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The FI-NN approach

Since the fitting and interpolation are essentially impossible to reproduce the cuspidal behaviors

of adiabatic energies near the conical intersections in the adiabatic representation regardless of

the fitting accuracy,1–4 the transformation from fitted adiabatic PESs to the diabatic representation

would introduce discontinuities and oscillations and thereby substantially diminish the accuracy

of diabatization. Nevertheless, the elements of the diabatic potential energy matrix are smooth

functions of nuclear coordinates. Therefore, it is appropriate to represent them with feed-forward

NN functions.

The ground and first excited states of NH3 belong to the A′1 and A′′2 irreducible representations

of the CNPI group, which is the direct product of the symmetry group of order 3 and the inversion

group. As discussed previously,5 the individual blocks of Hd, Hd
11, Hd

22 and Hd
12, carry A′1, A′1 and

A′′2 , respectively, so that the Hd
12 term should be antisymmetric with the exchange of two H atoms,

while the two diagonal blocks are invariant with respect to the inversion of all nuclei and electrons

and permutations of three hydrogen nuclei.

The fundamental invariants (FIs) can be used to account for the permutation invariant symmetry

of the two diagonal blocks.6,7 The FIs contains the least number of invariants which can generate

all the invariant polynomials, and are used as inputs of NNs. For NH3, the N atom is denoted as

atom 1 and three H atoms are denoted as atoms 2, 3 and 4. The pairwise internuclear distances

r12,r13,r14,r23,r24 and r34 are denoted as ri(i = 1,2, ...,6), respectively. As follows, there are in
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total nine FIs with a maximum degree of three:

f1 = r4 + r5 + r6

f2 = r1 + r2 + r3

f3 = r2
4 + r2

5 + r2
6

f4 = r2
1 + r2

2 + r2
3

f5 = r1r4 + r1r5 + r3r5 + r3r6 + r2r6 + r2r4

f6 = r3
4 + r3

5 + r3
6

f7 = r3
1 + r3

2 + r3
3

f8 = r2
4r1 + r2

5r1 + r2
5r3 + r2

6r3 + r2
6r2 + r2

4r2

f9 = r2
1r6 + r2

3r4 + r2
2r5

(1)

In this work, the internuclear distances ri(i = 1,2, ...,6) were displaced by reciprocal function

(1/ri) beforehand and the nine FIs were further transformed to yi = f 1/m
i , where m is the degree of

the corresponding FI, which can effectively accelerate the convergence in the fitting procedure.

To address the special symmetry of the off-diagonal block that is antisymmetric with the per-

mutation of the two H atom, we follow the method of Guan by introducing the dot-cross product

coordinate.8

Q(3)
NHHH =

(RN−RH1) · (RN−RH2)× (RN−RH3)

rNH1rNH2rNH3

(2)

The refined functional form for the three blocks are

Hd
11 = NN1(FI)

Hd
12 = Q(3)

NHHHNN2(FI)+ [Q(3)
NHHH ]

3NN3(FI)

Hd
22 = NN4(FI)

(3)

where NNi(FI)(i = 1−4) are neural network functions with respect to FIs.

The NNs with M layers can be denoted as R− S1− S2− ·· ·− SM. Suppose that there are Q
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pairs of input/output for this feedforward NNs. Note pr,q as the rth element of the qth input, wm
i, j

as the weight connecting the jth neuron of the (m−1)th layer with the ith neuron of the mth layer

and bm
i as the bias of the ith neuron of the mth layer. Denote nm

i and am
i as the net input and the

output of the ith neuron of the mth layer, respectively. f m represents the transfer function of the

mth later. For the qth input, nm
i and am

i are denoted below by the superscript “q”. Then the NNs

functions can be calculated by the formula:

nm
i,q =

Sm−1

∑
j=1

(wm
i, ja

m−1
j,q )+bm

i ,a
m
i,q = f m(nm

i,q) (4)

where m = 1,2, · · · ,M, a0
i,q = pi,q, S0 = R.

The gradient of NNs function with respect to its input can be obtained through the following

equations:
∂am

i,q

∂ pr,q
=

∂am
i,q

∂nm
i,q

∂nm
i,q

∂ pr,q
(5)

and
∂nm

i,q

∂ pr,q
=

Sm−1

∑
j=1

wm
i, j

∂am−1
j,q

∂ pr,q
(6)

In the input layer (layer 0),
∂a0

i,q

∂ pr,q
= δi,r (7)

Starting in the input layer, then using Eqs.6 and 5, the gradient of NNs output with respect to the

input,
∂aM

k,q
∂ pr,q

, can be calculated. The closed analytical forms of the derivatives of the NNs output and

its gradients with respect to NNs parameters can be obtained using the standard backpropagation

algorithm.9

The accurate topography of diabatization

It is well known that close contour integration over ab initio calculated derivative couplings gives

topological phase nπ , if the contour encircles n number of CIs. Since the derivative couplings can

be considered as the derivative of the mixing angle for two-state cases, the following condition
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should be satisfied: If the contour encircles a conical intersection, the mixing angle accumulates a

change of π .

For two-state cases, the real symmetric diabatic potential matrix can be represented with respect

to the so-called mixing angle or rotation angle, λ :

Hd
11 = E1 cos2

λ +E2 sin2
λ ,

Hd
12 = (E1−E2)sinλ cosλ ,

Hd
22 = E1 sin2

λ +E2 cos2
λ .

(8)

A conical intersection between ground and excited states can be observed in Fig. S1(a). By

using λ = 1
2arctan[−2 Hd

12
Hd

22−Hd
11
] according to eq. (8), the mixing angle in the two-dimensional space

is obtained as shown in the Fig. S1(b). We can see discontinuities in λ around the conical intersec-

tion. These discontinuities are not wrong but rather manifestations of the geometric phase effect

(GPE), which can be examined by investigating the changes in mixing angle along closed paths.

As can be seen, if a closed circular path circles the CI, the mixing angle accumulates a change of

π , as shown in Fig. S1(b) and Fig. S2.
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Figure S1: 3D plots of Hd determined adiabatic energies (Panel a) and the mixing angle (Panel b)
as a function of the dissociative N−H bond rNH and the inversion angle θ . θ is the angle between
the dissociative N−H bond and the C3 axis and the other coordinates are fixed at the equilibrium
geometry of the X̃ state.
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Figure S2: Plot of the mixing angle as a function of the inversion angle θ with the dissociative
N−H bond rNH = 4.5 bohr. θ is the angle between the dissociative N−H bond and the C3 axis and
the other coordinates are fixed at the equilibrium geometry of the X̃ state.
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Figure S3: The distributions of fitting errors as a function of the adiabatic potential energy for the
ground (a) and excited (b) states .
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Figure S4: Comparison of the fittting error between Hd determined energy gradients, ||∇Ea,I,(ab)−
∇Ea,I,(m)||, and ab initio energy gradients, ||∇Ea,I,(ab)||(I = 1,2). The blue, red and green solid
lines represent the 100%, 10% and 1% fitting error, respectively.
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Figure S5: 3D plots of Hd
11 and Hd

22 as a function of rNH and R for two different C2v geometries. (a)
The H−NH2 C2v geometries and (b) NH2−H C2v geometries with the H−H bond of the fragment
NH2 fixed at 3.2 Bohr, R being the distance between N and the center of mass of H2 of the fragment
NH2 and rNH being the distance of N and the dissociating H.
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