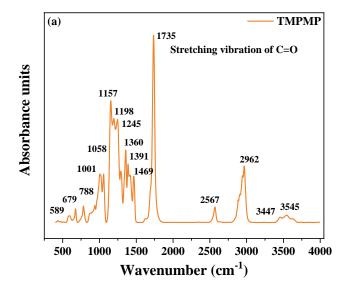
SUPPORTING INFORMATION


Enhanced Interfacial Compatibility and Dynamic Fatigue Crack Propagation Behavior of Natural Rubber/Silicone Rubber Composites

Qingyuan Han[†], Liqun Zhang^{†,‡}, Youping Wu^{*, †,‡}

[†]State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China

[‡]Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, PR China

The FT-IR spectrums of TMPMP; pure NR (T0-D0) and extracted T-NRs (T0.5-D0.05, T1-D0.1, T1.5-D0.15) are shown in **Figure S1 (a)** and **(b)**, respectively.

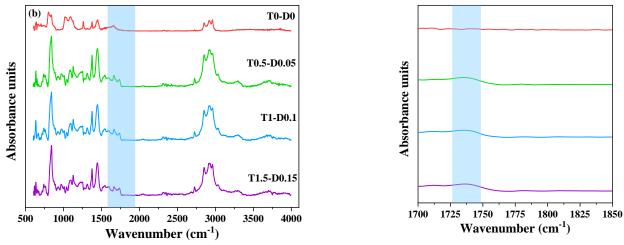


Figure S1. FT-IR spectrums of (a) TMPMP; (b) pure NR (T0-D0) and extracted T-NRs (T0.5-D0.05, T1-D0.1, T1.5-D0.15), including enlarged details

Comparing with pure NR (T0-D0), the stretching vibration peaks of carbonyl groups (C=O) in TMPMP around 1735 cm⁻¹ (**Figure S1 (a**)) have been retained in the extracted T-NRs (enlarged details in **Figure S1 (b**)), which proves the successful grafting of TMPMP on NR.

The interfacial adhesive energy (W_{rf}) between rubber and filler could be calculated by Fowkes model [26], which is an effective criterion for evaluating the interfacial interaction degree between rubber and filler:

$$W_{\rm rf} = 2(\sqrt{\gamma_r^d \gamma_f^d} + \sqrt{\gamma_r^P \gamma_f^P})$$
(S1)

where γ_r^d and γ_r^P are dispersive and polar part of surface energy for rubber, respectively, and γ_f^d and γ_f^P are dispersive and polar part of surface energy for filler, respectively. The surface energy (γ) and its dispersive/polar part (γ_D/γ_P) for NR and VMQ were measured in our earlier study [9], and the surface energy of silica has referred to the result of Heinrich et al [27], for the same brand VN3 used, then the W_{rf} was determined as listed in **Table S1**. The higher W_{rf} of NR-silica than that of VMQ-silica indicates the stronger interfacial interaction between NR phases and silica. In addition, according to **Equation (S2)**, the interfacial energy (γ_{12}) between any two components is correlated to their surface energy γ_1 and γ_2 , then the phase selective distribution of silica could be further assessed by the wetting coefficient (ω_{NR-VMQ}) [28], which is a function of interfacial energy among silica, NR and VMQ: $\gamma_{silica-NR}$, $\gamma_{silica-VMQ}$ and γ_{NR-VMQ} . As for $\omega_{NR-VMQ}>$ 1, silica would distribute in NR phases; with regard to $\omega_{NR-VMQ}<-1$, silica would distribute in VMQ phases; when -1 < $\omega_{NR-VMQ}<$ 1, silica would distribute at the interface of the two phases.

$$\gamma_{12} = \gamma_1 + \gamma_2 - 2(\gamma_1 \gamma_2)^{\frac{1}{2}}$$
(S2)

$$\omega_{\rm NR-VMQ} = \frac{(\gamma_{\rm silica-VMQ} - \gamma_{\rm silica-NR})}{\gamma_{\rm NR-VMQ}}$$
(S3)

Corresponding interfacial energy and wetting coefficient have also been determined in **Table S1**. As for $\omega_{\text{NR-VMQ}} = 9 >> 1$, demonstrating the selective location tendency of silica in NR phases.

Therefore, these two parameters: W_{rf} and ω_{NR-VMQ} , could both reasonably explain the reason why part of pre-mixed silica in VMQ/silica master-batch has migrated from VMQ phases internal into NR phases after compounding, as the result shown in **Figure 4**.

Table S1. Surface energy (γ) and its dispersive/polar part (γ_D/γ_P) for NR, VMQ and silica; interfacial adhesive energy (W_{rf}), interfacial energy (γ_{12}) among them (NR-silica, VMQ-silica, NR-VMQ) and wetting coefficient (ω_{NR-VMQ})

Total γ	Dispersive part (γ_D)	Polar part (γ_P)
25.2	25.2	0
23.0	23.0	0
34.9	19.7	15.2
	25.2 23.0	25.2 25.2 23.0 23.0

Interfacial adhesive energy (mN/m)	$W_{ m rf}$	
NR-silica	44.6	
VMQ-silica	42.6	
Interfacial energy (mN/m)	<i>γ</i> 12	
NR-silica	0.79	
VMQ-silica	1.24	
NR-VMQ	0.05	
Wetting coefficient	$\omega_{ m NR-VMQ}$	
	9	

RPA was conducted to investigate the agglomeration degree of silica in composites, the storage modulus (*G*')-strain sweeping curves of T-NR/VMQ composites are shown in **Figure S2**. The high *G*' level at lower strains and its rapid decrease at higher strains is called Payne effect [29], which is mainly caused by the existence of filler network under lower strains and its progressive collapse and destruction under higher strains. The more *G*' decrease amplitude ($\Delta G'$), the stronger structure of filler network, the worse dispersion of filler in rubber matrix, the lower rubber-filler interaction. As could be seen, with the increase of TMPMP grafting degree, the $\Delta G'$ gradually decreases, which indicates the weakened filler network, the explanations for this result are as below: as discussed above, due to the small amount of silica (10.5 phr) was pre-mixed in VMQ/silica master-batch, after compounding with NR, part of silica has migrated into the large amount of NR matrix (70 phr), which is helpful to weaken the packing of silica network; besides, under the modification via TMPMP, the smaller sized and more evenly distributed VMQ phases in NR matrix is another assistance to facilitate a more homogeneous dispersion of silica in composites.

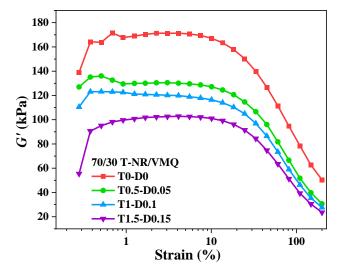
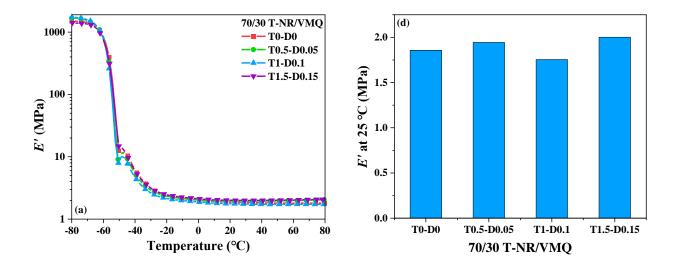
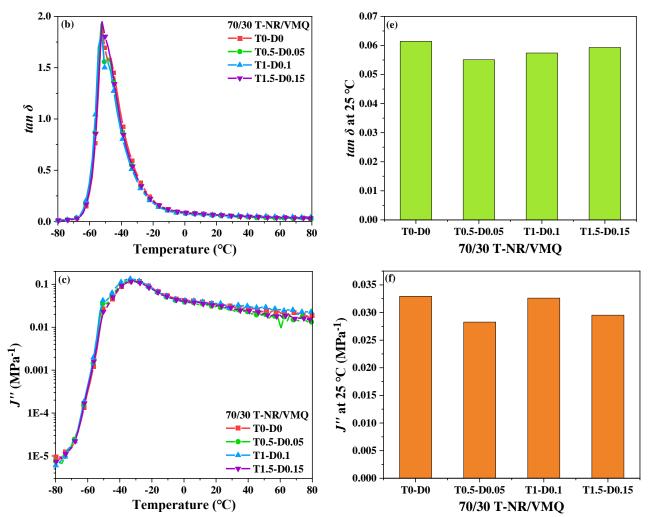




Figure S2. RPA storage modulus (G')-strain sweeping curves of T-NR/VMQ composites

The temperature dependency of storage modulus (*E'*), loss factor (*tan* δ) and loss compliance modulus (*J''*) measured via DMTA is shown in **Figure S3** (a)-(c), respectively, and the corresponding values at 25 °C (consistent with the testing temperature of dynamic fatigue crack growth) are listed in the histograms of **Figure S3** (d)-(f), respectively.

Figure S3. Temperature dependency of (**a**) storage modulus (*E'*), (**b**) loss factor (*tan* δ) and (**c**) loss compliance modulus (*J''*); (**d**)-(**f**): corresponding values at 25 °C for T-NR/VMQ composites via DMTA

The cyclic stress-strain curves recorded in the real-time during crack growth are shown in **Figure S4**, as for the strain amplitude is about 20 %, the composites exhibit approximately a linear stress-strain behavior, which is consistent with the hypothesis of **Equation (3)** for Persson's theory.

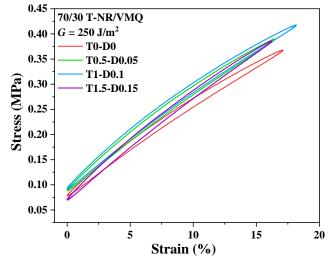


Figure S4. The cyclic stress-strain curves during crack growth for T-NR/VMQ composites