Supporting information for Anisotropic Electron

Transport Limits Performance in Bi₂WO₆ Photoanodes

Benjamin Moss,^a* Haonan Le,^a Sacha Corby,^a Kazuki Morita,^b Shababa Selim,^a Carlos Sotelo-Vazquez,^c Yunuo Chen,^a Alexander Borthwick,^a Anna Wilson,^a Chris Blackman,^c James R. Durrant,^a Aron Walsh^{b,d} and Andreas Kafizas,^{a,e}*

^aDepartment of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, London, W12 OBZ, U.K.

^bDepartment of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.

^cDepartment of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.

^dDepartment of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea

^eGrantham Institute for Climate Change, Imperial College London, South Kensington, London, SW7 2AZ, U.K.

*corresponding authors: <u>b.moss14@imperial.ac.uk</u> and <u>a.kafizas@imperial.ac.uk</u>

SO. XRD	Page S1
S1. XPS	Page S3
S2 SEM	Page S4
S3 EDX	Page S4
S4 High magnification SEM	Page S5
S5 Reflectance spectra	Page S5
S6 Photoelectrochemical stability	Page S6
Table S1 Literature summary of key properties of Bi ₂ WO ₆	.Page S6
S7 Ultra-fast transient absorption kinetics	.Page S7
Table S2 Literature transient recombination times	Page S7
S8 Ultra-fast transient absorption kinetics of BiVO ₄	.Page S7
S9 Fitting of slow transient absorption kinetics	Page S8
S10 Correlation of transient amplitudes and photocurrent	Page S8
S11 Analysis of crystal growth plans	Page S9
ReferencesPage	e S10-11

Figure S0. (a) Measured and modelled diffraction patterns of AACVD Bi_2WO_6 (b) magnified comparison of AACVD Bi_2WO_6 in comparison to standards for WO_3 and Bi_2O_3 . (c) and (d) show magnified regions of (b).

Figure S1 shows C 1s, O 1s, W 4f and Bi 4f of pristine Bi_2WO_6 . The C 1s spectrum (S1a) show three adventitious C environments typical of (C-C), (C-O) and (C=O).¹ Two adventitious oxygen environments (S1b) are observed arising from adventitious carbon residues, with a larger peak attributable to O^{2-} anions in the lattice.² The W 4f spectrum (S1c) shows two doublets, attributable to W^{6+} and W^{5+} respectively. This has previously been attributed the presence of oxygen deficiency leading to the reduction of W^{6+} states.³ A remarkably high W^{5+} concentration of 13 % is observed. The Bi 4f spectrum also shows two distinct environments (S1d), which we attribute to Bi^{3+} and Bi^0 states. During the first few minutes of use, a drop in oxidative photocurrent is observed before steady water oxidation current is observed (see stability test, S6). This effect is observed only once and appears to be irreversible, as oxidation of W^{5+} states are observed in used samples – with a W^{5+} concentration nearly 10 times lower than in the pristine samples (S1e). In contrast the Bi⁰ concentration appears to be unaffected by use (S1f).

S2 Cross sectional SEM

Figure S1. Cross-sectional SEM image of a typical Bi_2WO_6 film.

S3 EDX of Bi_2WO_6

Figure S2 EDX image of a nanoscale WO_3 impurity (< 1%) in comparison to the Bi_2WO_6 film

S4 High magnification images SEM of Bi₂WO₆

Figure S3. High magnification SEM image of typical Bi_2WO_6 film.

S5 Reflectance spectrum of Bi₂WO₆

Figure S5. Diffuse reflectance spectrum of Bi₂WO₆

S6 Photoelectrochemical stability of Bi₂WO₆

Figure S6. Photoelectrochemical chopped light stability test for a Bi_2WO_6 photoanodes. (a) LED illumination was chopped for the 15 hours. (b) The first 20 minutes of the stability test. Conditions: 0.1 M phosphate buffer (pH = 7) at 1.23 V_{RHE} under chopped light irradiation (375 nm; ~7.5 mW.cm⁻²).

Figure S6 shows the results of photoelectrochemical stability testing of Bi_2WO_6 using a high intensity UV LED. A c.a. 19 % drop in photocurrent is observed within the first few minutes of continuous light chopping, after which stable photocurrent is observed for over 14 hours. We attribute this loss to the initial oxidation of reduced W⁵⁺ states in the material.

Table	S1 :	Summary	of	the	synthesis,	structure	and	key	performance	parameters	towards
photoelectrochemical water splitting for Bi ₂ WO ₆ photoanodes in the literature.											

Synthesis	Structure	Onset ⁺	Photocurrent [‡]	Stability§	Reference
Sol-gel	Nanoscale	~0.7	~0.12*	~7%; ~1200 mins	Bahnemann <i>et</i>
	Inverse opals				al. ^{4,5}
Electrochemical	Micron-sized	~0.7	~0.30	~50%; ~10 mins	Choi <i>et al.</i> 6
and solid-state	mesopores				
Hydrothermal	Vertical	~0.5	~0.22	~5%; ~3 mins	Bi et al. ⁷
	nanoplates				
Drop-casting	Nanoporous	~0.3	~0.12	~18%; ~7 mins	Bi <i>et al.</i> ⁸
Solvothermal	Bi-pyramidal	nm	~0.020	~30%; ~3 mins	Li et al. ⁹
	nanostructure				
Hydrothermal	Nano-needle	~0.3	~0.012	nm	Joo <i>et al.</i> ¹⁰
	structures				
AACVD	Micron-sized	~0.5	~0.17	~19%; ~900 mins	herein
	mounds				

[†]onset potential of photocatalytic water oxidation (V_{RHE}); [‡]photocurrent at 1.23 V_{RHE} and 1 sun irradiance (mA.cm⁻²); [§]the photocurrent drop (%) after a given time (mins); *15% of 1 sun irradiance in terms of power; *nm* = not measured.

S7 Ultra-fast transient absorption kinetics.

Figure S7. Power dependence of ultra-fast recombination kinetics in Bi₂WO₆ under an inert atmosphere at 600 nm.

Material	t _{50%} (from 1 ps)	T _{50%} (from 1 us)	Reference
TiO ₂	1000-2000	100	11,12
Fe ₂ O ₃	10-30	10	11,13
WO ₃	6-30	100	14,15
BiVO ₄	15-80	200	¹⁶ and S8
Bi ₂ WO ₆	200-2000	100	This work

Table S2. Comparison of transient recombination 50% decay times under an inert atmosphere

Figure S8. Ultra fast recombination kinetics of $BiVO_4$ under an inert atmosphere. Included to complete the dataset in Table S2

Figure S9. Example of a transient decay fitted to the sum of a power law and exponential decay functions shown alongside the final parameters resulted from fitting the transients in Figure 2c.

S10 Correlation of photocurrent and exponential transient absorption amplitude

component (C in Fig. S9) against photocurrent.

S11 Analysis of crystal growth.

Figure S11. Comparison of predominant miller planes in Bi₂WO₆ to a crystallographic standard (note: the long axis of the unit cell is defined as the b axis herein).

- Gelius, U.; Hedén, P. F.; Hedman, J.; Lindberg, B. J.; Manne, R.; Nordberg, R.; Nordling, C.; Siegbahn, K. Molecular Spectroscopy by Means of ESCA III. Carbon Compounds. *Phys. Scr. 2* (1– 2), 70–80.
- (2) Dupin, J.-C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS Studies of Metal Oxides , Hydroxides and Peroxides. *Phys. Chem. Chem. Phys.* **2000**, *2* (6), 1319–1324.
- (3) Corby, S.; Francàs, L.; Selim, S.; Sachs, M.; Blackman, C.; Kafizas, A.; Durrant, J. R. Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes. J. Am. Chem. Soc. 2018, 140 (47), 16168–16177.
- (4) Zhang, L.; Bahnemann, D. Synthesis of Nanovoid Bi2WO6 2D Ordered Arrays as Photoanodes for Photoelectrochemical Water Splitting. *ChemSusChem* **2013**, *6* (2), 283–290.
- (5) Zhang, L.; Baumanis, C.; Robben, L.; Kandiel, T.; Bahnemann, D. Bi 2WO 6 Inverse Opals: Facile Fabrication and Efficient Visible-Light-Driven Photocatalytic and Photoelectrochemical Water-Splitting Activity. *Small* **2011**, *7* (19), 2714–2720.
- (6) Hill, J. C.; Choi, K. S. Synthesis and Characterization of High Surface Area CuWO4 and Bi2WO6 Electrodes for Use as Photoanodes for Solar Water Oxidation. J. Mater. Chem. A 2013, 1 (16), 5006–5014.
- (7) Dong, G.; Zhang, Y.; Bi, Y. The Synergistic Effect of Bi 2 WO 6 Nanoplates and Co 3 O 4 Cocatalysts for Enhanced Photoelectrochemical Properties. J. Mater. Chem. A 2017, 5 (39), 20594–20597.
- (8) Dong, G.; Zhang, Y.; Wang, W.; Wang, L.; Bi, Y. Facile Fabrication of Nanoporous Bi 2 WO 6 Photoanodes for Efficient Solar Water Splitting. *Energy Technol.* **2017**, *5* (11), 1912–1918.
- (9) Zhang, G.; Hu, Z.; Sun, M.; Liu, Y.; Liu, L.; Liu, H.; Huang, C. P.; Qu, J.; Li, J. Formation of Bi2WO6 Bipyramids with Vacancy Pairs for Enhanced Solar-Driven Photoactivity. *Adv. Funct. Mater.* 2015, *25* (24), 3726–3734.
- (10) Chae, S. Y.; Lee, E. S.; Jung, H.; Hwang, Y. J.; Joo, O. S. Synthesis of Bi2WO6 Photoanode on Transparent Conducting Oxide Substrate with Low Onset Potential for Solar Water Splitting. *RSC Adv.* **2014**, *4* (46), 24032–24037.
- (11) Pendlebury, S. R.; Wang, X.; Le Formal, F.; Cornuz, M.; Kafizas, A.; Tilley, S. D.; Grätzel, M.; Durrant, J. R. Ultrafast Charge Carrier Recombination and Trapping in Hematite Photoanodes under Applied Bias. J. Am. Chem. Soc. **2014**, 136 (28), 9854–9857.
- (12) Cowan, A. J.; Leng, W.; Barnes, P. R. F.; Klug, D. R.; Durrant, J. R. Charge Carrier Separation in Nanostructured TiO2 Photoelectrodes for Water Splitting. *Phys. Chem. Chem. Phys.* 2013, 15 (22), 8772–8778.
- (13) Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; Graťzel, M.; Klug, D. R.; Durrant, J. R. Dynamics of Photogenerated Holes in Surface Modified α-Fe 2O3 Photoanodes for Solar Water Splitting. *Proc. Natl. Acad. Sci. U. S. A.* **2012**, *109* (39), 15640– 15645.
- Sachs, M.; Park, J. S.; Pastor, E.; Kafizas, A.; Wilson, A. A.; Francàs, L.; Gul, S.; Ling, M.; Blackman,
 C.; Yano, J.; Walsh, A.; Durrant, J. R. Effect of Oxygen Deficiency on the Excited State Kinetics of WO3 and Implications for Photocatalysis. *Chem. Sci.* 2019, *10* (22), 5667–5677.
- (15) Corby, S.; Francàs, L.; Kafizas, A.; Durrant, J. R. Determining the Role of Oxygen Vacancies in

the Photoelectrocatalytic Performance of WO3 for Water Oxidation. *Chem. Sci.* **2020**, *11* (11), 2907–2914.

(16) Ma, Y.; Pendlebury, S. R.; Reynal, A.; Le Formal, F.; Durrant, J. R. Dynamics of Photogenerated Holes in Undoped BiVO4 Photoanodes for Solar Water Oxidation. *Chem. Sci.* 2014, 5 (8), 2964– 2973.