Supporting Information

Oxidase-like MOF-818 Nanozyme with High Specificity for Catalysis of Catechol Oxidation

Minghua Li, ^{§[a,b]} Jinxing Chen, ^{§[b,c]} Weiwei Wu,^[b,c] Youxing Fang, * ^[b] Shaojun Dong*^[a,b,c]

[a] College of Chemistry, Jilin University, Changchun, 130012, P.R. China.

[b] State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

[c] University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China.

Materials and Instrumentation

Chemical and Materials:

Zirconyl chloride octahydrate (ZrOCl₂·8H₂O, 99%), cerium nitrate hexahydrate (Ce(NO₃)₂·6H₂O, 99%), trimesic acid (H₃BTC, 98%), 3,5-Di-tert-butylcatechol (3,5-DTBC, 98%), L-dopa (Aladdin, 99%), 4-aminoantipyrine (4-AAP, 98%), 2,4-dichlorophenol (2,4-DP, 99.5%), quercetin (95%), and (-)-epicatechin (97%), caffeic acid (98%) were purchased from Aladdin (Shanghai, China). Polyacrylic acid (PAA) was acquired from Sigma-Aldrich, 1H-pyrazole-4-carboxylic acid (H₂PyC, 97%) was bought from Inno-Chem. Copper nitrate trihydrate (Cu(NO₃)₂·3H₂O, 98%) was purchased from Beijing Chemical Works, Trifluoroacetic acid (TFA, CF₃COOH, 99%) was obtained from Energy Chemical. All the reagents were used as received without further purification, and all aqueous sample solutions were prepared with ultrapure water (\geq 18.2 MΩ cm)

Apparatus and characterization:

Absorption spectra were acquired on Agilent Cary 60 (Varian) UV-vis-near-infrared (NIR) spectrometer. Scanning electron microscope (SEM) images were obtained using PHILIPS XL-30 field-emission scanning electron microscope with an accelerating voltage of 10 kV. Transmission electron microscopy (TEM) images were collected from Hitachi H-8100 EM microscope operating at 100 kV. X-ray diffraction (XRD) patterns were recorded from D8 Advance (Bruker, Germany) diffractometer with Cu K α radiation (λ = 1.5406 Å). X-ray photoelectron spectroscopy (XPS) was carried out on ESCALABMKII (VG Co., UK) spectrometer equipped with an Al K α excitation source. The elemental molar ratio of nanocrystals were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES) using a Thermo Scientific iCAP6300 (Thermo Fisher Scientific, US). Electron Paramagnetic Resonance (EPR) experiments was conducted by a conventional Bruker spectrometer (Bruker, A300).

Experimental Section

Synthesis of MOF-818

MOF-818 was prepared by the method reported previously with a little improvment.¹ ZrOCl₂·8H₂O (85.0 mg), Cu(NO₃)₂·3H₂O (62.0 mg), and H₂PyC (65.0 mg) were dissolved in 20 mL of DMF and dispersed by ultrasound for 5 min, and then trifluoroacetic acid (240 μ L) was added to the solution. The mixture solution was heated at 100 °C. After 10 h, another batch of Cu(NO₃)₂·3H₂O (62.0 mg) was added to the solution and reacted for another 10 h at 100 °C. The green crystals were collected by centrifugation, washed with DMF and acetone for three times, and dried for 12 h at 60 °C.

Synthesis of MOF-808

MOF-808 was synthesized following the reported procedure.² H_3BTC (210 mg) and $ZrOCl_2 \cdot 8H_2O$ (970 mg) were added to a solution containing DMF (30 mL) and formic acid (30 mL) and dissolved under ultrasonication. The mixture was heated at 100 °C in the isothermal oven for 24 h. The white powder was collected by centrifugation (8000 rpm, 3 min), alternatively washed with DMF and acetone for 3 times (60 mL) with standing times of 6 hours. Finally, MOF-808 was dried overnight at 60 °C.

Synthesis of CeO₂

CeO₂ was prepared by the method reported previously.³ One M cerium nitrate solution (2.17g in 5.0 mL of water) was mixed with 0.5 M solution of polyacrylic acid (PAA). Under continuous stirring, the mixture was

added to 30.0 mL ammonium hydroxide (30%) solution. The mixture was then continuously stirred for 24 h. The product was collected by centrifugation (6000 rpm, 3 min), washed with H_2O and ethanol 60 mL for 3 times (60 mL). Finally, CeO₂ was dried overnight at 60°C.

Synthesis of Pt nanoparticles

In a typical synthesis, PVP (20 mg) was dissolved in H_2PtCl_6 solution (1 mM, 50 mL) under magnetic stirring. Subsequently, the freshly prepared NaBH₄ solution (100 mM, 0.5 mL) was slowly injected into the precursor solution. Then reaction continued for 10 h at room temperature.

Determination of catechol oxidase activity

3,5-DTBC, L-dopa, DA, quercetin, (-)-epicatechin and caffeic acid were selected to exzamine catechol oxidase activity by colorimetric assays, which were mixed with MOF-818 in 1 mL of PBS (10 mM pH 8.0). Acetonitrile (200 μ L) was added to increase the solubility of the substrate. The final concentrations of 3,5-DTBC and MOF-818 were 0.5 mM and 20 μ g mL⁻¹, respectively. The absorption at $\lambda_{max} = 415$ nm ($\epsilon = 1900 \text{ M}^{-1}\text{cm}^{-1}$)⁴ characteristic of the formed *o*-quinone was measured over time. The final concentrations of L-dopa,dopamine, quercetin, (-)-epicatechin and caffeic acid were 10, 500, 50, 40 and 40 μ M, respectively.

TMB oxidation reaction

The catalyst was added to a sodium acetate buffer solution (0.1 M pH 4.0) containing 0.5 mM TMB. The absorption at 650 nm was measured.

Determination of peroxidase-like activity

The catalyst was added to a sodium acetate buffer solution (0.1 M pH 4.0) containing 0.5 mM TMB and 1mM H₂O₂. The absorption at 650 nm was measured.

Detection of 2,4-dichlorophenol

MOF-818 was added to the solution containing 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AAP) in 1 mL of PBS solution (10 mM pH 8.0) with 200 μ L acetonitrile to increase the solubility of the substrate. The final concentrations of 2,4-DP, 4-AAP and MOF-818 were 0.5 mM, 0.5 mM and 20 μ g mL⁻¹ respectively.

Figures

Figure S1. XPS survey scan of MOF-818.

Figure S2. XPS spectra of Zr 3d (a) C 1s (b) in MOF-818.

Figure S3. Pore size distributions for MOF-818.

Figure S4. (a) Absorption of L-dopa catalyzed by MOF-818. (b) Time-dependent spectra of L-dopa catalyzed by MOF-818. (c) Absorption spectra of DA catalyzed by MOF-818 with different reaction durations. (d) Time-dependent absorption spectra of DA catalyzed by MOF-818.

Figure S5. TEM images of MOF-808 (a, b), CeO₂ (c) and Pt NPs (d).

Figure S6. Experimental and simulated XRD patterns of MOF-808.

Figure S7. UV-vis absorption spectra of oxidized TMB in the absence or presence of 3,5-DTBC.

Figure S8. UV–vis absorption spectra of 3,5-DTBC (0.5 mM) in the absence and presence of H_2O_2 catalyzed by MOF-818 (20 µg/mL) in PBS (10 mM pH 8.0). Reaction time: 5 min.

Figure S9. UV–vis absorption spectra for 3,5-DTBC, TMB and ABTS in the absence and presence of MOF-818 (50 µg/mL) in PBS (10 mM pH 8.0).

Figure S10. UV–vis absorption spectra for 3,5-DTBC in the absence and presence 30 μ g/mL of MOF-818 in sodium acetate–acetic acid buffer solution over time (pH 4.0).

Figure S11. Proposed mechanism of catechol oxidase activity of MOF-818.

Figure S12. (a) Michaelis–Menten curve of Pt NPs for 3,5-DTBC. (b) Lineweaver-Burk plot for determination of kinetic constant of Pt NPs for 3,5-DTBC oxidation. (c) Michaelis–Menten curve of CeO₂ for 3,5-DTBC. (d) Lineweaver-Burk plot for determination of kinetic constant of CeO₂ for 3,5-DTBC oxidation. The final concentrations of Pt NPs and CeO₂ were 50 μ g/mL.

Figure S13. (a) UV-vis absorption spectra of 3,5-DTBQ standard sample and the sample of 3,5-DTBC catalyzed by MOF-818. (b) The standard curve of 3,5-DTBQ at 415 nm. (c) UV-vis absorption spectra over time and the maximum absorbance for 0.5 mM 3,5-DTBC in the presence of 30 μ g/mL MOF-818. (d) Time-dependent absorbance and the maximum absorbance at 415 nm with 30 μ g/mL MOF-818 in the presence of 0.5 mM 3,5-DTBC.

Figure S14. (a) Activities of MOF-818 to the oxidation of 3,5-DTBC in recycling tests. (b) XRD patterns of MOF-818 before (black line) and after (red line) recycling for 5 times.

Figure S15. (a) Michaelis–Menten curve for L-dopa. (b) Lineweaver-Burk plot for determination of kinetic constant of MOF-818 for L-dopa oxidation. The final concentration of MOF-818 was 50 μ g/mL.

Figure S16. (a) UV–vis spectra of the quercetin and the reaction product in the presence of MOF-818. (b) UV-vis absorption spectra of the quercetin in the presence of MOF-818 over time. (c) UV–vis spectra of the epicatechin and the reaction product in the presence of MOF-818. (d) UV-vis absorption spectra of the epicatechin in the presence of MOF-818 over time. (e) UV–vis spectra of the caffeic acid and the reaction product in the presence of MOF-818. (f) Evolution of UV-vis absorption spectra of the caffeic acid in the presence of MOF-818 over time.

Figure S17. (a) Reaction of 2,4-DP and 4-AAP catalyzed by MOF-818. (b) UV-vis absorption spectra of 2,4-DP and 4-AAP catalyzed by MOF-818.

Table S1. ICP-AES result of MOF-818.

		Spectral line	Concentration	n _{Zr} :n _{Cu}	
MOF-818	Zr	339.1 nm	119.2 ppm	1 13 · 1	
(1 mg/mL)	Cu	324.7 nm	105.1 ppm	1.10 . 1	

Table S2. Steady-state kinetic parameters of nanozymes and catechol oxidase.

	Concentrati	Substrate	K _m	V _m	$K_{\rm c}$ (s ⁻¹)	$K_{\rm cat}/K_{\rm m}$	Reference
on		Substrate	(µM)	(µM s ⁻¹)	$K_{cat}(S)$	(M ⁻¹ S ⁻¹)	Keleichee
MOF-818	50 μg/mL	3,5-DTBC	810	3.17	0.383	473	This work
		L-dopa	480	0.080	0.0096	20.1	
CeO ₂	50 μg/mL	3,5-DTBC	1262	0.182	6.28×10 ⁻⁴	0.498	This work
Pt NPs	50 μg/mL	3,5-DTBC	1811	4.71	0.0184	10.1	This work
CeO ₂ @L-Phe	15 μg/mL	D-dopa	0.424	-	4.63×10 ⁻¹³	0.011	Ref.5
		L-dopa	0.431	-	4.16×10 ⁻¹³	0.00965	
CeO ₂ @D-Phe	15 μg/mL	D-dopa	0.195	-	1.94×10 ⁻¹³	0.00996	Ref.5
		L-dopa	0.168	-	3.12×10 ⁻¹³	0.0186	
Pt NPs	20 μg/mL	quercetin	54.37	5.79	244.82	-	Ref.6
CeO ₂	-	dopamine	-	-	-	-	Ref.3
Catechol	3 μg/mL	3,5-DTBC	500	-	160	32000	Ref.7
oxidase		quercetin	800	-	193	241300	
Tyrosinase	5.3 μg/mL	quercetin	26.23	0.54	12.13	-	Ref.6

References

(1) Liu, Q.; Song, Y.; Ma, Y.; Zhou, Y.; Cong, H.; Wang, C.; Wu, J.; Hu, G.; O'Keeffe, M.; Deng, H., Mesoporous Cages in Chemically Robust MOFs Created by a Large Number of Vertices with Reduced Connectivity. *J. Am. Chem. Soc.* **2019**, *141*, 488-496.

(2) Baek, J.; Rungtaweevoranit, B.; Pei, X.; Park, M.; Fakra, S. C.; Liu, Y. S.; Matheu, R.; Alshmimri, S. A.; Alshehri, S.; Trickett, C. A.; Somorjai, G. A.; Yaghi, O. M., Bioinspired Metal-Organic Framework Catalysts for Selective Methane Oxidation to Methanol. *J. Am. Chem. Soc.* **2018**, *140*, 18208-18216.

(3) Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M., Oxidase-like activity of polymer-coated cerium oxide nanoparticles. *Angew. Chem. Int. Ed.* **2009**, *48*, 2308-12.

(4) Belle, C.; Beguin, C.; Gautier-Luneau, I.; Hamman, S.; Philouze, C.; Pierre, J. L.; Thomas, F.; Torelli, S.; Saint-Aman, E.; Bonin, M., Dicopper(II) Complexes of H-BPMP-Type Ligands: pH-Induced Changes of Redox, Spectroscopic (19F NMR Studies of Fluorinated Complexes), Structural Properties, and Catecholase Activities. *Inorg. Chem.* **2002**, *41*, 479-491.

(5) Sun, Y.; Zhao, C.; Gao, N.; Ren, J.; Qu., X., Stereoselective Nanozyme Based on Ceria Nanoparticles Engineered with Amino Acids. *Chem. Eur. J.* 2017, *23*, 18146-18150.

(6) Liu, Y.; Wu, H.; Chong, Y.; Wamer, W. G.; Xia, Q.; Cai, L.; Nie, Z.; Fu, P. P.; Yin, J. J., Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics. *ACS Appl. Mater. Interfaces* **2015**, *7*, 19709-17.

(7) Rompel, A.; Fischer, H.; Meiwes, D.; Buëldt-Karentzopoulos, K.; Magrini, A.; Eicken, C.; Gerdemann, C.; Krebs, B., Substrate specificity of catechol oxidase from Lycopus europaeus and characterization of the bioproducts of enzymic caffeic acid oxidation. *FEBS Lett.* **1999**, *445*, 103-110.