Calculated Ionization Potentials of MO₃ and MO₂ for M = U, Mo, W and Nd

Monica Vasiliu,¹ Kirk A. Peterson,² and David A. Dixon^{1,*}

¹Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama

35401, USA

³Department of Chemistry, Washington State University, Pullman, Washington, 99164, USA

*Corresponding author E-mail: dadixon@ua.edu

Complete references:

Reference 34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.

Reference 53. Werner, H.-J.; Knowles, P. J.; Manby, F. R.; Black, J. A.; Doll, K.; Heßelmann, A.; Kats, D.; Köhn, A.; Korona, T.; Kreplin, D. A.; Ma, Q.; Miller, T. F.; Mitrushchenkov, A.; Peterson, K. A.; Polyak, I.; Rauhut, G.; Sibaev, M., The Molpro Quantum Chemistry Package. *J. Chem. Phys.* **2020**, *152*, 144107-1 - 144107-24.

Reference 57. Gomes, A. S. P.; Saue, T.; Visscher, L.; Jensen, H. J. Aa.;. Bast, R. with contributions from Aucar, I. A.; Bakken, V.; Dyall, K. G.; Dubillard, S.; Ekström, U.; Eliav, E.; Enevoldsen, T.; Faßhauer, E.; Fleig, T.; Fossgaard, O.; Halbert, L.; Hedegård, E. D.; Helgaker, T.; Helmich-Paris, B.; Henriksson, J.; Iliaš, M.; Jacob, Ch. R.; Knecht, S.; Komorovský, S.; Kullie, O.; Lærdahl, J. K.; Larsen, C. V.; Lee, Y. S.; Nataraj, H. S.; Nayak, M. K.; Norman, P.; Olejniczak, G.; Olsen, J.; Olsen, J. M. H.; Park, Y. C.; Pedersen, J. K.; Pernpointner, M.; Di Remigio, R.; Ruud, K.; Sałek, P.; Schimmelpfennig, B.; Senjean, B.; Shee, A.; Sikkema, J.; Thorvaldsen, A. J.; Thyssen, J.; van Stralen, J.; Vidal, M. L.; Villaume, S.; Visser, O.; Winther, T.; Yamamoto, S. DIRAC, a Relativistic Ab Initio Electronic Structure Program, Release DIRAC19 (2019), (available at http://dx.doi.org/10.5281/zenodo.3572669, see also http://www.diracprogram.org). Accessed April 1, 2020.

Figure S1. Mulliken spins, relative energies and geometry parameters at B3LYP//aD/Stutt-ECP

Calculation	UO3	³ UO ₂
$\Delta E(aD/D-PP)$	9.25	6.03
$\Delta E(aT/T-PP)$	9.46	6.06
$\Delta E(aQ/Q-PP)$	9.53	6.07
$\Delta E(CBS)$	9.58	6.07
$\Delta \mathrm{CV}$	0.002	0.02
ΔSO	0.048	0.034
∆Gaunt	-0.015	-0.030
ΔLamb	0.001	-0.02
ΔΖΡΕ	0.002	0.009
IP_0 (FPD)	9.62	6.08

Table S1. Contributions to the final FPD composite result for the IP₀ of UO₃ and UO₂ in eV using aug-cc-pVnZ(-PP) basis sets n = D, T, and Q.

Table S2. Contributions to the final FPD composite result for the IP₀ of MO₃ and MO₂ in eV for M = W and Mo using aug-cc-pV*n*Z(-PP) basis sets n = D, T, and Q.

Calculation	WO ₃	MoO ₃	¹ WO ₂	³ MoO ₂
$\Delta E(aD/D-PP)$	10.86	10.86	8.61	8.38
$\Delta E(aT/T-PP)$	11.00	11.00	8.66	8.38
$\Delta E(aQ/Q-PP)$	11.07	11.17	8.68	8.40
$\Delta E(CBS)$	11.11	11.12	8.69	8.41
ΔCV	0.05	0.05	0.06	0.10
ΔSO	0.020	0.002	0.034	-0.002
ΔGaunt	-0.009	-0.006	-0.010	-0.001
ΔSR	-0.02	-0.01	0.01	-0.01
ΔΖΡΕ	-0.04	-0.03	0.004	0.01
IP_0 (FPD)	11.11	11.13	8.79	8.51

Table S3. Contributions to the final FPD composite result for the IP₀ of ${}^{3}NdO_{2}$ in eV using augcc-pV*n*Z-DK for O and cc-pV*n*Z-DK3 for Nd basis sets.

Calculation	³ NdO ₂
$\Delta E(aD-DK/D-DK3)$	8.08
$\Delta E(aT-DK/T-DK3)$	8.07
$\Delta E(aQ-DK/Q-DK3)$	8.11
$\Delta E(CBS)$	8.13
ΔSO	-0.26
ΔGaunt	-0.00
ΔΖΡΕ	0.04
IP ₀ (FPD)	7.91

Table S4. NPA charges (q) from NBO7 implemented in Molpro.2018 (HF orbitals) using aug-cc-pVDZ-DK(O)/cc-pVDZ-DK3(U, Nd) basis sets for U and Nd oxides and aug-cc-pVDZ(O)/aug-cc-pVDZ-PP (Mo, W) basis sets for Mo and W oxides.

		-		
Molec	Sym	q(U)	q(O)	q(O)
$^{1}\text{UO}_{3}$	C _{2v}	2.626	-0.942	-0.842 (x2)
$^{2}\text{UO}_{3}^{+}$	C _{2v}	2.820	-0.449	-0.685 (x2)
$^{3}UO_{2}$	$D_{\infty h}$	1.970	-0.985 (x2)	
$^{2}\text{UO}_{2}^{+}$	$D_{\infty h}$	2.763	-0.882 (x2)	
$^{1}WO_{3}$	C _{3v}	2.561	-0.854 (x3)	
$^{2}WO_{3}^{+}$	Cs	2.586	-0.345	-0.610 (x2)
$^{1}WO_{2}$	C _{2v}	1.601	-0.801 (x2)	
$^{2}WO_{2}^{+}$	C _{2v}	2.268	-0.634 (x2)	
¹ MoO ₃	C _{3v}	2.411	-0.803 (x3)	
$^{2}MoO_{3}^{+}$	Cs	2.429	-0.371	-0.529(x2)
³ MoO ₂	C _{2v}	1.877	-0.938 (x2)	
$^{2}MoO_{2}^{+}$	C _{2v}	2.214	-0.607 (x2)	
$^{3}NdO_{2}$	$D_{\infty h}$	2.678	-1.134 (x2)	
2 NdO ₂ ⁺	$D_{\infty h}$	2.520	-0.760 (x2)	

Molec	U	5f	5fa	5fβ	5f(α-	6р	6pα	6рβ	6p(α-	• 6d	6da	6dβ	6d(α-	7s	7sα	7s β	7s(α-
	spin	total			β)	total			β)	total			β)	total			β)
$^{1}\text{UO}_{3}$	0	2.03				5.69				1.55				0.01			
$^{2}\text{UO}_{3}^{+}$	0.03	2.07	1.05	1.03	0.02	5.64	2.82	2.82	0.00	1.37	0.69	0.68	0.01	0.05	0.02	0.02	0.00
$^{3}UO_{2}$	1.95	2.39	1.69	0.70	0.99	5.76	2.88	2.88	0.00	0.93	0.53	0.40	0.13	0.87	0.84	0.03	0.81
$^{2}UO_{2}^{+}$	1.00	2.58	1.78	0.80	0.98	5.72	2.86	2.86	0.00	0.86	0.43	0.43	0.00	0.03	0.02	0.02	0.00
	_				1						1	n					
Molec	W sp	in	5d to	tal	5da		5dβ	5d(α	-β)	6s total	6sa		6sβ	6p tota	.1		
$^{1}WO_{3}$	0.0		3.20)						0.17							
$^{2}WO_{3}^{+}$	0.0	L	3.17	7	1.59)	1.58	0.0	1	0.19	0.09		0.09				
$^{1}WO_{2}$	0.0		3.07	7						1.22				0.07			
$^{2}WO_{2}^{+}$	0.96	5	3.27	7	1.96)	1.31	0.6	5	0.42	0.36	. (0.06				
	•	•			•				•								
														1			
Molec	Mo	4d	4de	x 4d	β 4d(e	α-β)	4p	4pα	4pβ	4p(α-β)	5s	5sα	5sβ	5s(α-β)		
	spin	tota	1				total				total						
¹ MoO ₃	0.0	3.49)				5.94				0.10						
$^2MoO_3^+$	0.01	3.46	5 1.74	4 1.7	<i>'</i> 3 0.	01	5.93	2.97	2.97	0.00	0.12	0.06	0.06	0.00			
³ MoO ₂	1.84	3.81	2.6	9 1.1	2 1.	57	5.95	2.98	2.97	0.01	0.28	0.24	0.03	0.21			
$^2MoO_2^+$	0.87	3.67	7 2.2	3 1.4	5 0.	78	5.94	2.97	2.97	0.00	0.14	0.11	0.03	0.08			
								·									
						1								1		-	
Molec	Nd	4f	4fα	4fβ	4f(α-	5p	5pα	5pβ	5p(α	- 5d	5da	5dβ	5d(α-	6s	6sa	6s β	6s(α-
	spin	total			β)	total	l		β)	total			β)	total			β)
³ NdO ₂	2.00	3.01	2.49	0.51	1.98	5.78	2.89	2.89	0.00	0.84	0.42	0.42	0.00	0.04	0.02	0.02	0.00
2 NdO ₂ ⁺	1.00	2.91	1.95	0.96	0.99	5.54	2.77	2.77	0.00	0.95	0.48	0.48	0.00	0.04	0.02	0.02	0.00

Table S5. NBOs and Spins (Natural Spin Densities) for metal atoms (U, W, Mo and Nd).

Molec	O spin	O spin	0	O2p	α	β	2p(α-	O2p	α	β
			spin				β)			
$^{1}\text{UO}_{3}$	0.0			5.03				4.94(x2)		
$^{2}\text{UO}_{3}^{+}$	0.95	0.01(x2)		4.51	2.73	1.78	0.95	4.79(x2)	2.40	2.39
$^{3}UO_{2}$	0.02			5.07	2.54	2.52	0.02			
$^{2}\text{UO}_{2}^{+}$	0.00			4.95	2.48	2.48	0.00			
¹ WO ₃	0.0			4.93						
$^{2}WO_{3}^{+}$	0.95	0.02(x2)		4.41	2.68	1.73	0.95	4.68(x2)	2.35	2.33
$^{1}WO_{2}$	0.0			4.89						
$^{2}WO_{2}^{+}$	0.02			4.70	2.36	2.34	0.02			
¹ MoO ₃	0.0			4.87						
$^{2}MoO_{3}^{+}$	0.96	0.02 (x2)		4.41	2.68	1.73	0.95	4.59	2.30	2.29
³ MoO ₂	0.08			4.99	2.53	2.46	0.07			
$^{2}MoO_{2}^{+}$	0.06			4.66	2.36	2.30	0.06			
³ NdO ₂	0.002			5.18	2.59	2.59	0.00			
$^{2}NdO_{2}^{+}$	0.00			4.83	2.41	2.41	0.00			

Table S6. NBOs and spins (Natural spin densities) for the oxygen atoms

Table S7. IPs for NdO₃

IP (eV)	N=D	N=T
³ NdO ₃ / ⁴ [NdO ₃] ⁺		
B3LYP//aD/Stutt-ECP	8.93	
aN-DK/N-DK3 (HF)	8.84	8.99
aN-DK/N-DK3 (PW91)	8.87	9.02
³ NdO ₃ / ⁶ [NdO ₃] ⁺		
B3LYP//aD/Stutt-ECP	8.09	
aN-DK/N-DK3 (PW91)	7.80	

Table S8. CASSCF analysis.

³NdO₃

CI vector for state symmetry 1

aa00 000 0.7175767 0000 aa0 -0.6962497 TOTAL ENERGIES -9845.01657717

CI vector for state symmetry 2

a000 a00 0.7628426 0a00 0a0 0.6463034 TOTAL ENERGIES -9845.01671752

⁵NdO₃

CI vector for state symmetry 1

aa000000 aa000	0.6766513	
aaaa0000 00000	-0.6149687	
a0a00000 a0a00	0.3088305	
a00a0000 0aa00	0.2514537	
TOTAL ENERGI	ES	-9845.13306276

CI vector for state symmetry 2

aaa00000 a0000	0.6890486	
aa0a0000 0a000	0.6028482	
a0000000 aaa00	-0.2995280	
a0aa0000 00a00	0.2566127	
TOTAL ENERGI	ES	-9845.13308327

$^{4}NdO_{3}^{+}$

CI vector for state symmetry 1

aaa00000 00000 0.7075562 a0000000 aa000 0.7058009 TOTAL ENERGIES -9844.74407230

CI vector for state symmetry 2

aa000000 a0000 0.7143562 a0a00000 0a000 -0.6989164 TOTAL ENERGIES -9844.74408187

⁶NdO₃⁺

=

CI vector for state symmetry 1

aaa00000 aa000	0.8448597	
aa0a0000 a0a00	0.3620397	
a0aa0000 a00a0	0.3332533	
a0000000 aaaa0	-0.1541109	
a00aa000 aa000	-0.0933728	
aa00a000 a00a0	0.0676824	
a0a0a000 a0a00	-0.0520835	
TOTAL ENERGI	ES	-9844.90490301

CI vector for state symmetry 2

aaaa0000 a0000	0.7580515	
aa000000 aaa00	-0.4964032	
a0a00000 aa0a0	-0.3827338	
a00a0000 a0aa0	-0.1645365	
TOTAL ENERGI	ES	-9844.90433989

Molecule	aD/(a)D-PP	aD/(a)D-PP	aD/(a)D-PP	CBS	awD-DK/ wD-DK3	awT-DK/ wT-DK3	awQ-DK/ wQ-DK3	CBS
¹ UO ₃	-698.4593267	-698.7235857	-698.8119195	-698.8624859	-28226.057660	-28226.651150	-28226.839476	-28226.946233
$^{2}\text{UO}_{3}^{+}$	-698.799410	-699.071199	-699.1622301	-699.2143593	-28225.717552	-28226.304051	-28226.489878	-28226.595187
$^{3}UO_{2}$	-623.658694	-623.864769	-623.935093	-623.975500	-28150.821043	-28151.335150	-28151.501276	-28151.595776
$^{2}\text{UO}_{2}^{+}$	-623.437050	-623.642079	-623.712083	-623.752309	-28150.596142	-28151.110420	-28151.276971	-28151.371754
					awD/awD-PP	awT/awT-PP	awQ/awQ-PP	CBS
$^{1}WO_{3}$	-292.260902	-292.479364	-292.545736	-292.583037	-292.638406	-292.977852	-293.074433	-293.127959
$^{2}WO_{3}^{+}$	-291.8617405	-292.0751632	-292.1390269	-292.174806	-292.237897	-292.571731	-292.665728	-292.717702
$^{1}WO_{2}$	-217.122875	-217.277001	-217.323125	-217.348967	-217.464771	-217.719995	-217.792481	-217.832638
$^{2}WO_{2}^{+}$	-216.806607	-216.958760	-217.004143	-217.029551	-217.145624	-217.399198	-217.471277	-217.511215
¹ MoO ₃	-292.7975617	-293.013811	-293.081438	-293.119666	-293.220914	-293.562335	-293.659758	-293.713786
$^{2}MoO_{3}^{+}$	-292.398462	-292.609645	-292.674580	-292.711163	-292.820817	-293.156394	-293.251093	-293.303480
³ MoO ₂	-217.663773	-217.814623	-217.861830	-217.888518	-218.050130	-218.307182	-218.381366	-218.422607
$^{2}MoO_{2}^{+}$	-217.355712	-217.506521	-217.553145	-217.579440	-217.740554	-217.996140	-218.069339	-218.109966
	aD/D-DK3	aD/D-DK3	aD/D-DK3	CBS	awD-DK/ wD-DK3	awT-DK/ wT-DK3	awQ-DK/ wQ-DK3	CBS
³ NdO ₂	-9771.083553	-9771.304116	-9771.370696	-9771.408065	-9771.785565	-9772.351578	-9772.530652	-9772.632105
2 NdO ₂ ⁺	-9770.786734	-9771.007476	-9771.072806	-9771.109322	-9771.497196	-9772.057804	-9772.234054	-9772.333786

Table S9. Total Energies at the CCSD(T) Level of Theory in Atomic Units.

Table S10. XYZ coordinates optimized at B3LYP/aug-cc-pVDZ(O)/cc-pVDZ-PP(U)/aug-cc-pVDZ-PP(Mo,W)/Stuttgart-ECP(Nd)

 $UO_3(C_{2v})$ 01 U $0.000000 \quad 0.000000 \quad 0.078944$ 0 0.000000 0.000000 -1.777942 0 0.000000 1.777504 0.435043 0 0.000000 -1.777504 0.435043 $UO_{3}^{+}(C_{2v})$ 12 U 0.000000 0.000000 0.127967 0 0.000000 0.000000 -1.873850 0 0.000000 1.746804 0.201114 Ο 0.000000 -1.746804 0.201114 $UO_2(D_{\infty h})$ 03 U 0.000000 0.000000 0.000000 0 0.000000 0.000000 1.802208 0 0.000000 0.000000 -1.802208 $UO_2^+(D_{\infty h})$ 12 U 0.000000 0.000000 0.000000 0 0.000000 0.000000 1.766097 0 0.000000 0.000000 -1.766097 $WO_3(C_{3v})$ 01 W 0.000000 0.150940 0.000000 0 0.000000 1.611834 -0.465399 1.395890 -0.805917 -0.465399 0 -1.395890 -0.805917 -0.465399 0 $WO_3^+(C_s)$ 12 W 0.180563 0.021608 0.000000 0 -0.556737 -1.650213 0.000000 0 -0.556737 0.725169 1.352564 0 -0.556737 0.725169 -1.352564 $WO_2(C_{2v})$ 01 W 0.000000 0.000000 0.182843 0 0.000000 1.335603 -0.845647

0 0.000000 -1.335603 -0.845647 $WO_2^+(C_{2v})$ 12 W 0.000000 0.000000 0.184260 0.000000 1.311030 -0.852203 0 0 0.000000 -1.311030 -0.852203 $MoO_3(C_{3v})$ 01 0 0.000000 1.629215 -0.337531 0 1.410942 -0.814608 -0.337531 0 -1.410942 -0.814608 -0.337531 MO 0.000000 0.000000 0.192875 $MoO_3^+(C_s)$ 12 0 -0.429097 -1.687472 0.0000000 -0.429097 0.760763 1.347167 0 -0.429097 0.760763 -1.347167 MO 0.245199 0.031609 0.000000 $MoO_2(C_{2v})$ 03 0 0.000000 1.442104 -0.659962 Ο 0.000000 -1.442104 -0.659962 0.000000 0.000000 0.251414 MO $MoO_2^+(C_{2v})$ 12 0 0.000000 1.332705 -0.723350 0 0.000000 -1.332705 -0.723350 MO 0.000000 0.000000 0.275562 $NdO_3(C_s)$ 03 0 -1.494281 -1.198882 0.000000 0 -0.205965 -1.846890 0.000000 0 1.700246 0.919616 0.000000 ND 0.000000 0.283487 0.000000 $NdO_3(C_s)$ 05 0 -0.644605 -1.650510 0.000000 0 -1.082168 -2.885101 0.000000 0 1.726772 1.006578 0.000000

S-11

```
ND
       0.000000 \quad 0.470538 \quad 0.000000
NdO_3^+(C_s)
14
     -1.273592 -1.447612
 0
                           0.000000
 0
     -0.239752 -2.239477
                            0.000000
 0
      1.513344 1.225833
                           0.000000
 ND
      0.000000 0.328167
                            0.000000
NdO_3^+(C_s)
16
0
    -1.057949 -1.907462
                           0.000000
 0
     -0.622259 -3.032958
                           0.000000
 0
      1.680208 0.147792
                           0.000000
 ND
      0.000000 0.639017 0.000000
NdO_2(D_{\infty h})
03
 0
      0.000000
                0.000000
                          1.814867
 Ο
      0.000000
                0.000000 -1.814867
 ND
      0.000000 \quad 0.000000 \quad 0.000000
NdO_2^+(D_{\infty h})
12
 Ο
      0.000000
                0.000000 1.690373
                0.000000 -1.690373
 Ο
      0.000000
 ND
       0.000000 \quad 0.000000 \quad 0.000000
```