion ¹²
Junction-F	CGCCAAGCCTCGCTACCCGGCCTGCT	Sequence boundaries of flagella deletion ¹³
Junction-R	CAGTTGATTCTGGTGGTGCACCCG	Sequence boundaries of flagella deletion ¹³
curli1-junction-F	CTGCGGTCATCCCAATTAATG	Sequence boundaries of curli operon 1 deletion
curli1-junction-R	GGCAGGAAGCGCAACGCCAAG	Sequence boundaries of curli operon 1 deletion
curli2-junction-F	GCCACACCACGAACGACATCGG	Sequence boundaries of curli operon 2 deletion
curli2-junction-R	CAGACCAGCACATCGCCGTGGC	Sequence boundaries of

		curli operon 2 deletion
4986-4992 junction-F	GCACGACCTGCCCGAGGCCCAG	Sequence boundaries of PP_4986 – PP_4992 deletion
4986-4992 junction-R	GGGTCGGGGTGGTGCATTGCG	Sequence boundaries of PP_4986 – PP_4992 deletion
1887-1891 junction-F	ATACCTCGATGGTGCGCTGGGA	Sequence boundaries of PP_1887 – PP_1891 deletion
1887-1891 junction-R	GCAACGGGCCAGTGACCTGCTC	Sequence boundaries of PP_1887 – PP_1891 deletion
2629-2638 junction-F	CAGCACGACCCAGGCAATGAAG	Sequence boundaries of PP_2629 – PP_2638 deletion
2629-2638 junction-R	CGTTCGATGCGTACGCCTGTGC	Sequence boundaries of PP_2629 – PP_2638 deletion
5093-junction-F	CTATTCATAAGAGCTTCATCTATG	Sequence boundaries of <i>PP_5093</i> deletion
5093-junction-R	GCTCATGTCAGGTCCTTGTGGAAA	Sequence boundaries of <i>PP_5093</i> deletion
1993-junction-F	TGCCGGAAGCCAACGCCGAACG	Sequence boundaries of <i>PP_1993</i> deletion
1993-junction-R	TGGCCATGGCGGGTAACACGCAGG	Sequence boundaries of <i>PP_1993</i> deletion
1427-1430 junction-F	GTGAGGTGGAACTCGAAGCCGC	Sequence boundaries of PP_1427 – PP_1430 deletion
1427-1430 junction-R	CAGGTAATTGTCGAACCAAGAGT	Sequence boundaries of PP_1427 – PP_1430 deletion

1277-1288 junction-F	GCCCAGGCCACACAGCCGCCAG	Sequence boundaries of PP_1277 – PP_1288 deletion
1277-1288 junction-R	CGCGAAGAGGTCAGCCGCCGTGAT	Sequence boundaries of PP_1277 – PP_1288 deletion
5080-5083 junction-F	GATCGGGTAGCTACGCTCGCCCA	Sequence boundaries of <i>PP_5080 – PP_5083</i> deletion
5080-5083 junction-R	CAGCTCACGCTCGATTTGCAGGGC	Sequence boundaries of <i>PP_5080 – PP_5083</i> deletion
1804-junction-F	TGGCCGAGTTCCGTCGGGTGAAT	Sequence boundaries of <i>PP_1804</i> deletion
1804-junction-R	GTCATCATCAATGAACGCCACCG	Sequence boundaries of <i>PP_1804</i> deletion
0607-0611 junction-F	GAAGTCGAAGGCACCATGGGCCA	Sequence boundaries of <i>PP_0607 – PP_0611</i> deletion
0607-0611 junction-R	TCCAGGCGCCTGCGCTGAGCACA	Sequence boundaries of <i>PP_0607 – PP_0611</i> deletion
0803-0806 junction-F	GTGTGCACCGACTGCTGCAAGGCC	Sequence boundaries of PP_0803 – PP_0806 deletion
0803-0806 junction-R	TGCACGTGCCACCTTTGCGCGA	Sequence boundaries of PP_0803 – PP_0806 deletion
1449-1450 junction-F	AGCAGCTGTACGTGAAGCTGCAG	Sequence boundaries of PP_1449 - PP_1450 deletion
1449-1450 junction-R	GGCGGCCTTCACCGAAACCATC	Sequence boundaries of PP_1449 - PP_1450 deletion

0164-0168 junction-F	CAGGCCCATGGACGAAAGATGG	Sequence boundaries of PP_0164 – PP_0168 deletion
0164-0168 junction-R	CACATGGTGGTCGAGGTGGGCGC	Sequence boundaries of PP_0164 – PP_0168 deletion
2891-2893 junction-F	GAAGCTGTCTACCAACCCCCAGC	Sequence boundaries of PP_2891 – PP_2893 deletion
2891-2893 junction-R	CGAAATATCCCAGGCGGACAC	Sequence boundaries of PP_2891 – PP_2893 deletion
1131-junction-F	GCCGGGTGCAGAAGGTCACGG	Sequence boundaries of <i>PP_1131</i> deletion
1131-junction-R	CGGCGTCCTGGCCCTGCTCGGC	Sequence boundaries of PP_1131 deletion
3132-3142 junction-F	CGTCGACCAGGGCGCTGTACAA	Sequence boundaries of PP_3132 – PP_3142 deletion
3132-3142 junction-R	CGCCGAGGGGCAACGCCTGGC	Sequence boundaries of PP_3132 – PP_3142 deletion
1879-1882 junction-F	TCACGGCGGTAACAGGGGTTCG	Sequence boundaries of PP_1879 – PP_1882 deletion
1879-1882 junction-R	CCAACTCAGGAAAACCTTGTCA	Sequence boundaries of PP_1879 – PP_1882 deletion
3104-3110 Junction-F	GATGGAAGAGCTGACTTACG	Sequence boundaries of PP_3104 – PP_3110 deletion
3104-3110 Junction-R	CGAGCTCCAGAAAGAAATC	Sequence boundaries of PP_3104 – PP_3110 deletion

PP1532-XmaF	TCCC CCGGG GACCAGGCGGTGCGACAGCA	Deletion of prophage 4 ³
PP1586-BamR	CG GGATCC CCAACACGAAGCTGAAGCTGGC	Deletion of prophage 4 ³
pEMG-F1	CCATTCAGGCTGCGCAACTGTTG	To sequence TS1-TS2 in pEMG ⁹
pEMG-R1	CTTTACACTTTATGCTTCCGGC	To sequence TS1-TS2 in pEMG ⁹
pSW-F	GGACGCTTCGCTGAAAACTA	Diagnose curation of the plasmid pSW-I ⁹
pSW-R	AACGTCGTGACTGGGAAAAC	Diagnose curation of the plasmid pSW-I ⁹

^a Recognition site for the restriction enzymes specified are indicated in boldface in the DNA sequence, and complementary sequences used in splicing by overlap extension (SOEing) PCR amplifications are shown in italics. Supplementary Table S3. List of surface-associated proteins identified by activated magnetic nanoparticles.

Please, see additional Excel Table S3.

Strain or plasmid	Relevant characteristics ^a	Reference or
		source
Escherichia coli		
DH5 α λpir	Cloning host; F- λ - endA1 glnX44(AS) thiE1 recA1 relA1	4
	spoT1 gyrA96(Nal ^R) rfbC1 deoR nupG Φ 80(lacZ Δ M15)	
	∆(<i>argF-lac</i>)U169 hsdR17(r _K − m _K +) λ <i>pir</i> lysogen	
HB101	Helper strain; F- λ - hsdS20(r _B - m _B -) recA13 leuB6(Am)	5
	araC14 Δ (gpt-proA)62 lacY1 galK2(Oc) xyl-5 mtl-1 thiE1	
	rpsL20(Sm ^R) gInX44(AS)	
Pseudomonas putida		
KT2440	Wild-type strain; mt-2 derivative cured of the TOL plasmid	6
	pWW0	
EM371	KT2440 derivative; $\triangle PP_1887 \cdot PP_1891 \triangle PP_2357 \cdot$	This work
	PP_2363 △PP_4986-PP_4992 △PP_5080-PP_5083	
	ΔPP_0607 -PP_0611 ΔPP_0803 -PP_0806 ΔPP_3472 -	
	PP_3484 △PP_3396-PP_3399 △PP_1449-PP_1450	
	$\Delta PP_{2629}PP_{2638} \Delta PP_{1277}PP_{1288} \Delta PP_{1427}$	
	$PP_{1430 \Delta PP_{1993 \Delta PP_{5093 \Delta PP_{0164}}$	
	ΔPP_5404 -PP_5407 ΔPP_2891 -PP_2893 ΔPP_1131	
	ΔPP_4329 -PP_4397 $\Delta prophage 4 \Delta PP_3132$ -PP_3142	
	△PP_1804 △PP_1879-PP_1882	
KT2440-GFP	KT2440 GFP derivative	7
		_
KT2440-mCherry	KT2440 mCherry derivative	3
		-
EM3/1-GFP	EM3/1 GFP derivative	I his work
EM371-mCherry	EM371 mCherry derivative	This work

Supplementary Table S4. Bacterial strains and plasmids used in this work.

Plasmid	Relevant characteristics	Reference or Source
pRK600	Helper plasmid used for conjugation; oriV(Co	IE1), ⁸
	RK2(<i>mob</i> ⁺ <i>tra</i> ⁺); Cm ^R	
pEMG	Plasmid used for deletions; $\textit{oriV}(R6K)$, $\textit{lacZ}\alpha$ frag	ment ⁹
	with two flanking I-Scel recognition sites; Km ^R	
pSW-I	Helper plasmid used for deletions; oriV(RK2),	xy/S , ¹⁰
	P <i>m→I-</i> Scel; Ap ^R	
pEMG-1887	pEMG bearing a 1.6-kb TS1-TS2 EcoRI-Xmal inse	rt for ³
	deleting the PP_1887-PP_1891 operon	
pEMG-R1	pEMG bearing a 1.6-kb TS1-TS2 SacI-BamHI inse	rt for ⁹
	deleting the PP_2357-PP_2363 operon	
pEMG-4986	pEMG bearing a 1-kb TS1-TS2 EcoRI-BamHI inser	t for ¹¹
	deleting the PP_4986-PP_4992 operon	
pEMG-5080	pEMG bearing a 1-kb TS1-TS2 Xmal-BamHI inser	t for This work
	deleting the PP_5080-PP_5083 operon	
pEMG-0607	pEMG bearing a 1-kb TS1-TS2 EcoRI-BamHI inser	t for This work
	deleting the PP_0607-PP_0611 operon	
pEMG-0803	pEMG bearing a 1-kb TS1-TS2 EcoR/-Xbal inser	t for This work
	deleting the PP_0803-PP_0806 operon	
pEMG-3472	pEMG bearing a 1-kb TS1-TS2 EcoRI-BamHI inser	t for This work
	deleting the PP_3472-PP_3484 operon	
pEMG-298	pEMG bearing a 1-kb TS1-TS2 EcoRI-BamHI inser	t for ³
	deleting the PP_3396-PP_3399 operon	
pEMG-1449	pEMG bearing a 1.1-kb TS1-TS2 EcoRI-BamHI inse	rt for This work
	deleting the PP_1449-PP_1450 operon	
pEMG-286	pEMG bearing a 1.2-kb TS1-TS2 EcoRI-BamHI inse	rt for ³
	deleting the PP_2629-PP_2638 operon	
pEMG-1277	pEMG bearing a 1.1-kb TS1-TS2 EcoRI-Xmal inser	t for This work
	deleting the PP_1277-PP_1288 operon	
pEMG-1427	pEMG bearing a 1.2-kb TS1-TS2 EcoRI-BamHI inse	rt for This work
	deleting the PP_1427-PP_1430 operon	

Plasmid	Relevant characteristics	Reference or source
pEMG-1993	pEMG bearing a 1.1-kb TS1-TS2 EcoRI-BamHI insert	for This work
	deleting the PP_1993 gene	
pEMG-5093	pEMG bearing a 1.1-kb TS1-TS2 EcoRI-BamHI insert	for This work
	deleting the PP_5093 gene	
pEMG-0164	pEMG bearing a 1.4-kb TS1-TS2 EcoRI-Xmal insert	for This work
	deleting the PP_0164-PP_0168 operon	
pEMG-Tn7	pEMG bearing a 1.6-kb TS1-TS2 EcoRI-Xmal insert	for ¹²
	deleting the PP_5404-PP_5407 operon	
pEMG-2891	pEMG bearing a 1.1-kb TS1-TS2 EcoRI-BamHI insert	for This work
	deleting the PP_2891-PP_2893 operon	
pEMG-1131	pEMG bearing a 1.2-kb TS1-TS2 EcoRI-BamHI insert	for This work
	deleting the PP_1131 gene	
pEMG-flagella	pEMG bearing a 1.5-kb TS1-TS2 EcoRI-BamHI insert	for ¹³
	deleting the PP_4329-PP_4397 flagellar operon	
pEMG-3132	pEMG bearing a 1.2-kb TS1-TS2 EcoRI-BamHI insert	for This work
	deleting the PP_3132-PP_3142 operon	
pEMG-1804	pEMG bearing a 1-kb TS1-TS2 EcoRI-BamHI insert	for This work
	deleting the PP_1804 gene	
pEMG-1879	pEMG bearing a 1-kb TS1-TS2 EcoRI-Xmal insert	for This work
	deleting the PP_1879-PP_1882 operon	
pSEVA238	Expression vector; <i>oriV</i> (pBBR1); <i>xyIS-Pm</i>	14
pSEVA238-AT-Jun	Expression vector; <i>oriV</i> (pBBR1); <i>xyI</i> S-P <i>m</i> →Jun- <i>ig</i>	Aβ; This work
	Km ^R	
pSEVA238-AT-Fos	Expression vector; <i>oriV</i> (pBBR1); <i>xyIS-Pm</i> →Fos- <i>ig/</i>	Aβ; This work
	Km ^R	

Plasmid	Relevant characteristics	Reference or source
pSEVA238-trx- ^{G6} V _{нн}	Expression vector; <i>oriV</i> (pBBR1); <i>xyIS</i> -P $m \rightarrow$ trx- ^{G6} V _H	⊣; This work
	Km ^R	
pME9407	Ap ^R , Gm ^R , <i>oriV</i> (pUC19), mini-Tn7, $P_{tac} \rightarrow mCherry$	15
pBK-miniTn7-gfp2	Ap ^R , Cm ^R , Gm ^R , <i>oriV</i> (pUC19), <i>mob</i> ⁺, mini-Tn	7, 16
	$P_{A1/04/03} \rightarrow gfp2$	
pUX-BF13	Ap ^R ; <i>ori</i> R6K, <i>mob</i> ⁺ , provides the Tn7 transposition	n ¹⁷
	function <i>in trans</i>	
pSEVA2513	Кm ^R , <i>oriV</i> (RSF1010), Р _{ЕМ7}	18
pSEVA2513-lacZ	Km ^R , <i>oriV</i> (RSF1010), P _{EM7} →IacZ	This work

^a Antibiotic markers: Ap, ampicillin; Cm, chloramphenicol; Km, kanamycin; Nal, nalidixic acid; Sm, streptomycin.

^b Plasmid pEMG-0164 contain a deletion of a thymidine within the TS1-TS2. Since this T is located within an intergenic region between *PP_0163* and *PP_0164* (genome coordinate: 187,126) we decided to maintain it. Therefore, the naked strain contains that deletion as well.

REFERENCES

 Nelson, K. E., Weinel, C., Paulsen, I. T., Dodson, R. J., Hilbert, H., Martins dos Santos, V. A. P., Fouts, D. E., Gill, S. R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R. T., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, I., Chris Lee, P., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Stjepandic, D., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J. A., Timmis, K. N., Düsterhöft, A., Tümmler, B., and Fraser, C. M. (2002) Complete genome sequence and comparative analysis of the metabolically versatile *Pseudomonas putida* KT2440. *Environ. Microbiol. 4*, 799-808.

- (2) Belda, E., van Heck, R. G., José Lopez-Sanchez, M., Cruveiller, S., Barbe, V., Fraser, C., Klenk, H. P., Petersen, J., Morgat, A., Nikel, P. I., Vallenet, D., Rouy, Z., Sekowska, A., Martins Dos Santos, V. A., de Lorenzo, V., Danchin, A., and Médigue, C. (2016) The revisited genome of *Pseudomonas putida* KT2440 enlightens its value as a robust metabolic chassis. *Environ. Microbiol.* 18, 3403-3424.
- (3) Martinez-Garcia, E., Jatsenko, T., Kivisaar, M., and de Lorenzo, V. (2015) Freeing *Pseudomonas putida* KT2440 of its proviral load strengthens endurance to environmental stresses. *Environ. Microbiol.* 17, 76-90.
- (4) Platt, R., Drescher, C., Park, S. K., and Phillips, G. J. (2000) Genetic system for reversible integration of DNA constructs and *lacZ* gene fusions into the *Escherichia coli* chromosome. *Plasmid* 43, 12-23.
- (5) Boyer, H. W., and Roulland-Dussoix, D. (1969) A complementation analysis of the restriction and modification of DNA in *Escherichia coli*. *J. Mol. Biol.* 41, 459-472.
- (6) Bagdasarian, M., Lurz, R., Ruckert, B., Franklin, F. C., Bagdasarian, M. M., Frey, J., and Timmis, K. N. (1981) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in *Pseudomonas*. *Gene* 16, 237-247.
- (7) Espeso, D. R., Martínez-García, E., de Lorenzo, V., and Goñi-Moreno, A. (2016) Physical forces shape group identity of swimming *Pseudomonas putida* cells. *Front. Microbiol.* 7, 1437.
- (8) Kessler, B., de Lorenzo, V., and Timmis, K. N. (1992) A general system to integrate *lacZ* fusions into the chromosomes of Gram-negative eubacteria: regulation of the *Pm* promoter of the TOL plasmid studied with all controlling elements in monocopy. *Mol. Gen. Genet.* 233, 293-301.
- (9) Martínez-García, E., and de Lorenzo, V. (2011) Engineering multiple genomic deletions in Gramnegative bacteria: analysis of the multi-resistant antibiotic profile of *Pseudomonas putida* KT2440. *Environ. Microbiol.* 13, 2702-2716.
- (10) Wong, S. M., and Mekalanos, J. J. (2000) Genetic footprinting with mariner-based transposition in *Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA* 97, 10191-10196.

- (11) Martínez-García, E., and de Lorenzo, V. (2012) Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria. *Methods Mol. Biol.* 813, 267-283.
- (12) Martinez-Garcia, E., Nikel, P. I., Aparicio, T., and de Lorenzo, V. (2014) Pseudomonas 2.0: genetic upgrading of *P. putida* KT2440 as an enhanced host for heterologous gene expression. *Microb. Cell. Fact.* 13, 159.
- (13) Martínez-García, E., Nikel, P. I., Chavarría, M., and de Lorenzo, V. (2014) The metabolic cost of flagellar motion in *Pseudomonas putida* KT2440. *Environ. Microbiol.* 16, 291-303.
- (14) Silva-Rocha, R., Martínez-García, E., Calles, B.; Chavarría, M., Arce-Rodríguez, A., de Las Heras, A., Páez-Espino, A. D., Durante-Rodríguez, G., Kim, J., Nikel, P. I., Platero, R., and de Lorenzo, V. (2012) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. *Nucleic Acids Res.* 41, D666-675.
- (15) Rochat, L., Pechy-Tarr, M., Baehler, E., Maurhofer, M., and Keel, C. (2010) Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. *Mol. Plant Microbe Interact.* 23, 949-961.
- (16) Koch, B., Jensen, L. E., and Nybroe, O. (2001) A panel of Tn7-based vectors for insertion of the *gfp* marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. *J. Microbiol. Methods* 45, 187-195.
- (17) Bao, Y., Lies, D. P., Fu, H., and Roberts, G. P. (1991) An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. *Gene 109*, 167-168.
- (18) Martinez-Garcia, E., Aparicio, T., Goni-Moreno, A., Fraile, S., and de Lorenzo, V. (2015) SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. *Nucleic Acids Res.* 43, D1183-1189.