Supporting Information

Highly efficient lead-free (Bi,Ce)-codoped Cs₂Ag_{0.4}Na_{0.6}InCl₆ double perovskites for white LEDs

Chun-Yun Wang,¹* *Pei Liang*,² *Rong-Jun Xie*,^{3*} *Yue Yao*,¹ *Ping Liu*,¹ *Yatao Yang*,⁴ *Jie Hu*,⁴ *Liyang Shao*,⁴ *Xiao Wei Sun*,⁴ *Feiyu Kang*¹ *and Guodan Wei*^{1*}

¹ Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

² College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China

³ College of Materials, Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, China

⁴ Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Figure S1. Time resolved photoluminescence spectra of $Cs_2Ag_{0.4}Na_{0.6}InCl_6$:X (X = Bi; Bi, Mn; Bi, Ce; Bi, Ni) perovskite phosphors ($\lambda_{ex} = 350$ nm).

Sample	Designed composition	Measured composition by XPS	Ag/In molar ratio measured by ICP-MS
Bi doped	$Cs_2Ag_{0.4}Na_{0.6}In_{0.99}Cl_6Bi_{0.01}$	$\begin{array}{c} Cs_{1.92}Ag_{0.22}Na_{0.53}In_{0.99}Cl_{5.68}\\ Bi_{0.016} \end{array}$	0.32
(Bi,Mn)- codoped	$Cs_{2}Ag_{0.4}Na_{0.61}In_{0.98}Cl_{6}Bi_{0.01}\\Mn_{0.01}$	$\begin{array}{l} Cs_{1.79}Ag_{0.21}Na_{0.63}In_{0.98}Cl_{5.62}\\ Bi_{0.015}Mn_{<0.01} \end{array}$	0.47
(Bi,Ce)- codoped	$\begin{array}{l} Cs_{2}Ag_{0.4}Na_{0.6}In_{0.98}Cl_{6}Bi_{0.01}\\ Ce_{0.01}\end{array}$	$\begin{array}{l} Cs_{1.81}Ag_{0.22}Na_{0.71}In_{0.98}Cl_{5.80}\\ Bi_{0.018}Ce_{0.018}\end{array}$	0.40
(Bi,Ni)- codoped	$\begin{array}{l} Cs_{2}Ag_{0.4}Na_{0.61}In_{0.98}Cl_{6}Bi_{0.01}\\ Ni_{0.01} \end{array}$	$\begin{array}{l} Cs_{1.92}Ag_{0.20}Na_{0.65}In_{0.98}Cl_{5.82}\\ Bi_{0.015}Ni_{0.031}\end{array}$	0.38

Table S1. Comparison of designed composition and measured composition by XPS for each sample.

Table S2. Summary of calculation details for the total formation energies.

Chemical Formula	Atom Number	Total Energy (E _{total} , eV)	Formation Energy Equations ^{a)}
$Cs_2Ag_{0.4}Na_{0.6}InCl_6$	$Cs_{40}Ag_8Na_{12}In_{20}Cl_{120}$	144897.513	Referenced energy
$Cs_2Ag_{0.4}Na_{0.6}Bi_{0.05}$	$Cs_{40}Ag_8Na_{12}BiIn_{19}Cl_{120}$	145339.653	E_{total} - E_{ref} - μ_{Bi} + μ_{In}
$In_{0.95}Cl_6$			
$\begin{array}{l} Cs_2Mn_{0.05}Ag_{0.4}Na_{0.55}\\ Bi_{0.05}In_{0.95}Cl_6 \end{array}$	$Cs_{40}MnAg_8Na_{11}BiIn_{19}Cl_{120}$	146883.112	$\begin{array}{rrrr} E_{total} & \text{-} & E_{ref} & \text{-} & \mu_{Mn} \\ + \mu_{Na} \text{-} & \mu_{Bi} + \mu_{In} \end{array}$
$\begin{array}{l} Cs_2Ce_{0.05}Ag_{0.4}Na_{0.55}\\ Bi_{0.05}In_{0.95}Cl_6 \end{array}$	$Cs_{40}CeAg_8Na_{11}BiIn_{19}Cl_{120}$	145466.068	$\begin{array}{rrrr} E_{total} & \text{-} & E_{ref} & \text{-} & \mu_{Ce} \\ _{+}\mu_{Na}\text{-}\mu_{Bi} + \mu_{In} \end{array}$
$\begin{array}{l} Cs_2Ni_{0.05}Ag_{0.4}Na_{0.55}\\ Bi_{0.05}In_{0.95}Cl_6 \end{array}$	$Cs_{40}NiAg_8Na_{11}BiIn_{19}Cl_{120}$	148358.726	$\begin{array}{rrrr} E_{total} & \text{-} & E_{ref} & \text{-} & \mu_{Ni} \\ + \mu_{Na} \text{-} & \mu_{Bi} + \mu_{In} \end{array}$

^{a)} $E_{ref} = -144897.513 \text{ eV}; \ \mu \text{ is chemical potential of an element}, \ \mu_{Bi} = -1865.037 \text{ eV}; \ \mu_{In} = -1423.122 \text{ eV}; \ \mu_{Na} = -1159.212 \text{ eV}; \ \mu_{Ce} = -1283.719 \text{ eV}; \ \mu_{Mn} = -2707.688 \text{ eV}; \ \mu_{Ni} = -4182.087 \text{ eV}.$

Figure S2. Temperature dependency of normalized PL integral intensity (a), emission peak position (b) and FWHM (c) in the temperature range of 85 - 435 K for $Cs_2Ag_{0.4}Na_{0.6}InCl_6$ phosphors doped with 1% Bi; 1% Bi, 1% Mn; 1% Bi, 1% Ce and 1% Bi, 1% Ni.