Dynamics and Proton Transport in Imidazole-Doped Nanocrystalline Cellulose Revealed by High-Resolution Solid-State NMR

Michał Bielejewski¹, Monica Pinto-Salazar², Łukasz Lindner¹, Radosław Pankiewicz³ Gerd Buntkowsky² and Jadwiga Tritt-<u>Goc^{1*}</u>

 ¹Institute of Molecular Physics Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland,
²Technical University of Darmstadt, Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Straβe 8, D-64287 Darmstadt, Germany
³Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
¹Corresponding author

Table of Contents

Figure S1. Selected temperature-dependent ¹⁵N CPMAS NMR spectra of CNC-Im-¹⁵N measured at 14.1 T and a spinning rate of 7.5 kHz. The high-field amino (N1) spinning sidebands are marked by the symbol " *" and the low-field imino (N3) sidebands by "#".

Figure S1. Selected temperature-dependent ¹⁵N CPMAS NMR spectra of CNC-Im-¹⁵N measured at 14.1 T and a spinning rate of 7.5 kHz. The high-field amino (N1) spinning sidebands are marked by the symbol " *" and the low-field imino (N3) sidebands by "#".