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Experimental 
 

Materials and characterization methods 
 

Melting points were measured on an Electrothermal 9100 apparatus and were 

uncorrected. Fourier transform infrared (FT-IR) spectrum of SBA-15 was monitored by Bruker. 

Vector 22 spectrometer with potassium bromide plate. 1H and 13C NMR spectra were recorded 

on a BRUKER DRX-300 AVANCE spectrometer at 300.13, 400.22 MHz and 75 MHz, 100 

MHz in CDCl3 using TMS (δ = 0.0 ppm) an internal standard. X-ray diffraction (XRD) was 

performed on a Bruker D8 Advance powder diffractometer with Ni filtered CuKa radiation        

(λ = 1.54056 Å). The morphology of nanoporous was investigated by a scanning electron 

microscope (FESEM-TESCAN MIRA3). TGA–DTA analysis was carried out from 0 to 800℃ 

at a heating rate of 10 ℃/min using a STA PT-1000 LINSEIS. Optical rotations were measured 

with a Perkin–Elmer 341 polarimeter at 589 nm. Enantiomeric excess (ee) of the products were 

determined by HPLC on chiralpak AD and/or chiralcel OD-H and/or Nucleocel Alpha S 

columns. All reactions were performed under an atmosphere of dry and oxygen-free nitrogen. 

All reagents and starting materials were purchased from Aldrich, Merck, Fluka and Sigma. 

Olefins were distilled from calcium hydride before use. All solvents for the reactions were 

reagent grade and were dried and distilled immediately before use as follows: acetonitrile and 

acetone from P2O5, methylene chloride from calcium hydride, methanol from Mg and I2, 

toluene and tetrahydrofuran from sodium and benzophenone. Column chromatography was 

performed using silica gel 60 (0.063-0.2 mm) eluting with ethyl acetate and n-hexane. Thin-

layer chromatography (TLC) was performed using silica gel 60 F256 plates with visualization 

by UV.  

 

A typical procedure for the synthesis of chiral amino alcohols 2a–d: 

 

To an oven-dried 3-neck 250 mL round-bottom flask equipped with reflux condenser, 

sodium borohydride (40.0 mmol, 1.51 g) and 20 mL of dried tetrahydrofuran were added. After 

15 minutes, (S)-phenylalanine 1b (16.6 mmol, 2.75 g) was added in one portion to the stirring 

solution. Then the resulting mixture was cooled to 0 °C, and I2 (16.5 mmol, 4.27 g) in 10 mL 

of tetrahydrofuran was added dropwise by the addition funnel over 30 minutes. After fading 
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away the brownish color of solution, the mixture was warmed to room temperature and then 

the white cloudy solution refluxed for 48 hours. After cooling to room temperature, to the 

cloudy white suspension with fast stirring, 10 mL of CH3OH was added dropwise by addition 

funnel and gas evolution observed. The resulting solution was concentrated, and the obtained 

residue dissolved in 10 mL of KOH (20%) and then stirred for 4 hours at room temperature. 

The obtained solution was extracted with CH2Cl2 (3 x 20 mL), the organic layer washed with 

brine, and then the aqueous layer back extracted with CH2Cl2 (20 mL). The combined organic 

layers were dried over anhydrous MgSO4 and concentrated. The white solid 2b was afforded in 

95% yield. Other chiral products 2a, 2c, and 2d were also synthesized from the corresponding 

amino acids in the similar procedure in a good yields up to 98% 1 (Figures S1-8).  

 

(S)-2-amino-2-phenylethan-1-ol (2a): Mp: 75-78C.; FT-IR (KBr, cm-1): 3274, 3062, 2922, 

1598, 1489, 1045.; 1H NMR (400 MHz, CDCl3): H (ppm) = 2.53 (1H, brs, (OH)), 2.75 (2H, 

brs, (NH2)), 3.57 (1H, t, J = 9.6 Hz, CH2), 3.69 (1H, t, J = 8.6 Hz, CH2), 4.04-4.05 (1H, m, CH), 

7.30-7.37 (5H, m, Ar).; 13C NMR (100 MHz, CDCl3): δC (ppm) = 57.4, 67.8, 126.6, 127.4, 

127.5, 128.6, 128.8, 142.3.; [α]25
D =+ 30.5° (c= 0.6, HCl (1 M)). 

 

(S)-2-amino-3-phenylpropan-1-ol (2b): Mp: 90-92C.; 1H NMR (400 MHz, CDCl3): H (ppm) 

= 2.19 (3H, brs, (NH2, OH)), 2.57 (1H, dd, J = 12.8, 9.0 Hz, CH2), 2.81 (1H, dd, J=12.0, 8.6 

Hz, CH2), 3.16 (1H, brs, *CH), 3.44 (1H, d, J =7.6 Hz, H2C-OH), 3.67 (1H, d, J = 6.8 Hz, H2C-



S4 

 

OH), 7.21-7.35 (5H, m, Ar).; 13C NMR (100 MHz, CDCl3): δC (ppm) = 40.8, 54.2, 66.3 , 126.4, 

128.6, 129.2, 138.6.; [α]25
D = -10.7° (c= 0.4, HCl (1 M)). 

 

(S)-2-amino-3-methylbutan-1-ol (2c): 1H NMR (400 MHz, CDCl3): H (ppm) = 0.92 (6 H, d, 

J = 6.8 Hz, CH3), 1.67-1.69 (1 H, m, CH), 2.66-2.73 (1 H, m, *CH), 3.41-3.42 (1 H, m, -CH2-

OH), 3.59-3.62 (1 H, m, H2C-OH). 4.12 (2 H, brs, (NH2)).; 
13C NMR (100 MHz, CDCl3): δC 

(ppm) = 19.8, 31.9, 56.6, 64.7.; [α]25
D = +3.3° (c= 0.6, EtOH). 

 

(S)-2-amino-4-methylpentan-1-ol (2d): Mp: 69-73C.; 1H NMR (400 MHz, CDCl3): H (ppm) 

 =0.94 (6H, d, J = 6.8 Hz, CH3), 1.24 (2H, brs, CH2), 1.67-1.75 (1H, m, CH), 2.84 (2H, brs 

(NH2)), 2.97 (1H, brs, *CH), 3.29 (1H, t, J = 9.0 Hz, H2C-OH), 3.62 (1H, d, J = 8.8 Hz, H2C-

OH).; 13C NMR (100 MHz, CDCl3): δC (ppm) = 22.2, 23.3, 24.7, 43.5, 50.7, 66.9.; [α]25
D = + 

1.3° (c= 0.5, EtOH). 

 

A typical procedure for the synthesis of Mesoporous silica SBA-15 

Mesoporous silica SBA-15 was synthesized according to the described method in the 

literature 2, 3. In a round bottom flask (250 mL), 6.0 g of Pluronic P123 (EO20PO70EO20) as a 

surfactant was dissolved in deionized water (137 mL) and 30 mL of HCl (37%) at room 

temperature. After complete copolymer dissolution (0.5-1 hour), 13.7 g of tetraethyl 

orthosilicate (TEOS) in deionized water (50 mL) was added, and stirred vigorously at 40 °C for 

30 minutes. Then the resulting mixture was transferred into a stainless steel jacketed Teflon 

vessel and heated at 100◦C for 48 hours. After cooling to room temperature, the solid product 

was separated from the mixture of reaction by filtration and then washed by deionized water 

until pH=7-8 was achieved. Finally the obtained powder was dried at 60 °C, and then calcined 
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at 550 ℃ for 5 hours. The mesoporous structure of SBA-15 was characterized by FT-IR, XRD, 

SEM and BET-BJH techniques.  

A typical procedure for the synthesis of functionalized SBA-15 (Cl-SBA-15)  

Functionalization of SBA-15 was carried out as reported in the literature 2, 3 4. Briefly, 

1.0 g of SBA-15 in dried toluene (30 mL) dispersed and, then 3-chloropropyltrimethoxysilane 

(CPTMS) (4.2 mmol, 0.91 mL) was added. After refluxing the mixture of reaction under 

nitrogen atmosphere for 24 hours, the modified nonoporous was collected by filtration and 

washed thoroughly with CH2Cl2/CH3OH. Then the obtained powder was soxhleted for 24 hours 

with CH2Cl2/CH3OH (1:1) to remove unreacted 3-chloropropyltriethoxysilane. Finally the 

functionalized SBA-15 was separated as a white solid and dried at room temperature. The 

synthesis of functionalized SBA-15 (Cl-SBA-15) was proved by FT-IR, TGA, XRD, SEM and 

BET-BJH techniques. 

 

A typical procedure for the Synthesis of benzoyl chloride derivatives 6a-g: 

To a round bottom flask under the nitrogen atmosphere, o-iodo-benzoic acids 5b (1.5 

mmol, 0.37 g) and dried methylene chloride (5 mL) were added. After cooling to 0 oC, oxalyl 

chloride (3 mmol, 0.31 mL) and dimethylformamide (30 µL) were slowly added. The mixture 

was warmed up to room temperature and stirred for 8 hours (Scheme 1). After completion of 

the reaction, the solvent was removed on a rotary evaporator to provide the o-iodo-benzoyl 

chloride 6b (0.4 g, quantitative). Other benzoyl chlorides derivatives 6a and 6c-g were also 

prepared from the corresponding benzoic acids in the similar procedure in good yields up to 

99%4-8. 

 

A typical procedure for the Synthesis of tert-butyl benzoperoxoate derivatives 7a-g:  

In a 50 mL round bottom flask under the nitrogen atmosphere, o-iodo-benzoyl chloride 

6b (1.5 mmol, 0.4 g) was dissolved in dried methylene chloride (3 mL). After cooling to -20 

oC, pyridine (1.7 mmol, 0.28 mL) and tert-butyl hydroperoxide (1.7 mmol, 0.12 mL) were 

slowly added and stirred for 4.5 hours at -20 oC (Scheme 1). After consumption of o-iodo-

benzoyl chloride, the reaction solution was diluted with CH2Cl2 (40 mL) and washed with the 

saturated NaHCO3 in the workup. The organic layer was evaporated and the obtained residue 

was purified by silica gel column chromatography (n-hexane: EtOAc; 95:5) to afford the tert-

butyl-o-iodo benzoperoxoates 7b (98% yield). Other tert-butyl benzoperoxoate derivatives 7a 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CC0QFjAC&url=http%3A%2F%2Fwww.chemicalbook.com%2FChemicalProductProperty_EN_CB8221683.htm&ei=wfl-VOipHovbar2TgNAH&usg=AFQjCNEAnzLsPgGqpc3TuBarDkykGl_W4A
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CC0QFjAC&url=http%3A%2F%2Fwww.chemicalbook.com%2FChemicalProductProperty_EN_CB8221683.htm&ei=wfl-VOipHovbar2TgNAH&usg=AFQjCNEAnzLsPgGqpc3TuBarDkykGl_W4A
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and 7c-g were also prepared from the corresponding benzoyl chlorides derivatives in the similar 

procedure in good yields up to 96% 4-8 (Figures S17-18). 

 

Tert-butyl-2-iodobenzoperoxoate (7b): Mp: 47-49 °C.; FT-IR (KBr, cm-1): 2926, 1758, 466.; 

1HNMR (300 MHz, CDCl3): H (ppm) = 1.43 (9H, s, CH3), 7.20 (1H, t, J = 7.6 Hz, Ar), 7.42 

(1H, t, J = 7.5 Hz, Ar), 7.59 (1H, d, J = 7.7 Hz, Ar), 7.97 (1H, d, J = 7.9 Hz, Ar).; 13CNMR (75 

MHz, CDCl3): C (ppm) = 26.2, 84.3, 93.3, 127.9, 130.3, 133.0, 134.3, 141.9, 165.2.; m/z (%): 

320 (0.2, M), 248 (58), 194 (5), 122 (100), 74 (75). 

 

 

Tert-butyl-4-nitrobenzoperoxoate (7e): Mp: 76-78 °C (lit.75-78 °C 2, 9); 1HNMR (300 MHz, 

CDCl3): H (ppm) = 8.14-8.35 (4H, m, Ar), 1.45 (9H, s, CH3 ); 
13CNMR (75 MHz, CDCl3): C 

(ppm)= 162.5, 150.7, 133.2, 130.3, 123.8, 84.7, 26.2. 
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Figure S1: 1H NMR of 2a 
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HNMR of 2a1  
 

2a ofC NMR 13 

2a CNMR of13 :2Figure S 
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Figure S3: 1H NMR of 2b  
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2b    CNMR of13 :4Figure S 
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c2 H NMR of1:5Figure S 
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2c   CNMR of13 :6Figure S 
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d2 H NMR of1 :7Figure S 
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2dCNMR of 13 :8Figure S 
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3a H NMR of 1 :9Figure S 
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Figure S10: 13CNMR of 3a 
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Figure S11: 1H NMR of 3b 
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3bCNMR of 13 :2Figure S1 
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Figure S13: 1H NMR of 3c  
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3c CNMR of13: 14Figure S  
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Figure S15: 1H NMR of 3d 
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3dCNMR of 13 :16Figure S 
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7b    H NMR of1 :17Figure S 
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  7b CNMR of13 :18Figure S 
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Figure S19: 1H NMR of 8a 
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Figure S20: 13CNMR of 8a 
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8b H NMR of1 :Figure S21 
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Figure S22: 13CNMR of 8b 
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8f H NMR of1 Figure S23: 
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8f NMR of C13 :24Figure S 
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9b H NMR of1 Figure S25: 
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9bCNMR of 13 Figure S26: 
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10b H NMR of1 Figure S27: 
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10b CNMR of13 Figure S28: 
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11bH NMR of 1 :Figure S29 
 



S36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11b CNMR of13Figure S30:  
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Figure S31: Chromatogram of 8a 
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Figure S32: Chromatogram of 8b 
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